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ABSTRACT 

There is an emerging focus on real-time data stream analysis on 

mobile/ubiquitous devices. A wide range of data stream 

processing applications are targeted to run on mobile handheld 

devices with limited computational capabilities such as patient 

monitoring, driver monitoring, providing real-time analysis and 

visualization for emergency calls, optimization of logistics for 

courier pick-up and delivery etc. In this paper, we present the first 

generic toolkit for mobile data mining. The Open Mobile Miner 

(OMM) toolkit is easy to use, can be deployed on a range of 

mobile devices, is extensible and can be customized for 

application specific needs. A video of the system in operation for 

three different settings is available at: 

http://www.csse.monash.edu.au/~shonali/OMM/OMM-

VideoDemo.asf and can be viewed using Windows Media 

Player™.  
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1. INTRODUCTION 
The phenomenal growth of mobile devices coupled with their 

ever-increasing computational capacity presents an exciting new 

opportunity for real-time, intelligent data analysis in 

pervasive/ubiquitous environments. Ubiquitous Data Mining is 

the process of analyzing data streams using mobile and/or 

embedded devices (e.g. sensors) to support critical applications 

such as mobile healthcare, intelligent transportation systems, and 

emergency/disaster management like bushfires [2]. The typical 

constraints that have to be addressed in performing mobile data 

mining are: 

• Data Streams are generated and sent in real-time in a stream 

format [17] with little or no potential for persistent storage.  

• Resource Constraints include limited computational resources 

such as memory, processor speed, network bandwidth, battery 

power, and screen real-estate.  

• Temporal Constraints refer to real-time information and 

decision-making needs that, in turn, necessitate the analysis to be 

online, incremental, continuous. 

• Mobility of users and devices and the connectivity issues 

thereof. 

• Adaptation of the analysis process to varying/dynamically 

changing resource-levels and user needs.   

In the last few years, rapid strides have been made in accurately 

and efficiently mining high speed data streams in mobile devices 

such as Personal Digital Assistants (PDAs) and there is a growing 

focus on “in-network” processing using embedded devices such as 

sensor nodes. These techniques leverage the body of work that 

exists in mining data streams and aim to enable the operation of 

these algorithms in resource-constrained environments [2, 6].  

In this paper, we demonstrate the first mobile data mining toolkit: 

Open Mobile Miner (OMM). The primary motivations for the 

development of this toolkit are as follows: 

1. Enable easy deployment of mobile data mining applications 

on a range of mobile devices; 

2. Provide a platform for evaluation of new and existing mobile 

data stream mining techniques by the research community; 

3. Encapsulate extensibility of the toolkit by easy addition of 

new capabilities; 

4. Facilitation integration of new and existing data stream 

mining algorithms into the toolkit that may or may not have 

adaptation mechanisms incorporated; 

5. Interface with a range of input sources for data streams 

including Bluetooth-enabled sensors, previously recorded data, 

distributed data, and synthetic data (i.e. data stream generation for 

evaluation purposes); 

6. Allow flexible, application specific visualizations to be 

developed. 

Thus, the above considerations also form the requisite 

functionality that has driven the development of the OMM. 

The rest of the paper is organized as follows: Section 2 presents 

the conceptual ar 

chitecture of the Open Mobile Miner (OMM) with a discussion on 

the range of sensory data and synthetic data it can access, the 

algorithms that have been implemented, and the visualization 
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strategies. Section 3 presents the implementation and operation of 

the Open Mobile Miner. Section 4 presents the 

applications/demonstrations of the toolkit in the real-life case 

studies. Finally, the paper is concluded in Section 5. 

2. Conceptual Architecture of OMM 
Having presented an overview of the adaptation process and its 

functioning, we now discuss the conceptual architecture of the 

Open Mobile Miner, shown in Figure 1 below. 

 

Figure 1. The architecture of Open Mobile Miner (OMM) 

The key components of the architecture are as follows: 

Data Sources: The streams of data that need to be analyzed are 

generated at the data sources. Data sources include sensors which 

perform monitoring/measurements and transmit this data 

continuously such as environmental sensors that measure physical 

phenomena (e.g. temperature, pressure, soil-humidity), or bio-

sensors that measure physiological phenomena (e.g., heart-rate, 

ECG, movement levels etc.). These sensors can 

communicate/transmit their data via various communication 

channels (e.g. Berkely MOTES which can measure light, sound, 

and movement send data via 802.11 while Alive Tech ECG 

sensors transmit via Bluetooth). In addition to being able to 

receive live sensory data, a toolkit for Mobile Data Mining must 

also be able to support for testing/evaluation purposes previously 

recorded data that can be re-played as a stream (simulating 

sensory input) as well as be able to generate synthetic data streams 

according to various distributions required. Thus, the Open 

Mobile Miner can receive data from four different sources: 

• sensors that transmit either though Bluetooth or WiFi;  

• a data generator that can generate a specified number of 

streams each with a specified distribution (e.g. Binomial, 

Gaussian, Poisson, Uniform etc.), for the specified 

parameters; 

• read recorded in a local CSV file and re-play it as stream; 

• replay the contents of a CSV file as stream from a web 

source (i.e provide a basis for simulating a distributed/remote 

data stream). 

Data Stream Capture: This component receives data streams from 

the various sources and passes it either to the data stream mining 

algorithms or the adaptation engine depending on whether 

analysis process has been initialized to operate in adaptive manner 

or not. This component may perform some buffering of data so as 

to enable determining the data rate and preventing loss of data. 

Library of Data Stream Mining Algorithms: This is the analyzer 

library which provides a range of data stream mining analysis 

algorithms for mobile data mining. These algorithms perform 

varied types of analysis including: clustering, classification, 

frequent items, change detection and time series analysis. The 

algorithms can either operate by leveraging the principals of 

adaptation as discussed above or can operate without adaptation 

to cater for techniques that may not have been built with 

adaptation strategies. When an algorithm is operating in adaptive 

mode, it liases with the Adaptation Engine in processing the input 

streams. However, when the algorithms are functioning in non-

adaptive mode the incoming data streams need to be processed 

directly by the algorithms and the Adaptation Engine and 

Resource Monitors discussed below remain inert/inactive. Table 1 

shows the implemented algorithms in OMM. 

Table 1 OMM Algorithms 

Type Algorithm 

LightWeight Cluster (LWC) 

RA-Cluster 

Clustering 

RA-VFKM 

Classification LightWeight Classification (LWClass) 

Change detection Change-Detect 

Time series analysis RA-SAX 

Frequent pattern LightWeight Frequent items 

 

Adaptation Engine: This component manages the adaptation 

process in terms of obtaining information regarding the data 

stream characteristics (e.g. data rates) from the data sources as 

well as resource-levels (i.e. status of computational resources 

including battery levels) of the device and instrumenting the 

performance of the data stream mining algorithms according to 

this information. The Adaptation Engine has built-in strategies for 

adjusting dynamically the functioning of the data stream mining 

algorithms according to the various parameters by varying 

accuracy levels. This is achieved according to the principles 

outlined previously in Section 2 and includes dynamically 

performing knowledge integration, or reducing frequency at 

which the data stream is processed. For further details about the 

adaptation of the other algorithms implemented in OMM, readers 

are referred to [3,4,5,7,8] for a thorough discussion and 

formalization of the different strategies used in adjusting the 

algorithm parameters according to resource consumption. 

Resource Monitor: This component is responsible for assessing 

the levels of memory, processor and battery that is currently 

available on the device and in conjunction with the data stream 

rates constitute the principal basis for performing adaptation. This 

component primarily communicates the resource level information 

to the Adaptation Engine. This component is – unlike the others – 

operating system specific. Given the range of mobile devices that 

are being developed and their diverse operating systems (e.g. 

Nokia phones run the Symbian OS, Google GPhone runs the 

Android OS and the iPhone runs iPhone OS from Apple) – this 

component has to implement the OS specific functions to access 

low-level computational characteristics.  

Visualization Library: The visualization library allows the results 

of the analysis process to be shown using custom visualization 

techniques. Given that many applications will require custom 

visualizations, the framework needs to facilitate integration of 



application specific visualization. The visualization middleware 

performs the task of obtaining the output of the algorithms (e.g. 

cluster details) as they are available and also maintains 

information regarding visualization preferences (e.g. colors and 

shapes used to represent clusters). This information needs to be 

provided while initiating/configuring the analysis task. It is 

noteworthy that visualization of data stream mining on mobile 

devices is very much an emerging area of study. In this context, 

this component at this stage provides simple visualizations only. 

The challenges involve coping with incremental results, dynamic 

changes in the analysis results and coping with the limited screen 

real-estate that needs to manage screen-clutter as it evolves.  

3. IMPLEMENTATION AND USAGE OF 

THE OMM TOOLKIT 
The motivation for the development of the Open Mobile Miner 

(OMM) was to provide a generic tool to facilitate research on 

mobile data mining. The key underlying characteristics that have 

driven the implementation are: ease of use, flexibility in dealing 

with a range of mobile devices and varied data, customizability in 

terms of easily including application-specific visualizations/output 

mechanisms and extensibility in terms of being able to include 

new data sources such as new sensors, analysis algorithms, 

adaptation strategies and visualization techniques. The 

extensibility is driven by the engineering of the toolkit and 

provision of specific interfaces that allow new 

components/features to be easily added. The OMM toolkit is split 

into two parts: A Core that provides all the functionality needed to 

do adaptive mobile mining and a graphical user interface (GUI) 

that facilitates ease of use for the Core’s functionality through 

graphical controls. Figure 2 illustrates how OMM works when 

invoked from a GUI and how the core components interface.  

 

Figure 2. Implementation Structure of the OMM Framework 

For portability reasons, the Core had to be entirely implemented 

in Java ME. Hence it runs on all recent Java Runtime 

Environments (JREs), be it on a mobile handset, a PDA or a Java 

EE application server. Both parts, the GUI and the Core, are 

packaged separately. At present two different GUI 

implementations exist: one using Swing and Java SE and another 

one using LWUIT1 and Java ME. Both make most of the core’s 

functions accessible via graphical controls.  

The basic idea is a push-based pipeline for data to be analyzed. A 

Data Source acquires or generates data elements, pushes them one 

by one into an Algorithm Container which in turn may output 
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results to a Data Sink whenever necessary. This behavior is shown 

as the yellow arrows in Figure 7.  Within OMM’s core, the data 

just keeps flowing upstream through an algorithm. The data 

source acts as an adaptor for the system to the incoming data 

stream converting items into the necessary format. In turn, the 

data sink can be used to transform results into any desired format 

for visualization. OMM’s GUIs aim at providing a way of setting 

up the data path using graphical controls for convenience and 

experimental purposes. The core functionality is accessible from 

the GUI by selecting the components to connect. The user is 

required to enter the necessary parameters for the respective 

source, sink or algorithm and can eventually run the system. 

Furthermore, a tight integration with any software can be achieved 

by accessing the OMM Core functions directly via the API. This 

is done in a straightforward manner by instantiating component 

classes directly. Figure 3 shows a screenshot of the OMM 

Desktop GUI. To setup the system, one selects source, algorithm 

and sink, as shown in steps 1 to 3. After pressing the select 

button, a tree of available components is shown. After making a 

selection, a box containing the available parameters is displayed 

allowing adjustment of the component’s behavior as required.  

 

Figure 3. How to use the OMM Desktop GUI 

The OMM GUI will pick this up and display it as an option in the 

respective component’s tree listing. After the component choices 

are made, the system can be run by hitting the start button (shown 

as Step 4). The execution can be stopped by hitting the Stop 

button at any time.  Another option is to save the current selection 

and configurations from the widgets into an XML file. This file 

can then be loaded back into the GUI at another point of time or 

deployed on a mobile device and used to run OMM without 

having to configure it manually beforehand. 

The mobile GUI is similarly structured to the Desktop GUI. It can 

be configured to load configurations from an XML file previously 

generated by the Desktop GUI using the “Load” option on the 

welcome screen. If the configuration file is correct and complete 

the “Run” option will appear in the lower right corner. This is 

shown in Figure 4. Alternatively, it can be setup manually using 

the same steps shown in Figure 3. 

The main components of OMM Core are three main interfaces: 

IDataSource, IAlgorithmContainer and IDataSink. Furthermore, 

two utility interfaces provide support for resource awareness and 

runtime statistics: IResourceMonitor and IStatsConsumer. The 

currently available sources include: 
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AliveTechHM131BTProducer: This uses Bluetooth to interface 

with an AliveTech ECG Heart Monitor™ device and parses 

relevant data from the provided data stream. 

CounterProducer: A producer mainly used for debugging 

purposes. It generates a stream of increasing Integers, with 

configurable dimensionality, start, stop and step values. 

CSVProducer: This producer reads comma separated values from 

a CSV file and passes each line as one vector into the algorithm. It 

can replay the file unboundedly if necessary.  

RandomProducer: This producer uses the uncommons-maths2 

Random Number Generators (RNGs) and probability distribution 

wrappers to generate Vectors of random numbers that fit different 

distributions. It has been ported to Java ME, but direct use on the 

mobile device is discouraged, since number generation is 

computationally expensive. All Producers offer a parameter to 

configure the rate with which data is produced. This is basically 

the time the Thread waits after one element was handed to the 

algorithm. OMM Core provides resource monitor 

implementations for the following platforms: 

J2SEResourceMonitor for Windows XP/Vista, Windows CE 

and a so-library for Linux.  

S60ResourceMonitor: For use on Nokia S60 devices, a special 

Resource Monitor has been provided. 

SimulatedResourceMonitor: The SimulatedResourceMonitor 

can be used for testing purposes or if no other resource monitor is 

applicable. It uses random values for CPU and memory usage and 

simulates a linear degradation of battery power. 

 

 

Figure 4. Loading an XML Config File in the Mobile GUI 

4. DEMONSTRATION 
OMM is currently being applied in two areas. We are currently 

working with the Centre for Accident Research and Road Safety – 

Queensland (CARRS-Q) in applying OMM and our adaptive 

UDM algorithms in the area of Intelligent Transportation Systems 

[9]. The second application is in the area of cardiac monitoring. 

This is a collaborative project involving cardiologists from the 

Dept. of Cardiovascular Research at Monash University and the 

Alfred Hospital in Melbourne, Australia and the Dept. of 

Biomedical Engineering at RMIT University, Australia. The 

system that is being built for monitoring patients involves using 

bio-sensors (both commercial including the Alive Tech Heart 

Monitor™ as well as those built in-house at the Dept. of Bio-

Medical Engineering, RMIT), obtaining other parameters such as 

body-weight. This project relies on situation-aware fuzzy rules 

along with change detection [4] to see monitor heart rate changes. 
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Some custom visualisations built for this application are shown in 

figure 5. 

      

Figure 5 Heart Rate Analysis Using OMM 

5. CONCLUSIONS 
This paper has presented to the academic and practitioner data 

mining community an important new resource – a mobile data 

mining toolkit. We have outlined the theory of adaptation for 

performing mobile data mining, presented in detail both the 

conceptual framework and implementation of the Open Mobile 

Miner. The OMM toolkit has been built such that it is easy to use, 

extensible by the inclusion of new data sources, analyzers, 

adaptation strategies, visualizers and customized for specific 

applications. Furthermore, it can also be tailored to operate on a 

range of mobile devices by merely including a Resource Monitor 

for that particular OS.  
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