6,013 research outputs found

    Particle Swarm Optimization Framework for Low Power Testing of VLSI Circuits

    Full text link
    Power dissipation in sequential circuits is due to increased toggling count of Circuit under Test, which depends upon test vectors applied. If successive test vectors sequences have more toggling nature then it is sure that toggling rate of flip flops is higher. Higher toggling for flip flops results more power dissipation. To overcome this problem, one method is to use GA to have test vectors of high fault coverage in short interval, followed by Hamming distance management on test patterns. This approach is time consuming and needs more efforts. Another method which is purposed in this paper is a PSO based Frame Work to optimize power dissipation. Here target is to set the entire test vector in a frame for time period 'T', so that the frame consists of all those vectors strings which not only provide high fault coverage but also arrange vectors in frame to produce minimum toggling

    Multi-objective discrete particle swarm optimisation algorithm for integrated assembly sequence planning and assembly line balancing

    Get PDF
    In assembly optimisation, assembly sequence planning and assembly line balancing have been extensively studied because both activities are directly linked with assembly efficiency that influences the final assembly costs. Both activities are categorised as NP-hard and usually performed separately. Assembly sequence planning and assembly line balancing optimisation presents a good opportunity to be integrated, considering the benefits such as larger search space that leads to better solution quality, reduces error rate in planning and speeds up time-to-market for a product. In order to optimise an integrated assembly sequence planning and assembly line balancing, this work proposes a multi-objective discrete particle swarm optimisation algorithm that used discrete procedures to update its position and velocity in finding Pareto optimal solution. A computational experiment with 51 test problems at different difficulty levels was used to test the multi-objective discrete particle swarm optimisation performance compared with the existing algorithms. A statistical test of the algorithm performance indicates that the proposed multi-objective discrete particle swarm optimisation algorithm presents significant improvement in terms of the quality of the solution set towards the Pareto optimal set

    Biogeography-based learning particle swarm optimization

    Get PDF

    Application of a new multi-agent Hybrid Co-evolution based Particle Swarm Optimisation methodology in ship design

    Get PDF
    In this paper, a multiple objective 'Hybrid Co-evolution based Particle Swarm Optimisation' methodology (HCPSO) is proposed. This methodology is able to handle multiple objective optimisation problems in the area of ship design, where the simultaneous optimisation of several conflicting objectives is considered. The proposed method is a hybrid technique that merges the features of co-evolution and Nash equilibrium with a ε-disturbance technique to eliminate the stagnation. The method also offers a way to identify an efficient set of Pareto (conflicting) designs and to select a preferred solution amongst these designs. The combination of co-evolution approach and Nash-optima contributes to HCPSO by utilising faster search and evolution characteristics. The design search is performed within a multi-agent design framework to facilitate distributed synchronous cooperation. The most widely used test functions from the formal literature of multiple objectives optimisation are utilised to test the HCPSO. In addition, a real case study, the internal subdivision problem of a ROPAX vessel, is provided to exemplify the applicability of the developed method

    Particle Swarm Optimization and gravitational wave data analysis: Performance on a binary inspiral testbed

    Get PDF
    The detection and estimation of gravitational wave (GW) signals belonging to a parameterized family of waveforms requires, in general, the numerical maximization of a data-dependent function of the signal parameters. Due to noise in the data, the function to be maximized is often highly multi-modal with numerous local maxima. Searching for the global maximum then becomes computationally expensive, which in turn can limit the scientific scope of the search. Stochastic optimization is one possible approach to reducing computational costs in such applications. We report results from a first investigation of the Particle Swarm Optimization (PSO) method in this context. The method is applied to a testbed motivated by the problem of detection and estimation of a binary inspiral signal. Our results show that PSO works well in the presence of high multi-modality, making it a viable candidate method for further applications in GW data analysis.Comment: 13 pages, 5 figure

    Kajian terhadap ketahanan hentaman ke atas konkrit berbusa yang diperkuat dengan serat kelapa sawit

    Get PDF
    Konkrit berbusa merupakan sejenis konkrit ringan yang mempunyai kebolehkerjaan yang baik dan tidak memerlukan pengetaran untuk proses pemadatan. Umum mengenali konkrit berbusa sebagai bahan binaan yang mempunyai sifat kekuatan yang rendah dan lemah terutama apabila bahan binaan ini dikenakan tenaga hentaman yang tinggi. Namun begitu, konkrit berbusa merupakan bahan yang berpotensi untuk dijadikan sebagai bahan binaan yang berkonsepkan futuristik. Binaan futuristik adalah binaan yang bercirikan ringan, ekonomi, mudah dari segi kerja pembinaan dan yang paling penting adalah mesra alam. Dalam kajian ini, konkrit berbusa ditambah serat buangan pokok kelapa sawit untuk untuk meningkatkan sifat kekuatan atau rapuh. Serat kelapa sawit juga berfungsi mempertingkatkan ketahanan hentaman terutamanya aspek nilai penyerapan tenaga hentaman dan nilai tenaga hentaman. Kandungan peratusan serat kelapa sawit yang digunakan adalah 10%, 20% dan 30% dengan dua ketumpatan konkrit berbusa iaitu 1000kg/m3 dan 1400kg/m3 . Untuk menentukan nilai penyerapan tenaga hentaman dan nilai tenaga hentaman, ujikaji Indentasi dan ujikaji hentaman dilakukan ke atas sampel�sampel yang telah diawet selama 28 hari. Luas bawah graf tegasan-terikan yang diperolehi daripada ujikaji Indentasi merupakan nilai penyerapan tenaga hentaman bagi sampel konkrit berbusa. Untuk ujikaji hentaman, keputusan ujikaji dinilai berdasarkan nilai tenaga hentaman untuk meretakkan sampel yang diperolehi daripada mesin ujikaji dynatup. Secara keseluruhannya, hasil dapatan utama bagi kedua-dua ujikaji menunjukkan sampel yang mengandungi peratusan serat kelapa sawit sebanyak 20% mempunyai nilai penyerapan tenaga hentaman dan nilai tenaga hentaman yang tinggi. Serapan tenaga maksimum adalah sebanyak 4.517MJ/m3 untuk ketumpatan 1400kg/m3 . Ini menunjukkan ketumpatan 1400kg/m3 berupaya menyerap tenaga lebih baik berbanding ketumpatan 1000kg/m3 . Manakala untuk nilai tenaga hentaman maksimum adalah sebanyak 27.229J untuk ketumpatan 1400kg/m3 . Hasil dapatan tersebut menunjukkan ketumpatan 1400kg/m3 dengan peratusan serat sebanyak 20% berupaya mengalas tenaga hentaman yang lebih banyak sebelum sampel retak. Kesimpulannya, peningkatan ketumpatan konkrit berbusa dan pertambahan serat buangan kelapa sawit ke dalam konkrit berbusa dapat meningkatkan ciri ketahanan hentaman konkrit berbusa khususnya aspek nilai penyerapan tenaga hentaman dan nilai tenaga hentaman

    A particle swarm optimization based memetic algorithm for dynamic optimization problems

    Get PDF
    Copyright @ Springer Science + Business Media B.V. 2010.Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant No. 70431003 and Grant No. 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, the National Support Plan of China under Grant No. 2006BAH02A09 and the Ministry of Education, science, and Technology in Korea through the Second-Phase of Brain Korea 21 Project in 2009, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and the Hong Kong Polytechnic University Research Grants under Grant G-YH60
    corecore