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Abstract. This paper aims to determine which is the best human ac-
tion recognition method based on features extracted from RGB-D de-
vices, such as the Microsoft Kinect. A review of all the papers that make
reference to MSR Action3D, the most used dataset that includes depth
information acquired from a RGB-D device, has been performed. We
found that the validation method used by each work differs from the
others. So, a direct comparison among works cannot be made. However,
almost all the works present their results comparing them without taking
into account this issue. Therefore, we present different rankings accord-
ing to the methodology used for the validation in orden to clarify the
existing confusion.
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1 Introduction

In recent years, interest has grown on affordable devices (e.g. Microsoft Kinect
or ASUS Xtion Pro) that capture depth quite reliably. Such devices provide a
depth image (D), along with an RGB image (thus RGB-D). A depth image can
be further processed to obtain marker-less body pose estimation by means of a
skeleton model consisting of a series of joints. Due to their low cost, high sample
rate and capability to combine visual and depth information, these devices have
become widespread in both research and commercial applications. Furthermore,
their use has not been restricted to games, for which they were initially designed,
but other applications where natural human-computer interaction is required.

These devices are widely used in the field of human action recognition (HAR),
particularly in indoor scenarios for the recognition of activities of daily living. For
research purposes, a variety of datasets for human action (or gesture) recognition
have been recorded using RGB-D devices (see Table 1). The MSR Action3D
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Table 1. State-of-the-art datasets for action recognition based on depth or skeletal
features, sorted from more quoted to less quoted according to Google Scholar.

Name Actions Actors Times Samples Citations Year

MSR Action3D [1] 20 10 2 or 3 567 176 2010

MSR DailyActivity3D [2] 16 10 2 320 138 2012

RGBD-HuDaAct [3] 12 30 2 or 4 1189 86 2011

CAD-60 [4] 12 2+2 - 60 80 2012

UTKinect Action [5] 10 10 2 - 73 2012

MSRC-12 KinectGesture [6] 12 30 - 594 39 2012

CAD-120 [7] 10 2+2 - 120 33 2013

MSR ActionPairs [8] 6 10 3 180 29 2013

MSR Gesture3D [9] 12 10 2 or 3 336 25 2012

LIRIS Human Activities [10] 10 21 - - 24 2012

Berkeley MHAD [11] 11 7+5 5 ∼ 660 18 2013

G3D [12] 20 10 3 - 11 2012

ACT4 Dataset [13] 14 24 >1 6844 9 2012

UPCV Action [14] 10 20 - - 6 2014

WorkoutSu-10 Gesture [15] 10 15 10 1500 6 2013

IAS-Lab Action [16] 15 12 3 540 3 2013

Florence 3D Action [17] 9 10 2 or 3 215 2 2012

dataset [1] from Microsoft Research stands out as one of the most used in the
literature, as many developed methods for action recognition have been validated
with this dataset. Hence, it should be easy to determine the best human action
recognition method in a straightforward way by comparing their success and
processing rates. However, to the best of our knowledge, this is not possible at
the moment as we found that almost all the works compare results obtained
with different validation methods.

Therefore, this work aims to fill the existing gap in order to enable a fair
comparison of the state of the art. We have reviewed 176 papers that make
reference to the MSR Action3D dataset. Out of these 176 papers, 62 papers have
been considered as they use the MSR Action3D dataset for the validation of the
human action (or gesture) recognition methods proposed. They are classified
according to the validation method and ranked based on their success rate.

The remainder of this paper is organised as follows: Section 2 describes the
MSR Action3D dataset employed by the reviewed works. In section 3, an expla-
nation of the inconsistencies found in the number of the used samples is given.
Section 4 presents the validation methods used in the reviewed papers and pro-
vides a classification of each work according to this. Finally, section 5 presents
some conclusions and recommendations for the future.

2 MSR Action3D dataset

The MSR Action3D dataset [1] contains 20 different actions, performed by 10
different subjects with up to 3 different repetitions. This makes a total of 567
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Table 2. Actions in each of the MSR Action3D subsets.

AS1 AS2 AS3

Label Action name Label Action name Label Action name

a02 Horizontal arm wave a01 High arm wave a06 High throw
a03 Hammer a04 Hand catch a14 Forward kick
a05 Forward punch a07 Draw cross a15 Side-kick
a06 High throw a08 Draw tick a16 Jogging
a10 Hand clap a09 Draw circle a17 Tennis swing
a13 Bend a11 Two-hand wave a18 Tennis serve
a18 Tennis serve a14 Forward kick a19 Golf swing
a20 Pick-up and throw a12 Side-boxing a20 Pick-up and throw

sequences and each one includes depth and skeleton joints. However 10 sequences
are not valid in this dataset because the skeletons were either missing or wrong,
as explained by the authors3. The authors divided the dataset in three subsets
of 8 gestures each, as shown in Table 2. Most of the papers working with this
dataset have also used them. This was due to the high computational cost of
dealing with the overall dataset. The AS1 and AS2 subsets were intended to
group actions with similar movement, while AS3 was intended to group complex
actions together.

3 How many samples are used for testing?

Despite of the fact that the MSR Action3D dataset is made up of 567 sequences,
the number of instances used in some works is unclear [18–20]. There is a lot of
confusion concerning this topic.

As far as we know, the authors of the dataset firstly described it as made
up of twenty actions, where each one was performed by seven subjects for three
times [1]. However, actions are performed by ten subjects with up to three rep-
etitions as described in the previous section. Many works have compared their
results with Li et al. and most of them used ten subjects [5, 21, 22]. In other
words, they may have used a higher number of instances than the work they aim
to compare to. Wang et al. [2] described the dataset as made up of 402 sequences.
For the sake of clarity, this mistake is advertised at the dataset web page4. The
authors explain that 10 sequences out of the 567 are not used because a number
of skeletons are either missing or too erroneous. So, the dataset is eventually
composed of 557 sequences. However, it is curious to see how recent works [19,
20, 23] still mention that the dataset is composed of 402 sequences and directly
compare their results with the state-of-the-art papers that use other number of
instances. Furthermore, other authors have intentionally used a subset of the
whole dataset, e.g. 17 actions, 8 subjects and 3 repetitions (408 samples). Due

3 MSR Action Recognition Datasets and Codes, http://research.microsoft.com/en-
us/um/people/zliu/actionrecorsrc/default.htm (last access: 06/26/2014)

4 A list of the used sequences is also provided in the website
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to this, the AS1, AS2 and AS3 subsets are composed of different actions too,
thereby they compare their results with works that use a different number of
instances.

As a consequence, it is very difficult to confirm whether these works use 402,
557 or 567 samples as we are not sure whether the authors are aware of these
key aspects concerning the dataset, or if those are only naive text mistakes.
Moreover, the missing information concerning the number of instances prevents
to make a fair comparison between different methods.

4 Which is the validation method used?

Regarding the experimentation method used by many authors working with the
MSR Action3D dataset, it is worth to mention that there is a lack of agreement.
In the paper by Li et al. [1] where the dataset was firstly presented, three tests
are performed: 1/3, 2/3 and cross-subject test. In the first two tests, 1/3 and 2/3
of the instances are respectively used as training samples and the rest as testing
samples. In the third test, half of the subjects are used for training and the
remainder for testing. However, it is not described which instances or subjects
are actually used in each partition of the dataset.

Given that information is missing, we could assume that the 1/3 means to
split the dataset using the first repetition of each action performed by each
subject as training, and to use the remainder for testing. The same could be
assumed for the 2/3. However, if we only consider instances as a whole, we
can split the dataset in a different way. For instance, the dataset can be split
using 1/3 (or 2/3) of all the instances for training. The same is true for the
cross-subject test. It is not stated which instances are used. Any half of all the
subjects can be used for training, e.g. 1, 2, 3, 9 and 10; and the remainder
for testing, i.e. 4, 5, 6, 7 and 8. Given that it is not clear which instances are
used, each researcher is free to interpret anything, thereby comparing different
methods where a distinct methodology has been used for the experimentation.
However, this is not desirable to compare and decide which method performs
better.

In the cross-subject test employed by Li et al. [1] the actual samples of
subjects 1, 3, 5, 7 and 9 are used for training, whereas actors 2, 4, 6, 8 and
10 are used for validation. This test is followed by many authors as shown in
Table 3. While some authors use the mentioned settings for their training and
validation sets, other authors use subjects 1-5 for training and 6-10 for validation
(see Table 4). Regardless of the used setup, most of the works state that they
follow the same settings as Li et al. but do not provide a description of such a
setup. Due to this, we assume that they follow the same validation than Li et
al., so Table 3 and Table 4 can even have classification mistakes. Anyway, a fair
comparison cannot be performed. Indeed, when it is sure that the same setup
has been used, sometimes results only show an accuracy score and the authors
do not give an explanation of what it represents, i.e. the average of the AS1, AS2
and AS3 tests, or the overall accuracy of using the whole dataset (20 actions).
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Table 3: Li et al.’s cross-subject test. The first eight methods ex-
plicitly describe both the training and validation sets. Results are
ordered by the average result for the AS1, AS2, and AS3 subsets;
and then by the results for the whole dataset.

Method Year AS1 AS2 AS3 Avg. All

Fusion of Skeletal and Silhouette-Based Fea-
tures for Human Action Recognition with
RGB-D Devices, Chaaraoui et al. [24]

2013 92.38 86.61 96.4 91.8 -

Real-time human action recognition based on
depth motion maps, Chen et al. [25] 2013 96.2 83.2 92 90.47 -

Skeletal Quads: Human Action Recognition
Using Joint Quadruples, Evangelidis et al. [26] 2014 88.39 86.61 94.59 89.86 -

Random Occupancy Patterns, Wang et al. [27] 2014 - - - 86.50? -

Action recognition based on a bag of 3d
points, Li et al. [1] 2010 72.9 71.9 79.2 74.67 -

Learning Maximum Margin Temporal Warp-
ing for Action Recognition, Wang and Wu [21] 2013 - - - - 92.7?

Learning Actionlet Ensemble for 3D Human
Action Recognition, Yuan et al. [23] 2014 - - - - 88.2?

Mining actionlet ensemble for action recogni-
tion with depth cameras, Wang et al. [2] 2012 - - - - 88.2?

Group Sparsity and Geometry Constrained
Dictionary Learning for Action Recognition
from Depth Maps, Luo et al. [28]

2013 97.2 95.5 99.1 97.26 96.7

Fusing Spatiotemporal Features and Joints
for 3D Action Recognition, Zhu et al. [29] 2013 - - - 94.3 -

Human Action Recognition by Mining Dis-
criminative Segment with Novel Skeleton
Joint Feature, Zou et al. [30]

2013 - - - 94.0?

Pose-based human action recognition via
sparse representation in dissimilarity space ,
Theodorakopoulos et al. [14]

2014 91.23 90.09 99.5 93.61 -

Action recognition on motion capture data us-
ing a dynemes and forward differences repre-
sentation, Kapsouras and Nikolaidis [31]

2014 - - - 93.6 91.4

Super Normal Vector for Activity Recognition
Using Depth Sequences, Yang and Tian [32] 2014 - - - 93.09? -

Action Recognition Using Ensemble Weighted
Multi-Instance Learning, Chen et al. [33] 2014 - - - 92? -

Histogram of Oriented Displacements (HOD):
Describing Trajectories of Human Joints for
Action Recognition, Gowayyed et al. [34]

2013 92.39 90.18 91.43 91.26 -

Human Action Recognition Using a Tempo-
ral Hierarchy of Covariance Descriptors on 3D
Joint Locations, Hussein et al. [35]

2013 88.04 89.29 94.29 90.53 -

Body Surface Context: A New Robust Feature
for Action Recognition From Depth Videos,
Song et al. [36]

2014 - - - 90.36? -

An Approach to Pose-Based Action Recogni-
tion, Wang et al. [37] 2013 - - - 90.22 -

Human Action Recognition Via Multi-
modality Information, Gao et al. [19] 2014 92 85 93 90 -

Continued on next page
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Table 3 – Continued from previous page

Method Year AS1 AS2 AS3 Avg. All

Human Behavior Recognition Based on Ax-
onometric Projections and PHOG Feature,
Shen et al. [20]

2014 90.6 81.4 94.6 88.87 -

On the improvement of human action recogni-
tion from depth map sequences using Space-
Time Occupancy Patterns, Vieira et al. [38]

2014 91.7 72.2 98.6 87.5 81.55

STOP: Space-Time Occupancy Patterns for
3D Action Recognition from Depth Map Se-
quences, Vieira et al. [39]

2012 84.7 81.3 88.4 84.8 -

Effective 3D action recognition using Eigen-
Joints, Yang And Tian [22] 2014 - - - 83.3? -

Home Monitoring Musculo-skeletal Disorders
with a Single 3D Sensor, Wang et al. [40] 2013 - - - 81.9? -

Online Human Gesture Recognition from Mo-
tion Data Streams, Zhao et al. [41] 2013 - - - 81.7? -

Effective approaches in human action recog-
nition, Li et al. [42] 2013 - - - 81.5 or

91.5?
-

Gesture recognition from depth images using
motion and shape features, Qin et al. [43] 2013 81 79 82 80.66 -

Human activity recognition using multi-
features and multiple kernel learning,
Althloothi et al. [44]

2014 74.3 76.8 86.7 79.27 -

View invariant human action recognition us-
ing histograms of 3D joints, Xia et al. [5] 2012 87.98 85.48 63.46 78.97 -

Three Dimensional Motion Trail Model for
Gesture Recognition, Liang and Zheng [45] 2013 73.7 81.5 81.6 78.93 -

Attractor-Shape for Dynamical Analysis of
Human Movement: Applications in Stroke
Rehabilitation and Action Recognition,
Venkataraman et al. [46]

2013 77.5 63.1 87 75.87 -

Exploring the Trade-off Between Accuracy
and Observational Latency in Action Recog-
nition, Ellis et al. [47]

2013 - - - 65.7? -

Robust 3D Action Recognition with Random
Occupancy Patterns, Wang et al. [48] 2012 - - - - 86.5?

Table 4: Cross-subject test (1-5 training, 6-10 test). The first seven
methods explicitly describe both the training and validation sets.

Method Year AS1 AS2 AS3 Avg. All

Sparse spatio-temporal representation of joint
shape-motion cues for human action recogni-
tion in depth sequences, Tran and Ly [49]

2013 - - - 91.92? -

The Moving Pose: An Efficient 3D Kinemat-
ics Descriptor for Low-Latency Action Recog-
nition and Detection, Zanfir et al. [50]

2013 - - - 91.7? -

An effective fusion scheme of spatio-temporal
features for human action recognition in
RGB-D video, Tran and Ly [51]

2013 - - - 88.89? -

Continued on next page
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Table 4 – Continued from previous page

Method Year AS1 AS2 AS3 Avg. All

Real Time Action Recognition Using His-
tograms of Depth Gradients and Random De-
cision Forests, Rahmani et al. [52]

2014 - - - 88.8? -

Iterative temporal learning and prediction
with the sparse online echo state gaussian pro-
cess, Soh and Demiris [53]

2012 80.6 74.9 87.1 80.87 -

Joint Angles Similarities and HOG2 for Ac-
tion Recognition, Ohn-Bar and Trivedi [54] 2013 - - - - 94.84

HON4D: Histogram of Oriented 4D Nor-
mals for Activity Recognition from Depth Se-
quences, Oreifej and Liu [8]

2013 - - - - 88.89?

Spatio-temporal feature extraction and rep-
resentation for RGB-D human action recogni-
tion, Luo et al. [55]

2014 96.1 90.8 98.33 95.08 93.83?

Action Classification with Locality-
constrained Linear Coding, Rahmani et al.
[56]

2014 - - - 90.9? -

Spatio-temporal Depth Cuboid Similarity
Feature for Activity Recognition Using Depth
Camera, Xia and Aggarwal [57]

2013 - - - 89.3? -

Optimal Joint Selection for Skeletal Data
from RGB-D Devices Using a Genetic Algo-
rithm, Climent et al. [58]

2013 - - - - 71.1

Due to all this confusion about how to split the dataset in two sets for training
and validation, some authors randomly choose half of the subjects for the training
set, and select the rest of the subjects for the validation set. As in 2-fold cross
validation, they repeat the test using the previous validation set as the training
set and vice versa. In this case, the final result is the average of both tests (see
Table 5). In other works, instead of performing a 2-fold cross validation, some
authors randomly select the two sets and repeat the experiment several times.
For example, Miranda et al. [59] perform a random selection of half of the actors
as training set and the other half as validation set. This is repeated 10 times and
the final result is the average of the results of each run. Other authors repeat
the test 100 times instead of 10 [60, 61], and even 200 times [25] (see Table 6).
However, although the tests are repeated many times, all the possible splits are
not considered, i.e. all the possible combinations (252 tests) of using 5 subjects
for training and the remaining ones for testing. Only three works perform this
test [8, 49, 52]. In Table 6 these works have been included with the 252 number in
the third column. This indicates that they performed a test with all the possible
combinations.

Another approach used by some authors is to perform a leave-one-actor-
out cross-validation test. In this case, actor invariance is specifically tested by
training with all but one actor, and testing the method with the unseen one. This
is repeated for all the actors, averaging the returned success rates (see Table 7).

Finally, in addition to the described validation methods that are frequently
used in the literature, there are other authors that have not been included in any
table because either the validation method is unclear [66, 67] or the employed
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Table 5. 2-fold cross-validation test

Method Year AS1 AS2 AS3 Avg. All

Evolutionary joint selection to improve hu-
man action recognition with RGB-D devices,
Chaaraoui et al. [62]

2014 91.59 90.83 97.28 93.23 -

3D Action Classification Using Sparse Spatio-
temporal Feature Representations, Azary and
Savakis [63]

2012 77.66 73.17 91.58 80.8 63.23

Table 6. Miranda et al.’s test: Random selection of training and test sets repeated a
number of times.

Method Year Tests AS1 AS2 AS3 Avg. All

Sparse spatio-temporal representation of
joint shape-motion cues for human action
recognition in depth sequences, Tran and
Ly [49]

2013 252 - - - 84.54? -

Real Time Action Recognition Using His-
tograms of Depth Gradients and Random
Decision Forests, Rahmani et al. [52]

2014 252 - - - - 82.7?

HON4D: Histogram of Oriented 4D Nor-
mals for Activity Recognition from Depth
Sequences, Oreifej and Liu [8]

2013 252 - - - - 82.15?

Real-time human action recognition
based on depth motion maps, Chen et al.
[25]

2013 200 90.1 90.6 97.6 92.77 -

Fast Exact Hyper-graph Matching with
Dynamic Programming for Spatio-
temporal Data, Çeliktutan et al. [61]

2014 100 84.5 85 72.2 80.57 -

Graph-based Analysis of Physical Exer-
cise Actions, eliktutan et al. [60] 2013 100 84.5 85 72.2 80.5 -

Online gesture recognition from pose ker-
nel learning and decision forests, Miranda
et al. [64]

2014 10 96 57.1 97.3 83.5 -

Real-Time Gesture Recognition from
Depth Data through Key Poses Learning
and Decision Forests, Miranda et al. [59]

2012 10 93.5 52 95.4 80.3 -

Space-Time Pose Representation for 3D
Human Action Recognition, Devanne et
al. [65]

2013 10 84.8 67.8 87.1 79.9 -

Table 7. Leave-one-actor-out cross-validation test

Method Year AS1 AS2 AS3 Avg. All

Evolutionary joint selection to improve hu-
man action recognition with RGB-D devices,
Chaaraoui et al. [62]

2014 91.46 91.78 97.13 93.46 -

Fusion of Skeletal and Silhouette-Based Fea-
tures for Human Action Recognition with
RGB-D Devices, Chaaraoui et al. [24]

2013 90.65 85.15 95.93 90.58 -

3D Action Classification Using Sparse Spatio-
temporal Feature Representations, Azary and
Savakis [63]

2012 80.73 77.11 93.89 83.91 72.11

Grassmannian Sparse Representations and
Motion Depth Surfaces for 3D Action Recog-
nition, Azary and Savakis [18]

2013 - - - - 78.48?

Fast Exact Hyper-graph Matching with
Dynamic Programming for Spatio-temporal
Data, Çeliktutan et al. [61]

2014 - - - - 72.9?
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settings are not used by more than one author [68–71]. For instance, Ofli et
al. [68] use a subset of 17 actions and 8 subjects. They train with 5 subjects
and validate with 3 subjects in order to obtain the success rate (41.18% for the
whole dataset). These results are improved in [70] with the same setup (83.89%
for the whole dataset). Cottone et al. [69] perform a leave-one-sequence-out cross
validation, training with all the sequences in the dataset but one that is used for
testing. Then, they perform 10 of these tests obtaining the average success rate
(90.47% for the average of AS1, AS2 and AS3). Sabinas et al.[71] are focused
on early detection of gestures, i.e. without seeing all the information, and their
experimentation is based on one-shot learning. Therefore, their results are not
directly comparable (47% for the average of AS1, AS2 and AS3).

5 Conclusions

In this work, we have aimed to give an answer to the question of which is the
best action recognition method based on features extracted from depth and
skeletal data. Based on the review the present work has performed, it can be
observed that we cannot answer this question with confidence. In other words,
we cannot know so far. Hence, we have presented the most important divergences
in the comparison of action recognition methods that use the MSR Action3D
dataset. Among these, we can highlight the mismatch in the number of samples
used by most of the works and the different validation methods that have been
used. As we have seen, the validation performed by Li et al. is one of the most
used. However, the missing information about how to split the dataset into
training and validation sets has led to a lot of confusion. Furthermore, most
of the authors do not describe how this division is performed in their works.
Therefore, experiments cannot be reproduced and fair comparisons cannot be
made. Thus, in this work we have tried to clear up the existing confusion. This
may enable to improve future comparisons and increase the awareness of the
need of clarifying experimental settings.

Among all the validation methods reviewed in this work, we consider that
the cross validation considering all the possible splits of the dataset, i.e. all the
possible combinations (252 tests) of using 5 subjects for training and the remain-
ing ones for testing, is the most robust validation method. However, if testing
your method with the 5-5 splits cross validation is very demanding concerning
computational cost, then the leave-one-actor-out cross validation is the one we
recommend under these conditions.

Notes to authors

As it has been difficult in some cases to understand the validation method of the
papers, we encourage authors of the reviewed works to contact us in case their
works had been misclassified in the previous tables. This way, we will be able
to update the document and correct it. Similarly, authors of new works are also
encouraged to contact us in order to incorporate their works if so desired.
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