
Open Mobile Miner: A Toolkit for Mobile Data Stream
Mining

Shonali Krishnaswamy, Mohamed Medhat Gaber, Marian Harbach, Christian Hugues, Abhijat

Sinha, Brett Gillick, Pari Delir Haghighi, and Arkady Zaslavsky
Centre for Distributed Systems and Software Engineering

Monash University, Australia

{Shonali.Krishnaswamy, Mohamed.Gaber, Marian.Harbach, Christian.Hugues, Abhijat.Sinha,
Brett.Gillick, Pari.DelirHaghighi, and Arkady.Zaslavsky}@infotech.monash.edu.au

ABSTRACT

There is an emerging focus on real-time data stream analysis on

mobile/ubiquitous devices. A wide range of data stream

processing applications are targeted to run on mobile handheld

devices with limited computational capabilities such as patient

monitoring, driver monitoring, providing real-time analysis and

visualization for emergency calls, optimization of logistics for

courier pick-up and delivery etc. In this paper, we present the first

generic toolkit for mobile data mining. The Open Mobile Miner

(OMM) toolkit is easy to use, can be deployed on a range of

mobile devices, is extensible and can be customized for

application specific needs. A video of the system in operation for

three different settings is available at:

http://www.csse.monash.edu.au/~shonali/OMM/OMM-

VideoDemo.asf and can be viewed using Windows Media

Player™.

Keywords

Data stream mining, Pervasive environments, Ubiquitous

computing applications, Sensor data, Adaptation, Resource-

awareness.

1. INTRODUCTION
The phenomenal growth of mobile devices coupled with their

ever-increasing computational capacity presents an exciting new

opportunity for real-time, intelligent data analysis in

pervasive/ubiquitous environments. Ubiquitous Data Mining is

the process of analyzing data streams using mobile and/or

embedded devices (e.g. sensors) to support critical applications

such as mobile healthcare, intelligent transportation systems, and

emergency/disaster management like bushfires [2]. The typical

constraints that have to be addressed in performing mobile data

mining are:

• Data Streams are generated and sent in real-time in a stream

format [17] with little or no potential for persistent storage.

• Resource Constraints include limited computational resources

such as memory, processor speed, network bandwidth, battery

power, and screen real-estate.

• Temporal Constraints refer to real-time information and

decision-making needs that, in turn, necessitate the analysis to be

online, incremental, continuous.

• Mobility of users and devices and the connectivity issues

thereof.

• Adaptation of the analysis process to varying/dynamically

changing resource-levels and user needs.

In the last few years, rapid strides have been made in accurately

and efficiently mining high speed data streams in mobile devices

such as Personal Digital Assistants (PDAs) and there is a growing

focus on “in-network” processing using embedded devices such as

sensor nodes. These techniques leverage the body of work that

exists in mining data streams and aim to enable the operation of

these algorithms in resource-constrained environments [2, 6].

In this paper, we demonstrate the first mobile data mining toolkit:

Open Mobile Miner (OMM). The primary motivations for the

development of this toolkit are as follows:

1. Enable easy deployment of mobile data mining applications

on a range of mobile devices;

2. Provide a platform for evaluation of new and existing mobile

data stream mining techniques by the research community;

3. Encapsulate extensibility of the toolkit by easy addition of

new capabilities;

4. Facilitation integration of new and existing data stream

mining algorithms into the toolkit that may or may not have

adaptation mechanisms incorporated;

5. Interface with a range of input sources for data streams

including Bluetooth-enabled sensors, previously recorded data,

distributed data, and synthetic data (i.e. data stream generation for

evaluation purposes);

6. Allow flexible, application specific visualizations to be

developed.

Thus, the above considerations also form the requisite

functionality that has driven the development of the OMM.

The rest of the paper is organized as follows: Section 2 presents

the conceptual ar

chitecture of the Open Mobile Miner (OMM) with a discussion on

the range of sensory data and synthetic data it can access, the

algorithms that have been implemented, and the visualization

Copyright is held by the author/owner(s).

KDD’09, June 28–July 1, 2009, Paris, France.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Portsmouth University Research Portal (Pure)

https://core.ac.uk/display/29579362?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

strategies. Section 3 presents the implementation and operation of

the Open Mobile Miner. Section 4 presents the

applications/demonstrations of the toolkit in the real-life case

studies. Finally, the paper is concluded in Section 5.

2. Conceptual Architecture of OMM
Having presented an overview of the adaptation process and its

functioning, we now discuss the conceptual architecture of the

Open Mobile Miner, shown in Figure 1 below.

Figure 1. The architecture of Open Mobile Miner (OMM)

The key components of the architecture are as follows:

Data Sources: The streams of data that need to be analyzed are

generated at the data sources. Data sources include sensors which

perform monitoring/measurements and transmit this data

continuously such as environmental sensors that measure physical

phenomena (e.g. temperature, pressure, soil-humidity), or bio-

sensors that measure physiological phenomena (e.g., heart-rate,

ECG, movement levels etc.). These sensors can

communicate/transmit their data via various communication

channels (e.g. Berkely MOTES which can measure light, sound,

and movement send data via 802.11 while Alive Tech ECG

sensors transmit via Bluetooth). In addition to being able to

receive live sensory data, a toolkit for Mobile Data Mining must

also be able to support for testing/evaluation purposes previously

recorded data that can be re-played as a stream (simulating

sensory input) as well as be able to generate synthetic data streams

according to various distributions required. Thus, the Open

Mobile Miner can receive data from four different sources:

• sensors that transmit either though Bluetooth or WiFi;

• a data generator that can generate a specified number of

streams each with a specified distribution (e.g. Binomial,

Gaussian, Poisson, Uniform etc.), for the specified

parameters;

• read recorded in a local CSV file and re-play it as stream;

• replay the contents of a CSV file as stream from a web

source (i.e provide a basis for simulating a distributed/remote

data stream).

Data Stream Capture: This component receives data streams from

the various sources and passes it either to the data stream mining

algorithms or the adaptation engine depending on whether

analysis process has been initialized to operate in adaptive manner

or not. This component may perform some buffering of data so as

to enable determining the data rate and preventing loss of data.

Library of Data Stream Mining Algorithms: This is the analyzer

library which provides a range of data stream mining analysis

algorithms for mobile data mining. These algorithms perform

varied types of analysis including: clustering, classification,

frequent items, change detection and time series analysis. The

algorithms can either operate by leveraging the principals of

adaptation as discussed above or can operate without adaptation

to cater for techniques that may not have been built with

adaptation strategies. When an algorithm is operating in adaptive

mode, it liases with the Adaptation Engine in processing the input

streams. However, when the algorithms are functioning in non-

adaptive mode the incoming data streams need to be processed

directly by the algorithms and the Adaptation Engine and

Resource Monitors discussed below remain inert/inactive. Table 1

shows the implemented algorithms in OMM.

Table 1 OMM Algorithms

Type Algorithm

LightWeight Cluster (LWC)

RA-Cluster

Clustering

RA-VFKM

Classification LightWeight Classification (LWClass)

Change detection Change-Detect

Time series analysis RA-SAX

Frequent pattern LightWeight Frequent items

Adaptation Engine: This component manages the adaptation

process in terms of obtaining information regarding the data

stream characteristics (e.g. data rates) from the data sources as

well as resource-levels (i.e. status of computational resources

including battery levels) of the device and instrumenting the

performance of the data stream mining algorithms according to

this information. The Adaptation Engine has built-in strategies for

adjusting dynamically the functioning of the data stream mining

algorithms according to the various parameters by varying

accuracy levels. This is achieved according to the principles

outlined previously in Section 2 and includes dynamically

performing knowledge integration, or reducing frequency at

which the data stream is processed. For further details about the

adaptation of the other algorithms implemented in OMM, readers

are referred to [3,4,5,7,8] for a thorough discussion and

formalization of the different strategies used in adjusting the

algorithm parameters according to resource consumption.

Resource Monitor: This component is responsible for assessing

the levels of memory, processor and battery that is currently

available on the device and in conjunction with the data stream

rates constitute the principal basis for performing adaptation. This

component primarily communicates the resource level information

to the Adaptation Engine. This component is – unlike the others –

operating system specific. Given the range of mobile devices that

are being developed and their diverse operating systems (e.g.

Nokia phones run the Symbian OS, Google GPhone runs the

Android OS and the iPhone runs iPhone OS from Apple) – this

component has to implement the OS specific functions to access

low-level computational characteristics.

Visualization Library: The visualization library allows the results

of the analysis process to be shown using custom visualization

techniques. Given that many applications will require custom

visualizations, the framework needs to facilitate integration of

application specific visualization. The visualization middleware

performs the task of obtaining the output of the algorithms (e.g.

cluster details) as they are available and also maintains

information regarding visualization preferences (e.g. colors and

shapes used to represent clusters). This information needs to be

provided while initiating/configuring the analysis task. It is

noteworthy that visualization of data stream mining on mobile

devices is very much an emerging area of study. In this context,

this component at this stage provides simple visualizations only.

The challenges involve coping with incremental results, dynamic

changes in the analysis results and coping with the limited screen

real-estate that needs to manage screen-clutter as it evolves.

3. IMPLEMENTATION AND USAGE OF

THE OMM TOOLKIT
The motivation for the development of the Open Mobile Miner

(OMM) was to provide a generic tool to facilitate research on

mobile data mining. The key underlying characteristics that have

driven the implementation are: ease of use, flexibility in dealing

with a range of mobile devices and varied data, customizability in

terms of easily including application-specific visualizations/output

mechanisms and extensibility in terms of being able to include

new data sources such as new sensors, analysis algorithms,

adaptation strategies and visualization techniques. The

extensibility is driven by the engineering of the toolkit and

provision of specific interfaces that allow new

components/features to be easily added. The OMM toolkit is split

into two parts: A Core that provides all the functionality needed to

do adaptive mobile mining and a graphical user interface (GUI)

that facilitates ease of use for the Core’s functionality through

graphical controls. Figure 2 illustrates how OMM works when

invoked from a GUI and how the core components interface.

Figure 2. Implementation Structure of the OMM Framework

For portability reasons, the Core had to be entirely implemented

in Java ME. Hence it runs on all recent Java Runtime

Environments (JREs), be it on a mobile handset, a PDA or a Java

EE application server. Both parts, the GUI and the Core, are

packaged separately. At present two different GUI

implementations exist: one using Swing and Java SE and another

one using LWUIT1 and Java ME. Both make most of the core’s

functions accessible via graphical controls.

The basic idea is a push-based pipeline for data to be analyzed. A

Data Source acquires or generates data elements, pushes them one

by one into an Algorithm Container which in turn may output

1 https://lwuit.dev.java.net/

results to a Data Sink whenever necessary. This behavior is shown

as the yellow arrows in Figure 7. Within OMM’s core, the data

just keeps flowing upstream through an algorithm. The data

source acts as an adaptor for the system to the incoming data

stream converting items into the necessary format. In turn, the

data sink can be used to transform results into any desired format

for visualization. OMM’s GUIs aim at providing a way of setting

up the data path using graphical controls for convenience and

experimental purposes. The core functionality is accessible from

the GUI by selecting the components to connect. The user is

required to enter the necessary parameters for the respective

source, sink or algorithm and can eventually run the system.

Furthermore, a tight integration with any software can be achieved

by accessing the OMM Core functions directly via the API. This

is done in a straightforward manner by instantiating component

classes directly. Figure 3 shows a screenshot of the OMM

Desktop GUI. To setup the system, one selects source, algorithm

and sink, as shown in steps 1 to 3. After pressing the select

button, a tree of available components is shown. After making a

selection, a box containing the available parameters is displayed

allowing adjustment of the component’s behavior as required.

Figure 3. How to use the OMM Desktop GUI

The OMM GUI will pick this up and display it as an option in the

respective component’s tree listing. After the component choices

are made, the system can be run by hitting the start button (shown

as Step 4). The execution can be stopped by hitting the Stop

button at any time. Another option is to save the current selection

and configurations from the widgets into an XML file. This file

can then be loaded back into the GUI at another point of time or

deployed on a mobile device and used to run OMM without

having to configure it manually beforehand.

The mobile GUI is similarly structured to the Desktop GUI. It can

be configured to load configurations from an XML file previously

generated by the Desktop GUI using the “Load” option on the

welcome screen. If the configuration file is correct and complete

the “Run” option will appear in the lower right corner. This is

shown in Figure 4. Alternatively, it can be setup manually using

the same steps shown in Figure 3.

The main components of OMM Core are three main interfaces:

IDataSource, IAlgorithmContainer and IDataSink. Furthermore,

two utility interfaces provide support for resource awareness and

runtime statistics: IResourceMonitor and IStatsConsumer. The

currently available sources include:

4 3
1

 2

1

AliveTechHM131BTProducer: This uses Bluetooth to interface

with an AliveTech ECG Heart Monitor™ device and parses

relevant data from the provided data stream.

CounterProducer: A producer mainly used for debugging

purposes. It generates a stream of increasing Integers, with

configurable dimensionality, start, stop and step values.

CSVProducer: This producer reads comma separated values from

a CSV file and passes each line as one vector into the algorithm. It

can replay the file unboundedly if necessary.

RandomProducer: This producer uses the uncommons-maths2

Random Number Generators (RNGs) and probability distribution

wrappers to generate Vectors of random numbers that fit different

distributions. It has been ported to Java ME, but direct use on the

mobile device is discouraged, since number generation is

computationally expensive. All Producers offer a parameter to

configure the rate with which data is produced. This is basically

the time the Thread waits after one element was handed to the

algorithm. OMM Core provides resource monitor

implementations for the following platforms:

J2SEResourceMonitor for Windows XP/Vista, Windows CE

and a so-library for Linux.

S60ResourceMonitor: For use on Nokia S60 devices, a special

Resource Monitor has been provided.

SimulatedResourceMonitor: The SimulatedResourceMonitor

can be used for testing purposes or if no other resource monitor is

applicable. It uses random values for CPU and memory usage and

simulates a linear degradation of battery power.

Figure 4. Loading an XML Config File in the Mobile GUI

4. DEMONSTRATION
OMM is currently being applied in two areas. We are currently

working with the Centre for Accident Research and Road Safety –

Queensland (CARRS-Q) in applying OMM and our adaptive

UDM algorithms in the area of Intelligent Transportation Systems

[9]. The second application is in the area of cardiac monitoring.

This is a collaborative project involving cardiologists from the

Dept. of Cardiovascular Research at Monash University and the

Alfred Hospital in Melbourne, Australia and the Dept. of

Biomedical Engineering at RMIT University, Australia. The

system that is being built for monitoring patients involves using

bio-sensors (both commercial including the Alive Tech Heart

Monitor™ as well as those built in-house at the Dept. of Bio-

Medical Engineering, RMIT), obtaining other parameters such as

body-weight. This project relies on situation-aware fuzzy rules

along with change detection [4] to see monitor heart rate changes.

2 https://uncommons-maths.dev.java.net

Some custom visualisations built for this application are shown in

figure 5.

Figure 5 Heart Rate Analysis Using OMM

5. CONCLUSIONS
This paper has presented to the academic and practitioner data

mining community an important new resource – a mobile data

mining toolkit. We have outlined the theory of adaptation for

performing mobile data mining, presented in detail both the

conceptual framework and implementation of the Open Mobile

Miner. The OMM toolkit has been built such that it is easy to use,

extensible by the inclusion of new data sources, analyzers,

adaptation strategies, visualizers and customized for specific

applications. Furthermore, it can also be tailored to operate on a

range of mobile devices by merely including a Resource Monitor

for that particular OS.

6. REFERENCES
[1] Domingos, P. and Hulten, G. 2001. A General Method for Scaling

Up Machine Learning Algorithms and Its Applications to Clustering.

Proceedings of the 18th Int. Conf. on Machine Learning,.

[2] Gaber, M, M., Krishnaswamy, S., and Zaslavsky, A. 2005. On-board

Mining of Data Streams in Sensor Networks, A Book Chapter in

Advanced Methods of Knowledge Discovery from Complex Data,

(Eds.) S. Badhyopadhyay, U. Maulik, L. Holder and D. Cook,

Springer.

[3] Gillick B., Krishnaswamy S., Gaber M. M. and Zaslavsky A. 2006.

Visualisation of Fuzzy Classification of Data Elements in

Ubiquitous Data Stream Mining. IWUC 2006, 29-38.

[4] M. M.Gaber, P. S. Yu, “Detection and Classification of Changes in

Evolving Data Streams”, International Journal of Information

Technology & Decision Making, Vol. 5, No. 4, World Scientific

Publishing Company, 2006.

[5] Gaber, M, M., Zaslavsky, A. and Krishnaswamy, S. 2004. A Cost-

Efficient Model for Ubiquitous Data Stream Mining. Proceedings of

the 10TH Int. Conf. on Information Processing and Management of

Uncertainty in Knowledge-Based Systems, Perugia Italy, July 4-9.

[6] M. M. Gaber, A. Zaslavsky, S. Krishnaswamy, “Mining Data

Streams: A Review”, ACM SIGMOD Record, 34, 1 (June 2005).

[7] Shah R., Krishnaswamy S., and Gaber M. M. 2005. Resource-Aware

Very Fast K-Means for Ubiquitous Data Stream Mining.

Proceedings of 2nd Int. Wshop on KD in Data Streams,

ECML/PKDD 2005.

[8] Gaber M. M., Yu P.S., A Holistic Approach for Resource-aware

Adaptive Data Stream Mining, Journal of New Generation Comput.

25(1) pp. 95-115, 2006.
[9] Salim, F. D., Loke, S. W., Rakotonirainy, A., Srinivasan, B.,

Krishnaswamy, S., 2007, Collision pattern modeling and real-time

collision detection at road intersections, Proc of the 2007 IEEE

Intelligent Transportation Systems Conference, USA, pp. 16

