70,855 research outputs found

    Privacy and Accountability in Black-Box Medicine

    Get PDF
    Black-box medicine—the use of big data and sophisticated machine learning techniques for health-care applications—could be the future of personalized medicine. Black-box medicine promises to make it easier to diagnose rare diseases and conditions, identify the most promising treatments, and allocate scarce resources among different patients. But to succeed, it must overcome two separate, but related, problems: patient privacy and algorithmic accountability. Privacy is a problem because researchers need access to huge amounts of patient health information to generate useful medical predictions. And accountability is a problem because black-box algorithms must be verified by outsiders to ensure they are accurate and unbiased, but this means giving outsiders access to this health information. This article examines the tension between the twin goals of privacy and accountability and develops a framework for balancing that tension. It proposes three pillars for an effective system of privacy-preserving accountability: substantive limitations on the collection, use, and disclosure of patient information; independent gatekeepers regulating information sharing between those developing and verifying black-box algorithms; and information-security requirements to prevent unintentional disclosures of patient information. The article examines and draws on a similar debate in the field of clinical trials, where disclosing information from past trials can lead to new treatments but also threatens patient privacy

    Supporting security-oriented, inter-disciplinary research: crossing the social, clinical and geospatial domains

    Get PDF
    How many people have had a chronic disease for longer than 5-years in Scotland? How has this impacted upon their choices of employment? Are there any geographical clusters in Scotland where a high-incidence of patients with such long-term illness can be found? How does the life expectancy of such individuals compare with the national averages? Such questions are important to understand the health of nations and the best ways in which health care should be delivered and measured for their impact and success. In tackling such research questions, e-Infrastructures need to provide tailored, secure access to an extensible range of distributed resources including primary and secondary e-Health clinical data; social science data, and geospatial data sets amongst numerous others. In this paper we describe the security models underlying these e-Infrastructures and demonstrate their implementation in supporting secure, federated access to a variety of distributed and heterogeneous data sets exploiting the results of a variety of projects at the National e-Science Centre (NeSC) at the University of Glasgow

    Addendum to Informatics for Health 2017: Advancing both science and practice

    Get PDF
    This article presents presentation and poster abstracts that were mistakenly omitted from the original publication

    Synthetic Observational Health Data with GANs: from slow adoption to a boom in medical research and ultimately digital twins?

    Full text link
    After being collected for patient care, Observational Health Data (OHD) can further benefit patient well-being by sustaining the development of health informatics and medical research. Vast potential is unexploited because of the fiercely private nature of patient-related data and regulations to protect it. Generative Adversarial Networks (GANs) have recently emerged as a groundbreaking way to learn generative models that produce realistic synthetic data. They have revolutionized practices in multiple domains such as self-driving cars, fraud detection, digital twin simulations in industrial sectors, and medical imaging. The digital twin concept could readily apply to modelling and quantifying disease progression. In addition, GANs posses many capabilities relevant to common problems in healthcare: lack of data, class imbalance, rare diseases, and preserving privacy. Unlocking open access to privacy-preserving OHD could be transformative for scientific research. In the midst of COVID-19, the healthcare system is facing unprecedented challenges, many of which of are data related for the reasons stated above. Considering these facts, publications concerning GAN applied to OHD seemed to be severely lacking. To uncover the reasons for this slow adoption, we broadly reviewed the published literature on the subject. Our findings show that the properties of OHD were initially challenging for the existing GAN algorithms (unlike medical imaging, for which state-of-the-art model were directly transferable) and the evaluation synthetic data lacked clear metrics. We find more publications on the subject than expected, starting slowly in 2017, and since then at an increasing rate. The difficulties of OHD remain, and we discuss issues relating to evaluation, consistency, benchmarking, data modelling, and reproducibility.Comment: 31 pages (10 in previous version), not including references and glossary, 51 in total. Inclusion of a large number of recent publications and expansion of the discussion accordingl

    Joining up health and bioinformatics: e-science meets e-health

    Get PDF
    CLEF (Co-operative Clinical e-Science Framework) is an MRC sponsored project in the e-Science programme that aims to establish methodologies and a technical infrastructure forthe next generation of integrated clinical and bioscience research. It is developing methodsfor managing and using pseudonymised repositories of the long-term patient histories whichcan be linked to genetic, genomic information or used to support patient care. CLEF concentrateson removing key barriers to managing such repositories ? ethical issues, informationcapture, integration of disparate sources into coherent ?chronicles? of events, userorientedmechanisms for querying and displaying the information, and compiling the requiredknowledge resources. This paper describes the overall information flow and technicalapproach designed to meet these aims within a Grid framework
    • …
    corecore