24,710 research outputs found

    Pattern based GUI testing for mobile applications

    Get PDF
    This paper presents a study aiming to assess the feasibility of using the Pattern Based GUI Testing approach, PBGT, to test mobile applications. PBGT is a new model based testing approach that aims to increase systematization, reusability and diminish the effort in modelling and testing. It is based on the concept of User Interface Test Patterns (UITP) that contain generic test strategies for testing common recurrent behaviour, the so-called UI Patterns, on GUIs through its possible different implementations after a configuration step. Although PBGT was developed having web applications in mind, it is possible to develop drivers for other platforms in order to test a wide set of applications. However, web and mobile applications are different and only the development of a new driver to execute test cases over mobile applications may not be enough. This paper describes a study aiming to identify the adaptations and updates the PBGT should undergo in order to test mobile applications. © 2014 IEEE

    Teaching Concurrent Software Design: A Case Study Using Android

    Full text link
    In this article, we explore various parallel and distributed computing topics from a user-centric software engineering perspective. Specifically, in the context of mobile application development, we study the basic building blocks of interactive applications in the form of events, timers, and asynchronous activities, along with related software modeling, architecture, and design topics.Comment: Submitted to CDER NSF/IEEE-TCPP Curriculum Initiative on Parallel and Distributed Computing - Core Topics for Undergraduate

    Translating Video Recordings of Mobile App Usages into Replayable Scenarios

    Full text link
    Screen recordings of mobile applications are easy to obtain and capture a wealth of information pertinent to software developers (e.g., bugs or feature requests), making them a popular mechanism for crowdsourced app feedback. Thus, these videos are becoming a common artifact that developers must manage. In light of unique mobile development constraints, including swift release cycles and rapidly evolving platforms, automated techniques for analyzing all types of rich software artifacts provide benefit to mobile developers. Unfortunately, automatically analyzing screen recordings presents serious challenges, due to their graphical nature, compared to other types of (textual) artifacts. To address these challenges, this paper introduces V2S, a lightweight, automated approach for translating video recordings of Android app usages into replayable scenarios. V2S is based primarily on computer vision techniques and adapts recent solutions for object detection and image classification to detect and classify user actions captured in a video, and convert these into a replayable test scenario. We performed an extensive evaluation of V2S involving 175 videos depicting 3,534 GUI-based actions collected from users exercising features and reproducing bugs from over 80 popular Android apps. Our results illustrate that V2S can accurately replay scenarios from screen recordings, and is capable of reproducing \approx 89% of our collected videos with minimal overhead. A case study with three industrial partners illustrates the potential usefulness of V2S from the viewpoint of developers.Comment: In proceedings of the 42nd International Conference on Software Engineering (ICSE'20), 13 page

    Overcoming Language Dichotomies: Toward Effective Program Comprehension for Mobile App Development

    Full text link
    Mobile devices and platforms have become an established target for modern software developers due to performant hardware and a large and growing user base numbering in the billions. Despite their popularity, the software development process for mobile apps comes with a set of unique, domain-specific challenges rooted in program comprehension. Many of these challenges stem from developer difficulties in reasoning about different representations of a program, a phenomenon we define as a "language dichotomy". In this paper, we reflect upon the various language dichotomies that contribute to open problems in program comprehension and development for mobile apps. Furthermore, to help guide the research community towards effective solutions for these problems, we provide a roadmap of directions for future work.Comment: Invited Keynote Paper for the 26th IEEE/ACM International Conference on Program Comprehension (ICPC'18

    Evaluating usability of cross-platform smartphone applications

    Get PDF
    The computing power of smartphones is increasing as time goes. However, the proliferation of multiple different types of operating platforms affected interoperable smartphone applications development. Thus, the cross-platform development tools are coined. Literature showed that smartphone applications developed with the native platforms have better user experience than the cross-platform counterparts. However, comparative evaluation of usability of cross-platform applications on the deployment platforms is not studied yet. In this work, we evaluated usability of a crossword puzzle developed with PhoneGap on Android, Windows Phone, and BlackBerry. The evaluation was conducted focusing on the developer's adaptation effort to native platforms and the end users. Thus, we observed that usability of the cross-platform crossword puzzle is unaffected on the respective native platforms and the SDKs require only minimal configuration effort. In addition, we observed the prospect of HTML5 and related web technologies as our future work towards evaluating and enhancing usability in composing REST-based services for smartphone applications
    corecore