267,667 research outputs found

    A discussion on the validation tests employed to compare human action recognition methods using the MSR Action3D dataset

    Get PDF
    This paper aims to determine which is the best human action recognition method based on features extracted from RGB-D devices, such as the Microsoft Kinect. A review of all the papers that make reference to MSR Action3D, the most used dataset that includes depth information acquired from a RGB-D device, has been performed. We found that the validation method used by each work differs from the others. So, a direct comparison among works cannot be made. However, almost all the works present their results comparing them without taking into account this issue. Therefore, we present different rankings according to the methodology used for the validation in orden to clarify the existing confusion.Comment: 16 pages and 7 table

    Fast Color Quantization Using Weighted Sort-Means Clustering

    Full text link
    Color quantization is an important operation with numerous applications in graphics and image processing. Most quantization methods are essentially based on data clustering algorithms. However, despite its popularity as a general purpose clustering algorithm, k-means has not received much respect in the color quantization literature because of its high computational requirements and sensitivity to initialization. In this paper, a fast color quantization method based on k-means is presented. The method involves several modifications to the conventional (batch) k-means algorithm including data reduction, sample weighting, and the use of triangle inequality to speed up the nearest neighbor search. Experiments on a diverse set of images demonstrate that, with the proposed modifications, k-means becomes very competitive with state-of-the-art color quantization methods in terms of both effectiveness and efficiency.Comment: 30 pages, 2 figures, 4 table

    Visual selective behavior can be triggered by a feed-forward process

    Get PDF
    The ventral visual pathway implements object recognition and categorization in a hierarchy of processing areas with neuronal selectivities of increasing complexity. The presence of massive feedback connections within this hierarchy raises the possibility that normal visual processing relies on the use of computational loops. It is not known, however, whether object recognition can be performed at all without such loops (i.e., in a purely feed-forward mode). By analyzing the time course of reaction times in a masked natural scene categorization paradigm, we show that the human visual system can generate selective motor responses based on a single feed-forward pass. We confirm these results using a more constrained letter discrimination task, in which the rapid succession of a target and mask is actually perceived as a distractor. We show that a masked stimulus presented for only 26 msec—and often not consciously perceived—can fully determine the earliest selective motor responses: The neural representations of the stimulus and mask are thus kept separated during a short period corresponding to the feed-forward "sweep." Therefore, feedback loops do not appear to be "mandatory" for visual processing. Rather, we found that such loops allow the masked stimulus to reverberate in the visual system and affect behavior for nearly 150 msec after the feed-forward sweep
    corecore