1,055 research outputs found

    Algorithmic classification of noncorrelated binary pattern sequences

    Full text link
    We show that it is possible to algorithmically verify if a given pattern sequence is noncorrelated. As an application, we compute that there are exactly 22722272 noncorrelated binary pattern sequences of length 4\leq 4. If we restrict our attention to patterns that do not end with 0\mathtt{0}, we put forward a sufficient condition for a pattern sequence to be noncorrelated. We conjecture that this condition is also necessary, and verify this conjecture for lengths 5\leq 5.Comment: 20 page

    Mode transitions in a model reaction-diffusion system driven by domain growth and noise

    Get PDF
    Pattern formation in many biological systems takes place during growth of the underlying domain. We study a specific example of a reaction–diffusion (Turing) model in which peak splitting, driven by domain growth, generates a sequence of patterns. We have previously shown that the pattern sequences which are presented when the domain growth rate is sufficiently rapid exhibit a mode-doubling phenomenon. Such pattern sequences afford reliable selection of certain final patterns, thus addressing the robustness problem inherent of the Turing mechanism. At slower domain growth rates this regular mode doubling breaks down in the presence of small perturbations to the dynamics. In this paper we examine the breaking down of the mode doubling sequence and consider the implications of this behaviour in increasing the range of reliably selectable final patterns

    Detecting multineuronal temporal patterns in parallel spike trains

    Get PDF
    We present a non-parametric and computationally efficient method that detects spatiotemporal firing patterns and pattern sequences in parallel spike trains and tests whether the observed numbers of repeating patterns and sequences on a given timescale are significantly different from those expected by chance. The method is generally applicable and uncovers coordinated activity with arbitrary precision by comparing it to appropriate surrogate data. The analysis of coherent patterns of spatially and temporally distributed spiking activity on various timescales enables the immediate tracking of diverse qualities of coordinated firing related to neuronal state changes and information processing. We apply the method to simulated data and multineuronal recordings from rat visual cortex and show that it reliably discriminates between data sets with random pattern occurrences and with additional exactly repeating spatiotemporal patterns and pattern sequences. Multineuronal cortical spiking activity appears to be precisely coordinated and exhibits a sequential organization beyond the cell assembly concept

    Self-wiring in neural nets of point-like cortical neurons fails to reproduce cytoarchitectural differences

    Get PDF
    We propose a model for description of activity-dependent evolution and self-wiring between binary neurons. Specifically, this model can be used for investigation of growth of neuronal connectivity in the developing neocortex. By using computational simulations with appropriate training pattern sequences, we show that long-term memory can be encoded in neuronal connectivity and that the external stimulations form part of the functioning neocortical circuit. It is proposed that such binary neuron representations of point-like cortical neurons fail to reproduce cytoarchitectural differences of the neocortical organization, which has implications for inadequacies of compartmental models.Comment: 13 pages, 5 figure

    Online Estimation of Multiple Dynamic Graphs in Pattern Sequences

    Full text link
    Sequences of correlated binary patterns can represent many time-series data including text, movies, and biological signals. These patterns may be described by weighted combinations of a few dominant structures that underpin specific interactions among the binary elements. To extract the dominant correlation structures and their contributions to generating data in a time-dependent manner, we model the dynamics of binary patterns using the state-space model of an Ising-type network that is composed of multiple undirected graphs. We provide a sequential Bayes algorithm to estimate the dynamics of weights on the graphs while gaining the graph structures online. This model can uncover overlapping graphs underlying the data better than a traditional orthogonal decomposition method, and outperforms an original time-dependent Ising model. We assess the performance of the method by simulated data, and demonstrate that spontaneous activity of cultured hippocampal neurons is represented by dynamics of multiple graphs.Comment: 8 pages, 4 figures v2: IJCNN 2019, results unchange

    Positioning and data broadcasting using illumination pattern sequences displayed by LED arrays

    Get PDF
    Illumination of a scene with a time-sequence of spatial light patterns enables clients within the scene to navigate, receive broadcast wireless data, or make subsequent space-division multiple access connections to a high bandwidth wireless system. We have developed dedicated binary pattern sequences, for use with arrays of light-emitting diodes (LEDs), which are projected on the area of interest. The LED arrays can be in either active-matrix or matrix-addressable format. The properties of the different sequences are compared theoretically and experimentally, highlighting a trade-off between position update rate and resilience against pixel cross-talk and interference

    High speed spatial encoding enabled by CMOS-controlled micro-LED arrays

    Get PDF
    Arrays of GaN light-emitting diodes can be used for rapid display of pattern sequences or high speed parallel data transmission using different sites of the array. These operation modes can be combined with each other and are useful for light- fidelity networks with Gb/s capacity
    corecore