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Abstract

In many problems, one has several models of interest that capture key parameters describing the 

distribution of the data. Partially overlapping models are taken as models in which at least one 

covariate effect is common to the models. A priori knowledge of such structure enables efficient 

estimation of all model parameters. However, in practice, this structure may be unknown. We 

propose adaptive composite M-estimation (ACME) for partially overlapping models using a 

composite loss function, which is a linear combination of loss functions defining the individual 

models. Penalization is applied to pairwise differences of parameters across models, resulting in 

data driven identification of the overlap structure. Further penalization is imposed on the 

individual parameters, enabling sparse estimation in the regression setting. The recovery of the 

overlap structure enables more efficient parameter estimation. An oracle result is established. 

Simulation studies illustrate the advantages of ACME over existing methods that fit individual 

models separately or make strong a priori assumption about the overlap structure.
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1 Introduction

Regression modeling aims to explain the association between a response variable and 

covariates in a dataset. A regression model targets a profile of the conditional distribution of 
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the response given the predictors. It is of interest to consider several linear models to 

describe a more complete picture of the conditional distribution. We can simultaneously fit 

the models on the dataset and estimate the parameters. Such joint estimation borrows 

information across the models and is referred as to composite estimation.

Composite estimation may be based on combining loss functions as weighted averages of 

loss functions tailored to individual models. Given n independent identically distributed 

samples, z1 = (x1, y1), ···, zn = (xn, yn) ∈ ℝp × ℝ, consider the K empirical convex loss 

functions:

(1)

where αk’s are the intercept terms across the models and β1, ···, βK ∈ ℝp are the parameter 

vectors for all models of interest. Our composite loss function is

(2)

where α = (α1, ···, αK)T, , and w = (w1, ···, wK)T is a positive 

weight vector. Minimizing (2) without further assumptions on parameter overlap is 

equivalent to minimizing the loss functions separately. As an example, in composite quantile 

regression (CQR), each Lk is a check function used to fit a model to a quantile (Zou and 

Yuan (2008)). Combining the check function for median regression (L1) with the usual least 

squares loss function (L2) is another.

Composite estimation is useful when the underlying parameter structures are partially 

overlapped. In partially overlapping models, some covariates have the same effect on the 

response across at least two models, while others do not. The CQR and L1-L2 loss functions 

may have overlapping parameters for different quantiles or median and expectation. Figure 1 

shows a simple example of the partially overlapping models. Here possible risk factors to 

diabetes patients include blood pressure (BP), body mass index (BMI), race, and gender, and 

the response is the blood glucose level. Interest is in three patient groups with levels of 

blood glucose, 70%, 80%, and 90%. Each parameter vector corresponds to the check 

function for each quantile (β1, β2, and β3). The BP has rows of the same color, which impart 

the same parameter values across all three quantiles. We call this arrangement overlapping 

structure. According to the definition of overlapping structure, the effects of BMI overlap 

across patients with 70% and 80% quantiles, and the effects of gender overlap across all 

three quantiles. The row of the gender appears white-shaded, which indicates that it is not a 

risk factor across all three levels.

A complete overlapping structure is one extreme of partially overlapping structures, where 

all parameters are common to all loss functions. For completely overlapping models, Bradic, 

Fan, and Wang (2011) and Zou and Yuan (2008) used composite loss functions with the 

goal of improving efficiency of the regression parameter estimators. They considered the 
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composite loss function as an approximation to the unknown log-likelihood function of the 

error distribution (Bradic, Fan, and Wang (2011)) while ACME considers each loss 

component as a model targeting different profiles of the conditional distribution. The 

completely overlapping modeling in composite loss estimation can limit exibility in 

statistical modelling. Consider a linear location-scale model whose several covariates affect 

the scale of response and error is centered to zero but not symmetric. Different loss 

functions estimate different parameters defined both by the mean and variance of the 

response. The parameters are the same for the covariates which have no effect on the 

variance function (Carroll and Ruppert (1988)). A parameter vector for L2 is the same as the 

regression parameter vector of the model while a parameter vector for L1 is the weighted 

sum of the regression parameter vector and the scale parameter vector.

We aim for efficient composite estimation under the partially overlapping structure, which 

can overcome the drawback of completely overlapping models and allow the exibility of 

having different parameter values. To adapt such overlapping structure in the models, we 

incorporate penalization into (2). The penalty is applied to all absolute pairwise differences 

between coefficients corresponding to each covariate. In addition to this overlapping 

penalty, we also employ a penalty for sparse estimation. The objective function for our 

empirical composite loss function with double penalties is

(3)

The penalty terms in (3) applied to each coefficient encourage sparsity by shrinking small 

coefficients toward zero. The penalty terms applied to the difference in the coefficients 

enable recovery of the overlapping structure by shrinking small differences toward zero. 

Penalization of the differences is used not for variable selection, but for selecting the 

overlapping structure across the multiple loss functions. The fused lasso (Tibshirani et al. 

(2004)) also has a sparse penalty term combined with a penalty term for pairwise differences 

to identify local consistency of coefficients in a single model.

In the sequel, we propose and study adaptive composite M-estimation (ACME) based on 

(3); it simultaneously shrinks toward the true overlapping model structure while estimating 

the shared coefficients in that structure. For the models from Figure 1, ACME automatically 

chooses risk factors strongly associated with high blood glucose levels and estimates their 

same effects across different levels. Our procedure yields estimators with improved 

efficiency by information combination across the models. It correctly selects both the true 

overlap structure and the true non-zero parameters with probability 1 in large samples. The 

parameter estimators hereby are oracle in the sense that they have the same distribution as 

the oracle estimator based on knowing the true model structure a prior.

The rest of the paper is organized as follows. In Section 2, we introduce notation for the 

distinct parameter vector across models, based on overlap in the βk’s, and define the oracle 

estimator. The large sample properties of the oracle estimator are established under partially 

overlapping models. Section 3 presents ACME for partially overlapping models and 
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describes its implementation along with a discussion of its theoretical properties. Section 4 

contains numerical results from an extensive simulation study, and Section 5 reanalyzes a 

well-known dataset on annual salaries of professional baseball players. Proofs and some 

numerical results are presented in a web-appendix.

2 Oracle M-estimator for Overlapping Models

2.1 Models and Notations

We first consider the K separate models with their corresponding loss functions in (1). The 

risk function for the kth model is the expectation of the kth loss function, Rk(αk, βk) = 

z[Lk(y, αk + xTβk)] for βk ∈ ℝp, k = 1, ···, K. The true parameter vector for the kth model is 

the minimizer of the corresponding risk function, Rk(αk, βk), with 

. We estimate the parameter vector of each model 

by minimizing its corresponding loss function. We consider a stack of all parameter vectors 

across all models, and write the K · (p + 1)-dimensional true parameter vector as 

.

We describe the underlying parameter structure across the multiple models using set 

notation. Let  be the index set of the non-zero parameters in 

the kth model and  be its complement, with the underlying sparse 

structure for all models as . With 0, we can decompose the parameters as 

the true zero parameters , k = 1, ···, K, and the true non-zero and 

intercept parameters, , where β k = [βkj]j∈ k. Let 

 be the index set of the same-valued non-zero 

parameters between  and for k ≠ k′, with the underlying overlapping structure available 

as 0 ≡{Okk′}k<k′. We can identify the underlying sparse and overlapping structure with the 

sparsity sets and the overlap sets.

For joint estimation, the composite loss function is taken as the linear combination of all loss 

functions with weights, as in (2), and the composite risk function as 

. The minimizer of 

, is the true parameter vector for all 

K models. The true non-zero and intercept parameter vector is the minimizer of the 

composite risk function restricted to the non-zero parameters with the overlapping 

constraint:

(4)
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where ℛk(αk, β k) = zLk(y, αk + xkTβ k) and .

The oracle M-estimator of (αT, βT)T for partially overlapping models is the unpenalized M-

estimator obtained under the assumption that the sparsity and overlapping structure is known 

in advance, say (α̂oT, βôT)T. It can be decomposed into its zero parameter and non-zero 

parameter parts: k = 1, ···, K, and 

, where . Since we 

know the sparsity pattern of the models, , we estimate the corresponding 

parameters as zeros. Analogous to the definition of the true parameters in (4), the oracle 

estimator to the non-zero parameters minimizes the empirical weighted multiple loss 

functions with the overlapping structure constraint: 

 subject to βAkj = βAk′j
 ∀j ∈ 

kk′, for any k < k′.

2.2 Distinct Parametrization and Distinct OracleM-estimator

The common parametrization in Section 2.1 includes the duplication of the same valued 

parameters from the overlapping structure. The left panel of Figure 2 shows an example of 

such redundant parametrization. We use two 4-dimensional parameter vectors, β1, β2 ∈ ℝ4, 

to describe the models. The first and second parameter pairs have the same values 

respectively (β11 = β21 and β12 = β22). We can use one parameter, θ11, for β11 and β21, and 

another parameter, θ21, for β12 and β22 as in the right panel of Figure 2. Furthermore, this 

parametrization excludes the zero-valued parameters, β23 and β14. We call such 

parametrization distinct parametrization or non-redundant parametrization. The underlying 

sparse and overlapping structure is imposed on the non-redundant parametrization. The 

parametrization is lower-dimensional formulation for the true parameter vector and the 

oracle M-estimator.

To define our distinct oracle estimator, we borrow notation from Bondell and Reich (2007). 

Consider the union of the index sets of the non-zero parameters of all models, 

; it corresponds to the index set of covariates with a non-zero true 

parameter in at least one model. Denote its cardinality as . Given a 

variable, xjq, , we consider the unique true non-zero parameter values among 

the elements of { : ∀k s.t. jq ∈ k}. They are called the true distinct parameters to the 

variable, xjq.

Suppose we have the Gq(≤ K) true distinct parameters denoted as  for the 

variable, xjq. We denote the true distinct parameter vector across all covariates as 

, 

where  is the true intercept vector, α0. This parameter vector is the non-redundant 
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enumeration of the true parameters in terms of overlapping structure for all models along the 

predictors.

We define the distinct composite loss function with the non-redundant parametrization as 

, where [β k(θ)]j is an element of θ to β kj, j 

∈ k. The distinct composite loss function is a random convex function on . 

The distinct composite risk function is the expectation of the distinct composite loss function 

with . The minimizer of the distinct 

composite risk function is the true distinct parameter vector.

The distinct oracle M-estimator of θ is defined as the minimizer of the distinct loss function: 

. We assume that the 

dimension of the distinct oracle M-estimator, , is less than the sample size, n. 

The distinct oracle M-estimator can be viewed as the non-redundant enumeration of the 

oracle M-estimator, , in terms of overlaps. Specifically, every element of 

corresponds to one or some nonzero elements among .

2.3 Asymptotic Properties of Distinct Oracle M-estimator

We establish the asymptotic properties of the distinct oracle M-estiamtor. Some assumptions 

on the K separate loss functions are required.

A1

, k = 1, ···, K are bounded and 

unique.

A2 Lk(y, αk + xTβk) < ∞ for each , k = 1, ···, K.

A3 a. Lk(y, αk + xTβk) is differentiable w.r.t.  at ( ) for ℙz-almost 

every z = (x, y) with derivative  and

b. The risk function Rk(αk, βk) = Lk(y, αk+xTβk)] is twice differentiable 

w.r.t.  at  with a positive definite Hessian matrix, 

.

A4 The loss function, Lk(y, αk + xTβk), is convex with respect to  for ℙz-

almost every z.
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Similar conditions can be found for one model setting in Section 2.1 of Rocha, Wang, and 

Yu (2009). The assumption, A1, ensures that the parameter for the kth model, , is 

well defined. The second assumption, A2, guarantees that the pointwise limit of the loss 

function is the risk function. From A3, we can consider local quadratic asymptotic 

approximations to the risk function around the parameter, approximating the loss function to 

the risk function at each point near the parameter. A4 is used to apply Convexity Lemma 

(Pollard (1991)) for the uniformity of approximation.

Lemma 1—If Lk(y, αk +xTβk), k = 1, ···, K, satisfy A1, ···, A4, then the composite loss 

function, L(zi, (αT, βT)) satisfies A1, ···, A4.

Lemma 2 is essential to proving consistency and asymptotic normality of the distinct oracle 

M-estimator and the -consistency, selection and overlapping consistency, and asymptotic 

normality of ACME.

Lemma 2—If Lk(y, αk + xTβk), k = 1, ···, K, satisfy A1–A4, then

a. there exists a K·(p+1) dimensional random vector W ~ N(0, J(α0T, β0T)) such that, 

for each u ∈ ℝK·(p+1),

b. for every compact set K ⊂ ℝK·(p+1),

Lemma 2 generalizes Lemma 2 of Rocha, Wang, and Yu (2009), which considers the setting 

of a single loss function. The distinct oracle M-estimator is a special type of M-estimators 

based on the distinct loss function. Lemma 3 shows consistency of the distinct oracle M-

estimator.

Lemma 3—If A1–A4 are satisfied for all K loss functions, then θô converges in probability 

to θ0 as n → ∞.

Theorem 1—If A1–A4 are satisfied for all K loss functions, then

The non-redundant oracle estimator across models asymptotically follows a normal 

distribution, similar to some oracle estimators based on a single model.
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3 Adaptive Composite M-estimation for Overlapping Structure

We establish the theoretical properties of ACME when A1–A4 hold for all models. We 

develop the asymptotic theories based on the objective function in (3), which is denoted as 

Qn(αT, βT). In particular, we focus on the oracle properties of ACME for partially 

overlapping models. For pλ1n(|t|) and pλ2n(|t|) we consider folded concave penalties, one-step 

folded concave penalties, and weighted L1 penalties (Fan, Xue, and Zou (2014); Zou and Li 

(2008)).

Lemma 4—If λ1n → 0, λ2n → 0 for folded concave, one-step folded concave penalty 

functions, and  for weighted L1 penalty functions, there is a local 

minimizer of Qn(αT, βT) such that

If both pλ1n(t) and pλ2n(t) are weighted L1 penalty functions, then (α̂T, β̂T)T is the unique 

global minimizer.

Lemma 4 demonstrates the existence of a -consistent penalized M-estimator with a 

proper choice of λn. Theorem 2 implies that the ACME achieves selection consistency and 

overlapping consistency. The notion of overlapping consistency is analogous with that of 

selection consistency. For any index j ∈ kk′ for any k < k′, both β̂
kj and β̂

k′j have the exactly 

same values with probability tending to 1.

Theorem 2—Suppose that λ1n → 0, λ2n → 0, , and  for folded 

concave, one-step folded concave penalty functions. For weighted L1 penalty functions, 

suppose , and . If there exists at 

least one j ∈ kk′ for some k < k′, then  as 

n → ∞.

Let 𝒜̂
k = {j ∈ {1, ···, p} : β̂

kj ≠ 0} denote the non-zero coefficient index set corresponding to 

the kth loss function. Denote 𝒢 ̂ as the estimated grouping. The selection and overlapping 

consistency can be written as P({𝒜k̂ = k, k = 1, ···, K} ∩ {𝒢 ̂ = 0}) → 1.

Let θ̂ 0( 0) denote our distinct ACME from (3) provided we know the true overlapping 

structure, 0, and the true sparse structure, 0. We study the asymptotic distribution of 

θ̂ 0( 0) since our estimator recovers the true sparsity and overlapping structure with 

probability tending to one; its dimension is the dimension of the distinct oracle estimator.

Theorem 3—If the assumptions in Theorem 2 are satisfied, then
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Theorem 3 states that the distinct estimator has the same asymptotic distribution as the 

distinct oracle estimator in Theorem 1. The ACME across the multiple models follows a 

normal distribution in terms of non-zero non-redundant enumeration as the penalized 

estimators of a single model for the non-zero parameters follow a normal distribution (Fan 

and Li (2001)).

The asymptotic distribution of the distinct ACME in Theorem 3 leads to theoretically 

optimal weights to achieve the efficiency across the multiple models. The criterion for the 

choice of weights is to maximize the efficiency of the estimator (Bradic, Fan, and Wang 

(2011)). We can use the determinant of the asymptotic covariance matrix of the estimator or 

its trace as the criterion; its asymptotic covariance is a function of the unknown matrices of 

 (θ0) and ℋ(θ0), and both depend on the weight vector, w. Completely overlapping models 

also have an asymptotic normal distribution and their asymptotic covariance depends on the 

weight vector (Bradic, Fan, and Wang (2011)). In this setup, the asymptotic covariance 

matrix can be simplified as the multiplication of a scalar function and a function of 

predictors. Since the scalar function only takes the weight vector as its variable, the weight 

vector can be decoupled from the asymptotic covariance matrix. Bradic, Fan, and Wang 

(2011) chooses the weight vector by minimizing the scalar function. However, such 

decoupling cannot be obtained for partially overlapping models, due to the complex form of 

the asymptotic covariance.

To address the problem, we suggest a data dependent approach to select weights. We first 

obtain the separate penalized M-estimators as the initial separate estimators with 

, k = 1, ···, K. The 

preliminary M-estimators achieve sparse estimation, but do not attain overlapping 

estimation. Next we calculate data-driven weights, w = (w1, ···, wK)T based on the 

preliminary estimators. We set wk to be proportional to the reciprocal of the empirical loss 

function of the initial estimators with , k = 1, ···, K. We 

recommend this weight ratio for the same leverage of each loss function to the composite 

loss function. For computational efficiency, they are rescaled to have sum to one as 

. We adopt this choice of weights in the numerical studies of Section 4, which 

yields excellent performance. We assume positive weights because the presence of a zero 

weight automatically removes the parameter vector of the corresponding model.

Next we solve the optimization problem, (3), with the plug-in weights. Zero-estimated 

parameters in the preliminary step can be estimated as non-zero in the ACME procedure. 

For implementation, we adopt one-step SCAD penalties and select a suitable algorithm with 

respect to the composite loss of interest. For example, we use a coordinate descent alrogithm 

for the L1-L2 composite loss. The optimization problem for ACME with the CQR can be 
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recast as a linear programming problem with some slack variables (Wu and Liu (2009)). To 

obtain the optimal tuning parameters for λ1n and λ2n, we use five-fold cross validation. A 

two-dimensional grid search is performed for the selection of (λ1n, λ2n). A proper choice of 

the tuning parameters is required to simultaneously recover the sparsity and overlapping 

structure.

4 Simulation Studies

We performed simulation studies under a classical linear model and a linear location-scale 

model. Each dataset in Sections 4.1–4.2 was generated from these two models. We obtained 

ACME for both least absolute deviations (LAD) regression and least squares (LS) regression 

with a composite L1-L2 loss function. We compared it with separate LAD and LS estimators 

such as ordinary unpenalized LAD and LS estimators (Ordinary), adaptive Lasso penalized 

LAD and LS estimators (AdLasso), and one-step SCAD penalized LAD and LS estimators 

(SCAD). We also compared with penalized composite quasi-likelihood (PCQ) in Bradic, 

Fan, and Wang (2011), which was developed for a classical linear model. PCQ assumes the 

completely overlapping structure across all loss functions. We employed one-step SCAD 

penalty for PCQ.

For comparison, we report the median of model errors (MME), the standard error of model 

errors (SE), the number of correctly classified non-zero estimators (TP), and the number of 

incorrectly classified zero estimators (FP). The model error of each estimator is defined as 

ME(β̂) = (β̂ − β0)T XTX)(β̂ − β0). We also evaluated the overlapping performance across the 

LAD and LS models. The overlapping structures are categorized into four types: truly 

grouped estimators, truly grouped non-zero estimators, truly grouped zero estimators, and 

truly ungrouped estimators, with the index set of the categories as TG, NG, ZG, and UG, 

respectively. We measured the performance of the overlapping recovery using overlapping 

ratios corresponding to these four categories. More details are provided in the web-

appendix.

4.1 Classical Linear Regression Model

We considered the classical linear model from Fan and Li (2001): , where β0 = 

(3, 1.5, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0). The covariate xi was multivariate normal with zero mean 

and covariance, Cov(xij1, xij2) = 0.5|j1−j2|, 1 ≤ j1, j2 ≤ 12. We took the error term, ε1, ···, εn, to 

follow a normal distribution (N(0, 3)), a double exponential distribution (DE), and a t 

distribution with d.f. 4 (t(4)). We considered both LAD regression and LS regression. The 

true models were completely overlapped since the true parameter vector of the LS regression 

was the same as the true parameter vector of the LAD regression. For these models, both 

PCQ and ACME used the composite L1-L2 loss function. Our choice of weight for ACME 

was , with 

 as the mean of absolute errors of the SCAD-LAD estimator, and 

 as the mean of squared errors of the SCAD-LS estimator. The results 

were obtained from 100 simulated datasets with n = 100 and n = 500.
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From the first three columns of Tables 1–2, the performance of ACME is the best for both 

L1 and L2 under DE error with n = 100, 500 and under t(4) with n = 100 in terms of MME. 

Under N(0, 3) with n = 100, 500, the MMEs of the PCQ are smaller than those of ACME, 

but ACME outperforms the others. In this setting, PCQ is generally comparable to ACME 

because PCQ achieves the oracle overlapping structure. All estimators successfully selected 

the significant variables, , as evidenced by TP. ACME performed the best in terms 

of FP in most cases.

For the overlaps, we had TG= {1, 2, ···, 11, 12}, NG={1, 2, 5}, ZG={3, 4, 6, ···, 12} and 

UG= ∅. In the first three rows of Table S1 in the web-appendix, ACME has reasonable 

ratios of NG as well as ZG. Most ZGs are higher than NGs since the two penalty terms for 

overlapping and sparsity encourage increase in the ZG ratio. We can view the NG ratio as a 

more accurate measure on the performance of the overlapping penalization than the ZG 

ratio. The ZG ratio of ACME is almost 30% higher than that of all separate estimators under 

n = 100 and n = 500. ACME has almost two thirds the NG ratio, except for the normal 

distribution with n = 100. Ordinary, AdLasso, and SCAD have zero NG ratios because the 

separate estimation does not involve any overlapping penalization. PCQ possesses complete 

overlapping because the dataset is assumed to be generated from a classical linear model. 

Hence, PCQ successfully recovers the overlapping structure.

4.2 Linear Location-Scale Model

Under linear location-scale models, LS regression and LAD regression are partially 

overlapping models as some covariates affect the scale of the response. Our dataset was 

generated from a linear location-scale model: , where β0 = (3, 3, 3, 3, 3, 3, 

3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0)T and γ0 = (0, 0, 0, 0, 3, −3, 3, −3, 3, −3, 0, 0, 0, 0, 0, 0, 0, 0)T. 

The covariate, xi = (xi1, ···, xi18)T, was generated from a multivariate standard normal 

distribution, N(0, I18×18). We took that the error term, εi, as a shifted gamma distribution, 

Γ(0.25, 2) − 0.5. This distribution is skewed to the right and centered to mean 0. The true 

parameter vector of the LS regression model was  and the true parameter vector of 

LAD regression model was 

. As in Section 

4.1, we used the composite L1-L2 loss function. We did 100 repetitions for n = 100 and n = 

500.

From the last columns of Tables 1–2, the ACME has the second smallest MME for LAD 

regression, and the smallest MME for LS regression with n = 100, 500. The SCAD has the 

smallest MME for LAD and the SCAD has the second smallest MME for LS. The separate 

estimators and the ACME show much better performance for the LAD regression than the 

LS regression due to the skewed error distribution. From this point of view, it is desirable to 

have a trade-off between LAD and LS estimation performance in ACME. The ACME 

sacrifices LAD estimation performance about 5% with n = 100, and 10% with n = 500, 

while it gains in LS estimation performance almost 15% with n = 100, and 30% with n = 

500. Overall, ACME has very competitive performance in terms of MME, sparsity and 
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overlapping structure recovery. The performance of PCQ is poor as expected since the LAD 

and LS regression models are assumed to be completely overlapped.

The grouping performance results under this model are summarized at the bottom of Table 

S1 in the web-appendix. We have TG= {1, 2, 3, 4, 11, ···, 18}, NG= {1, 2, 3, 4}, ZG= {11, 

···, 18} and UG= {5, 6, ···, 10}. ACME has much higher TG, NG, and ZG ratios than 

separate estimation. Both NG and ZG ratios increase as the sample size increases. ACME 

also has higher UG ratio, whose oracle target is zero, but the ratio drops to 0.005 from 

0.2217 as the sample size is increased to n = 500 from n = 100. PCQ shows good 

performance for underlying grouped variables (TG, NG, ZG), while it groups the variables 

which are not truly overlapped (UG).

5 Baseball Data Analysis

We analyzed the major league baseball (MLB) players’ annual salary dataset, obtained from 

http://lib.stat.cmu.edu. We were interested in the salary determinants of low-paid, median-

paid, and highly-paid players respectively. We obtained ACME for three quantile regression 

models to the quantiles, 0.25, 0.5, 0.75. The dataset consists of the records and information 

on 263 North American MLB players in 1986 season and their salary in 1987 season. This 

dataset was previously studied by He, Ng, and Portnoy (1998) and Li, Liu, and Zhu (2007). 

They assumed that salary is a function of only the number of home runs in the previous year 

(HR) and the number of years in MLB (YEARS).

In addition to HR and YEARS, we considered covariates such as their performance in the 

previous years and their league, division, and position information. The response is the 

annual salary on opening day in 1987, in thousands of dollars. The first seven predictors 

were the number of hits (HIT), the number of runs (RUN), the number of runs batted in 

(RBI), the number of walks (WALK), the number of put outs (PUTOUT), the number of 

assists (ASSIST), and the number of errors (ERROR). We employed seven dummy 

variables for league and division, and position information: National East (NE), National 

West (NW), American East (AE), Infielder (IN), Outfielder (OUT), Catcher (CC), and 

Designated Hitter (DH). We treated American West (AW) and Utility Players (UP) as the 

base groups of the league and division, and position, respectively. We dropped the players’ 

batting in 1986 (BAT) since BAT is highly correlated with such other variables as HIT, HR, 

RUN, RBI, and WALK. Especially, the correlation between the BAT and HIT is 0.9640. 

Most of the correlations among the performance records during career are almost 0.9, which 

indicates severe collinearity.

Our goal was to determine important covariates on the first, second, and third quantiles of 

the players’ salaries. We used a CQR loss function for the analysis with the quantile vector, 

τ = (0.25, 0.5, 0.75), corresponding to the low-paid, median-paid, and highly-paid players. 

We performed separate quantile regression estimation methods, PCQ, and ACME. The 

separate regression methods included ordinary, adaptive Lasso and one-step SCAD 

penalized quantile regression estimation.

ACME provides interpretable results by grouping the similar effects across the different 

quantiles. The results are summarized in Table 3. ACME selects HIT, YEARS, PUTOUT, 
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league and division, and positions across the three quantiles. The second quantile regression 

model is partially overlapped with the third quantile regression for the three covariates: HIT, 

YEARS, and PUTOUT; they are seen to have the same strength of impacts on the median-

paid and highly-paid baseball players’ salary; their effects are weaker in the case of low-paid 

players’ salaries. HR was found to be significant only for the highly-paid players. The other 

coefficients, such as RUN and RBI, go to zero across all quantiles. WALK and ASSIST are 

non-zero in the preliminary estimator for the third quantile, but they go to zero in the ACME 

procedure.

The players’ position was shown to be another important factor on the annual salary. Across 

all quantiles, the outfielders (OUT) are seen as the most-paid position. The catchers’ (CC) 

and the infielders’ (IN) salaries are the second and third highest, and the designated hitters 

(DH) and the utility players (UP) have the second-lowest and lowest salaries. Similar to 

position, we can analyze the league and division factor on the players’ salaries. Table 3 also 

reports the standard errors of the ordinary coefficients and their significance. They were 

obtained from the Markov chain marginal bootstrap (MCMB) with 500 repetitions 

(Kocherginsky, He, and Mu (2005)). ACME selects all variables known to be significant by 

MCMB under the significance level of 0.1.

Table 4 shows the test errors for all estimation procedures from 10 repetitions. In each 

iteration, randomly selected 28 data points were assigned as a test set and the remaining 235 

data points were assigned as a training set. ACME outperformed the ordinary quantile 

regression models at all quantiles. Compared with the other penalized estimators, ACME 

had better performance at two of the three quantiles. The performance of PCQ was 

substantially biased at the first quantile. Because PCQ assumes complete overlapping 

models, the first quantile regression modeling was dragged upward toward other two 

quantiles.

6 Concluding Remarks

We have proposed adaptive composite estimation for partially overlapping models, first 

introducing the notion of partially overlapping regression models on a given dataset. 

Overlapping structure has the same effect of a covariate on the response across multiple 

models. Partially overlapping models have at least one overlapping structure. We have also 

considered the sparse structure of the regression parameters for all models. ACME achieves 

both goals with a doubly penalized composite loss function. Its regular penalty function 

encourages sparse structure recovery while the other penalty function induces the 

overlapping structure recovery. The arguments of the second penalty function are all 

pairwise differences of the coefficients for each covariate across the models. We have 

shown its selection and overlapping consistency under the proper choice of the tuning 

parameters. We have also established the asymptotic normality of non-redundant ACME, 

given the true sparse and overlapping structure. In numerical studies, ACME has 

outperformed the separate penalized M-estimation and the composite M-estimation under 

the complete overlapping structure assumption. Our study has focused on a moderate 

number of covariates and a moderate number of loss functions due to computational burden. 

Extension to high-dimensional covariates and models requires future research.
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Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Diabetes Patients’ Risk Factors
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Figure 2. 

Illustration of Distinct Parametrization with 
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