11 research outputs found

    Grids accesibles

    Get PDF
    El uso de los dispositivos móviles ha aumentado de forma importante alrededor del mundo en los últimos años. Por otro lado, las capacidades actuales de los teléfonos inteligentes se han incrementado de tal forma que comienzan a ser considerados como una posible infraestructura de cómputo. Por ejemplo, se ha estudiado la problemática de incorporarlos a una Grid, no sólo para mejorar el acceso de los usuarios a los recursos de la Grid, sino como proveedores de recursos; en este último caso se conocen como Grid Móviles o también Grids Accesibles. Este trabajo profundiza sobre el estado actual de la tecnología existente para Grids Móviles y se busca el sistema más adecuado que permita la ejecución de tareas, escritas en C++, en dispositivos móviles. Como resultado del análisis se decide desplegar la Grid BOINC, la cual permite ejecutar tareas en C++. Entre las principales conclusiones de este trabajo se encuentran, el confirmar la posibilidad de ejecutar tareas en C++ en teléfonos Android, realizando ciertas modificaciones a los programas, por otro lado se nota una tecnología aún en estado de maduración, por los pocos trabajos prácticos encontrados.This Graduation Project presents a comparative analysis between different projects implementing Accessible Grids that use mobile devices. As a result of said analysis the author decide on deploying the BOINC system, including mobile devices, in order to execute assignments. BOINC offers some limitations, like the need for a central manager and lack of control on the resources. Due to BOINC’s implementation of voluntary computing there’s access to more resources, but the availability of said resources depends on the users. Although the technology still in development, due to the few practical Works found.Ingeniero (a) de SistemasPregrad

    Grid móvil para procesar imágenes médicas

    Get PDF
    El procesamiento de imágenes médicas ayuda a los profesionales de la medicina a tomar decisiones de diagnóstico y tratamiento de pacientes. Algunos de estos algoritmos requieren gran cantidad de recursos, por esto se pueden apoyar en la computación distribuida y la abundancia de dispositivos móviles ociosos. En un trabajo anterior, se seleccionó Boinc como Grid Móvil, no obstante, se requería modificar los algoritmos a ejecutar en dispositivos móviles para integrarlos a esta infraestructura. En el presente proyecto se abordó dicho problema junto con la compilación cruzada de la librería ITK para la arquitectura ARM y la división de imágenes para su procesamiento paralelo.Medical image processing helps health professionals make decisions to diagnose and treat patients. Some of these algorithms require large amounts of resources, this is why they can be supported by distributed computing and an abundant number of idle mobile devices. In a previous project, Boinc was selected as the infrastructure for the Mobile Grid, however, it was required to modify the algorithms that would be executed in the devices, in order to integrate them with the system. This project addressed this problem along with the cross compilation of ITK library for the ARM architecture and the division of images to be processed in parallel.Ingeniero (a) de SistemasPregrad

    Personal mobile grids with a honeybee inspired resource scheduler

    Get PDF
    The overall aim of the thesis has been to introduce Personal Mobile Grids (PMGrids) as a novel paradigm in grid computing that scales grid infrastructures to mobile devices and extends grid entities to individual personal users. In this thesis, architectural designs as well as simulation models for PM-Grids are developed. The core of any grid system is its resource scheduler. However, virtually all current conventional grid schedulers do not address the non-clairvoyant scheduling problem, where job information is not available before the end of execution. Therefore, this thesis proposes a honeybee inspired resource scheduling heuristic for PM-Grids (HoPe) incorporating a radical approach to grid resource scheduling to tackle this problem. A detailed design and implementation of HoPe with a decentralised self-management and adaptive policy are initiated. Among the other main contributions are a comprehensive taxonomy of grid systems as well as a detailed analysis of the honeybee colony and its nectar acquisition process (NAP), from the resource scheduling perspective, which have not been presented in any previous work, to the best of our knowledge. PM-Grid designs and HoPe implementation were evaluated thoroughly through a strictly controlled empirical evaluation framework with a well-established heuristic in high throughput computing, the opportunistic scheduling heuristic (OSH), as a benchmark algorithm. Comparisons with optimal values and worst bounds are conducted to gain a clear insight into HoPe behaviour, in terms of stability, throughput, turnaround time and speedup, under different running conditions of number of jobs and grid scales. Experimental results demonstrate the superiority of HoPe performance where it has successfully maintained optimum stability and throughput in more than 95% of the experiments, with HoPe achieving three times better than the OSH under extremely heavy loads. Regarding the turnaround time and speedup, HoPe has effectively achieved less than 50% of the turnaround time incurred by the OSH, while doubling its speedup in more than 60% of the experiments. These results indicate the potential of both PM-Grids and HoPe in realising futuristic grid visions. Therefore considering the deployment of PM-Grids in real life scenarios and the utilisation of HoPe in other parallel processing and high throughput computing systems are recommended.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore