4,066 research outputs found

    Patrolling on Dynamic Ring Networks

    Get PDF
    We study the problem of patrolling the nodes of a network collaboratively by a team of mobile agents, such that each node of the network is visited by at least one agent once in every I(n)I(n) time units, with the objective of minimizing the idle time I(n)I(n). While patrolling has been studied previously for static networks, we investigate the problem on dynamic networks with a fixed set of nodes, but dynamic edges. In particular, we consider 1-interval-connected ring networks and provide various patrolling algorithms for such networks, for k=2k=2 or k>2k>2 agents. We also show almost matching lower bounds that hold even for the best starting configurations. Thus, our algorithms achieve close to optimal idle time. Further, we show a clear separation in terms of idle time, for agents that have prior knowledge of the dynamic networks compared to agents that do not have such knowledge. This paper provides the first known results for collaborative patrolling on dynamic graphs

    3D multi-robot patrolling with a two-level coordination strategy

    Get PDF
    Teams of UGVs patrolling harsh and complex 3D environments can experience interference and spatial conflicts with one another. Neglecting the occurrence of these events crucially hinders both soundness and reliability of a patrolling process. This work presents a distributed multi-robot patrolling technique, which uses a two-level coordination strategy to minimize and explicitly manage the occurrence of conflicts and interference. The first level guides the agents to single out exclusive target nodes on a topological map. This target selection relies on a shared idleness representation and a coordination mechanism preventing topological conflicts. The second level hosts coordination strategies based on a metric representation of space and is supported by a 3D SLAM system. Here, each robot path planner negotiates spatial conflicts by applying a multi-robot traversability function. Continuous interactions between these two levels ensure coordination and conflicts resolution. Both simulations and real-world experiments are presented to validate the performances of the proposed patrolling strategy in 3D environments. Results show this is a promising solution for managing spatial conflicts and preventing deadlocks

    Second-Order Agents on Ring Digraphs

    Full text link
    The paper addresses the problem of consensus seeking among second-order linear agents interconnected in a specific ring topology. Unlike the existing results in the field dealing with one-directional digraphs arising in various cyclic pursuit algorithms or two-directional graphs, we focus on the case where some arcs in a two-directional ring graph are dropped in a regular fashion. The derived condition for achieving consensus turns out to be independent of the number of agents in a network.Comment: 6 pages, 10 figure
    • …
    corecore