236 research outputs found

    Design guidelines for spatial modulation

    No full text
    A new class of low-complexity, yet energyefficient Multiple-Input Multiple-Output (MIMO) transmission techniques, namely the family of Spatial Modulation (SM) aided MIMOs (SM-MIMO) has emerged. These systems are capable of exploiting the spatial dimensions (i.e. the antenna indices) as an additional dimension invoked for transmitting information, apart from the traditional Amplitude and Phase Modulation (APM). SM is capable of efficiently operating in diverse MIMO configurations in the context of future communication systems. It constitutes a promising transmission candidate for large-scale MIMO design and for the indoor optical wireless communication whilst relying on a single-Radio Frequency (RF) chain. Moreover, SM may also be viewed as an entirely new hybrid modulation scheme, which is still in its infancy. This paper aims for providing a general survey of the SM design framework as well as of its intrinsic limits. In particular, we focus our attention on the associated transceiver design, on spatial constellation optimization, on link adaptation techniques, on distributed/ cooperative protocol design issues, and on their meritorious variants

    Large-Scale MIMO Detection for 3GPP LTE: Algorithms and FPGA Implementations

    Full text link
    Large-scale (or massive) multiple-input multiple-output (MIMO) is expected to be one of the key technologies in next-generation multi-user cellular systems, based on the upcoming 3GPP LTE Release 12 standard, for example. In this work, we propose - to the best of our knowledge - the first VLSI design enabling high-throughput data detection in single-carrier frequency-division multiple access (SC-FDMA)-based large-scale MIMO systems. We propose a new approximate matrix inversion algorithm relying on a Neumann series expansion, which substantially reduces the complexity of linear data detection. We analyze the associated error, and we compare its performance and complexity to those of an exact linear detector. We present corresponding VLSI architectures, which perform exact and approximate soft-output detection for large-scale MIMO systems with various antenna/user configurations. Reference implementation results for a Xilinx Virtex-7 XC7VX980T FPGA show that our designs are able to achieve more than 600 Mb/s for a 128 antenna, 8 user 3GPP LTE-based large-scale MIMO system. We finally provide a performance/complexity trade-off comparison using the presented FPGA designs, which reveals that the detector circuit of choice is determined by the ratio between BS antennas and users, as well as the desired error-rate performance.Comment: To appear in the IEEE Journal of Selected Topics in Signal Processin

    Design and Implementation of Efficient Algorithms for Wireless MIMO Communication Systems

    Full text link
    En la última década, uno de los avances tecnológicos más importantes que han hecho culminar la nueva generación de banda ancha inalámbrica es la comunicación mediante sistemas de múltiples entradas y múltiples salidas (MIMO). Las tecnologías MIMO han sido adoptadas por muchos estándares inalámbricos tales como LTE, WiMAS y WLAN. Esto se debe principalmente a su capacidad de aumentar la máxima velocidad de transmisión , junto con la fiabilidad alcanzada y la cobertura de las comunicaciones inalámbricas actuales sin la necesidad de ancho de banda extra ni de potencia de transmisión adicional. Sin embargo, las ventajas proporcionadas por los sistemas MIMO se producen a expensas de un aumento sustancial del coste de implementación de múltiples antenas y de la complejidad del receptor, la cual tiene un gran impacto sobre el consumo de energía. Por esta razón, el diseño de receptores de baja complejidad es un tema importante que se abordará a lo largo de esta tesis. En primer lugar, se investiga el uso de técnicas de preprocesado de la matriz de canal MIMO bien para disminuir el coste computacional de decodificadores óptimos o bien para mejorar las prestaciones de detectores subóptimos lineales, SIC o de búsqueda en árbol. Se presenta una descripción detallada de dos técnicas de preprocesado ampliamente utilizadas: el método de Lenstra, Lenstra, Lovasz (LLL) para lattice reduction (LR) y el algorimo VBLAST ZF-DFE. Tanto la complejidad como las prestaciones de ambos métodos se han evaluado y comparado entre sí. Además, se propone una implementación de bajo coste del algoritmo VBLAST ZF-DFE, la cual se incluye en la evaluación. En segundo lugar, se ha desarrollado un detector MIMO basado en búsqueda en árbol de baja complejidad, denominado detector K-Best de amplitud variable (VB K-Best). La idea principal de este método es aprovechar el impacto del número de condición de la matriz de canal sobre la detección de datos con el fin de disminuir la complejidad de los sistemasRoger Varea, S. (2012). Design and Implementation of Efficient Algorithms for Wireless MIMO Communication Systems [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/16562Palanci

    Peak to average power ratio reduction and error control in MIMO-OFDM HARQ System

    Get PDF
    Currently, multiple-input multiple-output orthogonal frequency division multiplexing (MIMOOFDM) systems underlie crucial wireless communication systems such as commercial 4G and 5G networks, tactical communication, and interoperable Public Safety communications. However, one drawback arising from OFDM modulation is its resulting high peak-to-average power ratio (PAPR). This problem increases with an increase in the number of transmit antennas. In this work, a new hybrid PAPR reduction technique is proposed for space-time block coding (STBC) MIMO-OFDM systems that combine the coding capabilities to PAPR reduction methods, while leveraging the new degree of freedom provided by the presence of multiple transmit chairs (MIMO). In the first part, we presented an extensive literature review of PAPR reduction techniques for OFDM and MIMO-OFDM systems. The work developed a PAPR reduction technique taxonomy, and analyzed the motivations for reducing the PAPR in current communication systems, emphasizing two important motivations such as power savings and coverage gain. In the tax onomy presented here, we include a new category, namely, hybrid techniques. Additionally, we drew a conclusion regarding the importance of hybrid PAPR reduction techniques. In the second part, we studied the effect of forward error correction (FEC) codes on the PAPR for the coded OFDM (COFDM) system. We simulated and compared the CCDF of the PAPR and its relationship with the autocorrelation of the COFDM signal before the inverse fast Fourier transform (IFFT) block. This allows to conclude on the main characteristics of the codes that generate high peaks in the COFDM signal, and therefore, the optimal parameters in order to reduce PAPR. We emphasize our study in FEC codes as linear block codes, and convolutional codes. Finally, we proposed a new hybrid PAPR reduction technique for an STBC MIMO-OFDM system, in which the convolutional code is optimized to avoid PAPR degradation, which also combines successive suboptimal cross-antenna rotation and inversion (SS-CARI) and iterative modified companding and filtering schemes. The new method permits to obtain a significant net gain for the system, i.e., considerable PAPR reduction, bit error rate (BER) gain as compared to the basic MIMO-OFDM system, low complexity, and reduced spectral splatter. The new hybrid technique was extensively evaluated by simulation, and the complementary cumulative distribution function (CCDF), the BER, and the power spectral density (PSD) were compared to the original STBC MIMO-OFDM signal

    Multidimensional Index Modulation for 5G and Beyond Wireless Networks

    Get PDF
    This study examines the flexible utilization of existing IM techniques in a comprehensive manner to satisfy the challenging and diverse requirements of 5G and beyond services. After spatial modulation (SM), which transmits information bits through antenna indices, application of IM to orthogonal frequency division multiplexing (OFDM) subcarriers has opened the door for the extension of IM into different dimensions, such as radio frequency (RF) mirrors, time slots, codes, and dispersion matrices. Recent studies have introduced the concept of multidimensional IM by various combinations of one-dimensional IM techniques to provide higher spectral efficiency (SE) and better bit error rate (BER) performance at the expense of higher transmitter (Tx) and receiver (Rx) complexity. Despite the ongoing research on the design of new IM techniques and their implementation challenges, proper use of the available IM techniques to address different requirements of 5G and beyond networks is an open research area in the literature. For this reason, we first provide the dimensional-based categorization of available IM domains and review the existing IM types regarding this categorization. Then, we develop a framework that investigates the efficient utilization of these techniques and establishes a link between the IM schemes and 5G services, namely enhanced mobile broadband (eMBB), massive machine-type communications (mMTC), and ultra-reliable low-latency communication (URLLC). Additionally, this work defines key performance indicators (KPIs) to quantify the advantages and disadvantages of IM techniques in time, frequency, space, and code dimensions. Finally, future recommendations are given regarding the design of flexible IM-based communication systems for 5G and beyond wireless networks.Comment: This work has been submitted to Proceedings of the IEEE for possible publicatio

    Fifty Years of Noise Modeling and Mitigation in Power-Line Communications.

    Get PDF
    Building on the ubiquity of electric power infrastructure, power line communications (PLC) has been successfully used in diverse application scenarios, including the smart grid and in-home broadband communications systems as well as industrial and home automation. However, the power line channel exhibits deleterious properties, one of which is its hostile noise environment. This article aims for providing a review of noise modeling and mitigation techniques in PLC. Specifically, a comprehensive review of representative noise models developed over the past fifty years is presented, including both the empirical models based on measurement campaigns and simplified mathematical models. Following this, we provide an extensive survey of the suite of noise mitigation schemes, categorizing them into mitigation at the transmitter as well as parametric and non-parametric techniques employed at the receiver. Furthermore, since the accuracy of channel estimation in PLC is affected by noise, we review the literature of joint noise mitigation and channel estimation solutions. Finally, a number of directions are outlined for future research on both noise modeling and mitigation in PLC

    On Efficient Signal Processing Algorithms for Signal Detection and PAPR Reduction in OFDM Systems

    Get PDF
    The driving force of the study is susceptibility of LS algorithm to noise. As LS algorithm is simple to implement, hence it’s performance improvement can contribute a lot to the wireless technology that are especially deals with high computation. Cascading of AdaBoost algorithm with LS greatly influences the OFDM system performance. Performance of Adaptive Boosting based symbol recovery was investigated on the performance of LS, MMSE, BLUE were also compared with the performance of AdaBoost algorithm and MMSE has been found the higher computational complexity. Furthermore, MMSE also requires apriori channel statistics and computational complexity O(5N3) of the MMSE increases exponentially as the number of carrier increases. For the Adaboost case the computational complexity calculation is little different.Therefore, in the training stage of the AdaBoost algorithm, the computational complexity is only O(nT M) Furthermore, as it is a classification algorithm so in the receiver side we will require a separate de-mapper (or decoder) to get the desired data bits, i.e., a. SAS aided DCT based PAPR reduction 1326 and b. SAS aided DCT based PAPR reduction. A successive addition subtraction preprocessed DCT based PAPR reduction technique was proposed. Here, the performance of proposed method was compared with other preexisting techniques like SLM and PTS and the performance of the proposed method was seen to outperform specially in low PAPR region. In the proposed PAPR reduction method, the receiver is aware of the transmitted signal processing, this enables a reverse operation at the receiver to extract the transmit data. Hence the requirement of sending extra information through extra subcarrier is eliminated. The proposed method is also seen to be spectrally efficient. In the case of PTS and SLM it is inevitable to send the side information to retrieve the transmit signal. Hence, these two methods are spectrally inefficient. Successive addition subtraction based PAPR reduction method was also applied to MIMO systems. The performance of the SAS based PAPR reduction method also showed better performance as compared to other technique. An extensive simulation of MIMO OFDM PAPR reduction was carried out by varying the number of subcarriers and number of transmitter antennas. A detailed computational complexity analysis was also carried out. BATE aided SDMA multi user detection. A detailed study of SDMA system was carried out with it’s mathematical analysis.Many linear and non linear detectors like ML, MMSE, PIC, SIC have been proposed in literature for multiuser detection of SDMA system. However, except MMSE every receivers other are computational extensive. So as to enhance the performance of the MMSE MUD a meta heuristic Bat algorithm was incorporated in cascade with MMSE

    Nonlinear Precoding for Phase-Quantized Constant-Envelope Massive MU-MIMO-OFDM

    Get PDF
    We propose a nonlinear phase-quantized constant-envelope precoding algorithm for the massive multi-user (MU) multiple-input multiple-output (MIMO) downlink. Specifically, we adapt the squared-infinity norm Douglas-Rachford splitting (SQUID) precoder to systems that use oversampling digital-to-analog converters (DACs) at the base station (BS) and orthogonal frequency-division multiplexing (OFDM) to communicate over frequency-selective channels. We demonstrate that the proposed SQUID-OFDM precoder is able to generate transmit signals that are constrained to constant envelope, which enables the use of power-efficient analog radio-frequency circuitry at the BS. By quantizing the phase of the resulting constant-envelope signal, we obtain a finite-cardinality transmit signal that can be synthesized by low-resolution (e.g., 1-bit) DACs. We use error-rate simulations to demonstrate the superiority of SQUID-OFDM over linear-quantized precoders for massive MU-MIMO-OFDM systems
    corecore