22,616 research outputs found

    Applying machine learning methods for characterization of hexagonal prisms from their 2D scattering patterns – an investigation using modelled scattering data

    Get PDF
    This document is the Accepted Manuscript version of the following article: Emmanuel Oluwatobi Salawu, Evelyn Hesse, Chris Stopford, Neil Davey, and Yi Sun, 'Applying machine learning methods for characterization of hexagonal prisms from their 2D scattering patterns – an investigation using modelled scattering data', Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 201, pp. 115-127, first published online 5 July 2017. Under embargo. Embargo end date: 5 July 2019. The Version of Record is available online at doi: https://doi.org/10.1016/j.jqsrt.2017.07.001. © 2017 Elsevier Ltd. All rights reserved.Better understanding and characterization of cloud particles, whose properties and distributions affect climate and weather, are essential for the understanding of present climate and climate change. Since imaging cloud probes have limitations of optical resolution, especially for small particles (with diameter < 25 μm), instruments like the Small Ice Detector (SID) probes, which capture high-resolution spatial light scattering patterns from individual particles down to 1 μm in size, have been developed. In this work, we have proposed a method using Machine Learning techniques to estimate simulated particles’ orientation-averaged projected sizes (PAD) and aspect ratio from their 2D scattering patterns. The two-dimensional light scattering patterns (2DLSP) of hexagonal prisms are computed using the Ray Tracing with Diffraction on Facets (RTDF) model. The 2DLSP cover the same angular range as the SID probes. We generated 2DLSP for 162 hexagonal prisms at 133 orientations for each. In a first step, the 2DLSP were transformed into rotation-invariant Zernike moments (ZMs), which are particularly suitable for analyses of pattern symmetry. Then we used ZMs, summed intensities, and root mean square contrast as inputs to the advanced Machine Learning methods. We created one random forests classifier for predicting prism orientation, 133 orientation-specific (OS) support vector classification models for predicting the prism aspect-ratios, 133 OS support vector regression models for estimating prism sizes, and another 133 OS Support Vector Regression (SVR) models for estimating the size PADs. We have achieved a high accuracy of 0.99 in predicting prism aspect ratios, and a low value of normalized mean square error of 0.004 for estimating the particle’s size and size PADs.Peer reviewe

    Gait recognition based on shape and motion analysis of silhouette contours

    Get PDF
    This paper presents a three-phase gait recognition method that analyses the spatio-temporal shape and dynamic motion (STS-DM) characteristics of a human subject’s silhouettes to identify the subject in the presence of most of the challenging factors that affect existing gait recognition systems. In phase 1, phase-weighted magnitude spectra of the Fourier descriptor of the silhouette contours at ten phases of a gait period are used to analyse the spatio-temporal changes of the subject’s shape. A component-based Fourier descriptor based on anatomical studies of human body is used to achieve robustness against shape variations caused by all common types of small carrying conditions with folded hands, at the subject’s back and in upright position. In phase 2, a full-body shape and motion analysis is performed by fitting ellipses to contour segments of ten phases of a gait period and using a histogram matching with Bhattacharyya distance of parameters of the ellipses as dissimilarity scores. In phase 3, dynamic time warping is used to analyse the angular rotation pattern of the subject’s leading knee with a consideration of arm-swing over a gait period to achieve identification that is invariant to walking speed, limited clothing variations, hair style changes and shadows under feet. The match scores generated in the three phases are fused using weight-based score-level fusion for robust identification in the presence of missing and distorted frames, and occlusion in the scene. Experimental analyses on various publicly available data sets show that STS-DM outperforms several state-of-the-art gait recognition methods

    A Model of Plant Identification System Using GLCM, Lacunarity And Shen Features

    Get PDF
    Recently, many approaches have been introduced by several researchers to identify plants. Now, applications of texture, shape, color and vein features are common practices. However, there are many possibilities of methods can be developed to improve the performance of such identification systems. Therefore, several experiments had been conducted in this research. As a result, a new novel approach by using combination of Gray-Level Co-occurrence Matrix, lacunarity and Shen features and a Bayesian classifier gives a better result compared to other plant identification systems. For comparison, this research used two kinds of several datasets that were usually used for testing the performance of each plant identification system. The results show that the system gives an accuracy rate of 97.19% when using the Flavia dataset and 95.00% when using the Foliage dataset and outperforms other approaches.Comment: 10 page

    Revisiting Complex Moments For 2D Shape Representation and Image Normalization

    Full text link
    When comparing 2D shapes, a key issue is their normalization. Translation and scale are easily taken care of by removing the mean and normalizing the energy. However, defining and computing the orientation of a 2D shape is not so simple. In fact, although for elongated shapes the principal axis can be used to define one of two possible orientations, there is no such tool for general shapes. As we show in the paper, previous approaches fail to compute the orientation of even noiseless observations of simple shapes. We address this problem. In the paper, we show how to uniquely define the orientation of an arbitrary 2D shape, in terms of what we call its Principal Moments. We show that a small subset of these moments suffice to represent the underlying 2D shape and propose a new method to efficiently compute the shape orientation: Principal Moment Analysis. Finally, we discuss how this method can further be applied to normalize grey-level images. Besides the theoretical proof of correctness, we describe experiments demonstrating robustness to noise and illustrating the method with real images.Comment: 69 pages, 20 figure
    • …
    corecore