6 research outputs found

    Pathological element-based active device models and their application to symbolic analysis

    Get PDF
    This paper proposes new pathological element-based active device models which can be used in analysis tasks of linear(ized) analog circuits. Nullators and norators along with the voltage mirror-current mirror (VM-CM) pair (collectively known as pathological elements) are used to model the behavior of active devices in voltage-, current-, and mixed-mode, also considering parasitic elements. Since analog circuits are transformed to nullor-based equivalent circuits or VM-CM pairs or as a combination of both, standard nodal analysis can be used to formulate the admittance matrix. We present a formulation method in order to build the nodal admittance (NA) matrix of nullor-equivalent circuits, where the order of the matrix is given by the number of nodes minus the number of nullors. Since pathological elements are used to model the behavior of active devices, we introduce a more efficient formulation method in order to compute small-signal characteristics of pathological element-based equivalent circuits, where the order of the NA matrix is given by the number of nodes minus the number of pathological elements. Examples are discussed in order to illustrate the potential of the proposed pathological element-based active device models and the new formulation method in performing symbolic analysis of analog circuits. The improved formulation method is compared with traditional formulation methods, showing that the NA matrix is more compact and the generation of nonzero coefficients is reduced. As a consequence, the proposed formulation method is the most efficient one reported so far, since the CPU time and memory consumption is reduced when recursive determinant-expansion techniques are used to solve the NA matrix.Promep-Mexico UATLX-PTC-088Junta de Andaluc铆a TIC-2532Ministerio de Educaci贸n y Ciencia TEC2007-67247, TEC2010-14825UC-MEXUS-CONACyT CN-09-31

    CDBA Based Universal Inverse Filter

    Get PDF

    Pathological element-based active device models and their application to symbolic analysis

    Get PDF
    El pdf del art铆culo es la versi贸n post-print.This paper proposes new pathological element-based active device models which can be used in analysis tasks of linear(ized) analog circuits. Nullators and norators along with the voltage mirror-current mirror (VM-CM) pair (collectively known as pathological elements) are used to model the behavior of active devices in voltage-, current-, and mixed-mode, also considering parasitic elements. Since analog circuits are transformed to nullor-based equivalent circuits or VM-CM pairs or as a combination of both, standard nodal analysis can be used to formulate the admittance matrix. We present a formulation method in order to build the nodal admittance (NA) matrix of nullor-equivalent circuits, where the order of the matrix is given by the number of nodes minus the number of nullors. Since pathological elements are used to model the behavior of active devices, we introduce a more efficient formulation method in order to compute small-signal characteristics of pathological element-based equivalent circuits, where the order of the NA matrix is given by the number of nodes minus the number of pathological elements. Examples are discussed in order to illustrate the potential of the proposed pathological element-based active device models and the new formulation method in performing symbolic analysis of analog circuits. The improved formulation method is compared with traditional formulation methods, showing that the NA matrix is more compact and the generation of nonzero coefficients is reduced. As a consequence, the proposed formulation method is the most efficient one reported so far, since the CPU time and memory consumption is reduced when recursive determinant-expansion techniques are used to solve the NA matrix. 漏 2006 IEEE.This work was supported in part by Promep-Mexico under grant UATLX-PTC-088; in part by Consejeria de Innovacion, Ciencia y Empresa, Junta de Andalucia-Spain under grant TIC-2532; in part by the projects TEC2007-67247 and TEC2010-14825, both funded by the Spanish Ministry of Education and Science with support from ERDF; in part by JAE-Doc program of CSIC cofunded by FSE-Spain; and in part by UC-MEXUS-CONACyT under grant CN-09-310.Peer Reviewe
    corecore