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A new graph-based symbolic technique (GBST) for deriving exact analytical expressions like the transfer function𝐻(𝑠) of an analog
integrated circuit (IC), is introduced herein.Thederived𝐻(𝑠) of a given analog IC is used to compute the frequency response bounds
(maximumandminimum) associated to themagnitude and phase of𝐻(𝑠), subject to some ranges of process variational parameters,
and by performing nonlinear constrained optimization. Our simulations demonstrate the usefulness of the new GBST for deriving
the exact symbolic expression for𝐻(𝑠), and the last section highlights the good agreement between the frequency response bounds
computed by our variational analysis approach versus traditionalMonte Carlo simulations. As a conclusion, performing variational
analysis using our proposed GBST for computing the frequency response bounds of analog ICs, shows a gain in computing time of
100x for a differential circuit topology and 50x for a 3-stage amplifier, compared to traditional Monte Carlo simulations.

1. Introduction

With the downscaling of the integrated circuit (IC) tech-
nology, nanometer circuit designs become more and more
sensitive to process variations [1, 2], which are produced
by fluctuations at the moment of manufacturing, and have
been continuously increasing in relative magnitude as IC
technology continues to scale to 45 nm and below. On the
one hand, IC designers usually perform repeated Monte
Carlo (MC) simulations to predict variations, leading to
an expensive computational cost, while the main goal is
computing the bounds of a given performance by varying the
value of some parameters under certain percentage. On the
other hand, tomitigate this drawback onperforming repeated
MC simulations, performance bound methods emerged as
attractive techniques for variational analysis of analog ICs
under parameter variations [3–7]. However, although those
bound methods are quite efficient computing the lower and
upper bounds of the magnitude and phase of a transfer
function 𝐻(𝑠), systematic methods have not been proposed
yet to obtain the variational symbolic expression for 𝐻(𝑠).
Henceforth, this paper introduces a performance bound

technique that derives the exact analytical 𝐻(𝑠) of a linear
(linearized) analog IC, as CMOS amplifiers, by applying
a new graph-based symbolic technique (GBST), which is
described in the next section. Afterwards, the frequency
response bounds, for the magnitude and phase for 𝐻(𝑠) of
three amplifiers, are obtained by applying nonlinear con-
strained optimization.

2. Graph-Based Symbolic Technique

Symbolic analysis of analog circuits has been demonstrated
to be useful for deriving analytical expressions such as 𝐻(𝑠)

[8–14]. An important contribution on the development of
symbolic analysis techniques was the introduction of deter-
minant decision diagrams (DDDs) [8, 9], whose advantage
is computing symbolic expressions sharing many subexpres-
sions [10, 11]. However, it was not realized for deriving exact
analytical expressions for CMOS amplifiers [15]. That way,
we introduce herein a new graph-based symbolic technique
(GBST) for deriving exact symbolic expressions of analog
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Figure 1: Graph representation of (1).

ICs. Our proposed GBST exploits DDD concepts and has the
advantage of being compact and unique as well.

2.1. Simple Case: Symbolic Determinant without Node Reuse.
Let us consider the determinant given by (1) [9], of size 𝑛 ×

𝑛. By applying GBST, the graph representation is built in a
depth-first search (DFS) fashion, while one expects having
paths of 𝑛 + 1 levels. Every element in the graph corresponds
to a nonzero entry in 𝑀. In this manner, one obtains the
graph shown in Figure 1, where applying the rule of signs
from Cramer’s rule (see (2)) does the assignation of signs to
each node. A path is eliminated if a zero entry in the nodal
admittance matrix is found. Consider

|𝑀| =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎 𝑏 0 0

𝑐 𝑑 𝑒 0

0 𝑓 𝑔 ℎ

0 0 𝑖 𝑗

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 𝑎𝑑𝑔𝑗 − 𝑎𝑑ℎ𝑖 − 𝑎𝑒𝑓𝑗 − 𝑏𝑐𝑔𝑗 + 𝑏𝑐ℎ𝑖, (1)

sign = (−1)
row+col

. (2)

A tree in which arithmetic operations are encoded in
the depth of the tree nodes represents the graph. That
is, different depth implies multiplication and equal depth
implies addition. This leads us to derive the expression:

|𝑀| = 𝑎 [𝑑 (𝑔𝑗 − ℎ𝑖) + 𝑒 (−𝑓𝑗)] + 𝑏 [𝑐 (−𝑔𝑗 + ℎ𝑖)] . (3)

2.2. Advanced Case: Symbolic Determinant with Node Reuse.
In (3), the determinant is expressed as a sequence of products
[8, 9], because the graph shown in Figure 1 does not reuse
node information, while having many repetitive terms that
correspond to the repeated minors 𝑔𝑗 and ℎ𝑖. For this case,
the smallest the matrix minor, the highest the repetition
rate. Therefore, our main idea is reusing the information of
those repeated nodes. For example: 𝑔𝑗, ℎ𝑖, and 𝑓𝑗 are product
terms of 2 × 2 minors in (1). In this manner, there are five
two-nodded subgraphs with vertex sets 𝑉

1
= {𝑔, 𝑗}, 𝑉

2
=

{ℎ, 𝑖}, 𝑉
3
= {𝑓, 𝑗},𝑉

4
= {𝑔, 𝑗}, and 𝑉

5
= {ℎ, 𝑖}. As one sees,

edges 𝐸
1

= {𝑔, 𝑗} and 𝐸
4

= {𝑔, 𝑗} are equivalents, so that
subgraphs 𝐺

1
= {𝑉
1
, 𝐸
1
} and 𝐺

4
= {𝑉
4
, 𝐸
4
} carry the same

information. In this case, node reuse is possible, and one just
needs to identify node ancestors; for example, the subgraphs
𝐺
1
= 𝐺
4
and 𝐺

3
= {𝑉
3
, 𝐸
3
} have the node ancestors: 𝑔 for

𝐺
1
= 𝐺
4
and 𝑓 for 𝐺

3
. Recall that each node is linked to a

nonzero matrix entry; that is, 𝐴 row,col ̸= 0. Node 𝑓 is in turn a
representation of 𝐴

3,2
and 𝑔 of 𝐴

3,3
.

Extending node reuse in thewhole graph, the first obvious
consequence is that there are no repeated nodes; in other
words, for a matrix 𝐴 with 𝑛𝑧 nonzero entries, there are 𝑛𝑧

nodes.

2.3. The Advanced Case in Detail. To derive the symbolic
expressionwith node reuse, three different data structures are
required.The first andmost obvious is the node structure that
contains the following:

(i) node name: a unique name for each node, assigned as
an index number;

(ii) terms: an array containing the index and sign of the
element;

(iii) column: the column of the nonzero entry where the
node belongs to;

(iv) descendants: an array of node pointers linking to
the descendants of the current node in the graph
structure.

The second data structure is a graph type with the fields:

(i) graph name: a unique name for the current graph. It
is possible to havemany different graphs; for example,
to compute the transfer function 𝐻(𝑠), two graphs
are required: one for deriving the numerator and the
other for the denominator [9];

(ii) matrix size: the size of the square matrix;
(iii) root node: it is a trivial node with term value equal

to 1 (see Figure 1) and row and column equal to
zero. When multiple graphs are constructed (during
factorization), the root node can be any of the 𝑛𝑧

nodes;
(iv) visited columns: when traversing a graph to represent

the determinant, the column of a visited node is
appended to this array.

The third structure stores matrix elements and the inde-
pendent vector.

From these structures, 𝑛𝑧 + 1 nodes are created. The row
and column fields are used to evaluate the sign by (2) as well
as to determine which nodes are to be skipped. The graph
is generated starting with a trivial node named 0 with term
value of 1; then the multiplication of terms is codified as the
depth in the graph, and nodes are linked accordingly. The
algorithm to build the graph structure for the representation
of |𝐴| is sketched by Algorithm 1. Algorithm 2 computes
the expression for the determinant. That way, the graph
associated to the determinant in (1) is shown in Figure 2.

2.4. Symbol Factorization. Factorization takes place by exe-
cuting Algorithm 3. The result is the expression as a polyno-
mial that is represented by an array of sum of products with
one entry for each power of symbol 𝑤.
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𝑚 ← number of Columns of 𝐴
𝑛 ← number of Rows of 𝐴
𝐷 ← set of descendants of 𝐴𝑛𝑐𝑒𝑠𝑡𝑜𝑟

Ensure:𝑚 > 0 ∧ 𝑛 = 𝑚

function buildGraph(𝐴, Ancestor)
if 𝑚 > 1 then

𝑝𝑟𝑢𝑛𝑒 = 1

for 𝑖 = 1 to𝑚 do
for all Columns 𝑗 that 𝐴

𝑖,𝑗
̸= 0 do

if BUILDGRAPH(𝐶
𝑖𝑗
, 𝐴
𝑖,𝑗
) ̸= 0 then

𝐷 = 𝐷 ∪ 𝐴
𝑖,𝑗

𝑝𝑟𝑢𝑛𝑒 = 0

else
if 𝐴
𝑖,𝑗

̸= 0 then
𝑝𝑟𝑢𝑛𝑒 = 0

return 𝑝𝑟𝑢𝑛𝑒

Algorithm 1: Build graph (𝐴(𝑖, 𝑗), Ancestor).

(1) Read the graph in a DFS fashion:
(a) Keep track of which columns have been visited
(b) Skip nodes from columns already visited

(2) The symbolic expression is the sum of products according to the visited descendants

Algorithm 2: Symbolic determinant from a graph.

(1) Expand the nodes in the graph containing the symbol 𝑤.
(2) Read the graph in a DFS fashion and preserve only those routes from

root to bottom with at least one occurrence of symbol 𝑤.
(3) The number of occurrences of the symbol is the power of 𝑤 for a given route.
(4) Express each route as a sum of products.
(5) The coefficients are the summation of all appended routes for each power of 𝑤.

Algorithm 3: Graph to polynomial form.
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Figure 2: Determinant graph with node reuse.

Let us considermatrix𝑀 in (4). To derive the polynomial
form as powers of 𝑤, the associated graph is shown in
Figure 3, and the polynomial is given by (5). Consider

𝑀 =

[
[
[

[

𝑎 + 𝑤 𝑏 0 0

𝑐 𝑑 𝑒 0

0 𝑓 𝑔 ℎ + 𝑤

0 0 𝑖 𝑗

]
]
]

]

, (4)

𝑤
0

= 𝑎𝑑𝑔𝑗 − 𝑎𝑑ℎ𝑖 − 𝑎𝑒𝑓𝑗 − 𝑏𝑐𝑔𝑗 + 𝑏𝑐ℎ𝑖,

𝑤
1

= 𝑎𝑑𝑖 + 𝑑𝑔𝑗 − 𝑑ℎ𝑖 − 𝑒𝑓𝑗 − 𝑏𝑐𝑖,

𝑤
2

= 𝑑𝑖.

(5)

2.5. Applying the Graph-Based Symbolic Technique. Our pro-
posed GBST starts off with an SPICE-like netlist as input.
The allowed circuit elements are R, C, L, V, I, E, G, and



4 The Scientific World Journal

ed

g

c

f
h

i

1

b

w

w

a

j

Figure 3: Expanded graph.

M, being resistor, capacitor, inductor, independent voltage
source, independent current source, voltage-controlled volt-
age source, voltage-controlled current source, and MOSFET.
When formulating the equations, the symbol name is taken
exactly as specified in the netlist, for example, R name,
C name, M name, and so forth. Their corresponding small-
signal model based on controlled sources substitutes all
active elements. In turn, controlled sources are modeled
with combinations of norator and nullator in order to make
use of the extensive studies on analysis of Nullor based
circuits given in [9, 11, 14, 15]. The guidelines for obtaining
the nodal admittance matrix by applying nodal analysis
are summarized in [11]. Afterwards, applying our proposed
graph-based symbolic technique derives the solution. In this
manner, the computing information on the solutions for the
common source amplifier, differential pair amplifier, three
stages uncompensated OTA [15], recycled folded cascode
OTA [16], and 741 opamp is listed in Table 1. Using the values
computed byHSPICE, in order to verify correctness, does the
numerical evaluation of the derived symbolic expression.

To demonstrate the suitability of the new graph-based
symbolic technique (GBST), we performed a comparison
with HSPICE and the DDD symbolic tool [3], as shown in
Figure 4. As one sees, GBST is in good agreement with the
numerical response computed by SPICE, while the DDD
technique has an error around 10%.Thatway, GBST is applied
herein to derive the exact analytical expression𝐻(𝑠) ofCMOS
amplifiers. The derived 𝐻(𝑠) is used to perform variational
analysis, in order to compute the frequency response bounds
(maximum andminimum) of the magnitude and phase from
𝐻(𝑠), subject to some ranges of process variational parame-
ters by performing nonlinear constrained optimization.

3. Constrained Optimization

To highlight the appropriateness of applying the new GBST
in variational analysis for finding the lower and upper perfor-
mance bounds for the magnitude and phase of an amplifier,
we formulate a nonlinear constrained optimization problem.
Thatway, we start from a transfer function, whose coefficients
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Figure 4: 𝐻(𝑠) comparison among DDD [3] (dashed), HSPICE
(dots), and our graph-based symbolic technique (solid) for the
differential pair topology.

(e.g., 𝑎
𝑖
(𝑝
1
, . . . , 𝑝

𝑚
) and 𝑏

𝑗
(𝑝
1
, . . . , 𝑝

𝑛
)) are obtained by our

proposed graph-based symbolic technique in an s-expanded
form; that is,

𝐻(𝜔) =
∑
𝑚

𝑖=0
𝑎
𝑖
(𝑝
1
, . . . , 𝑝

𝑚
) 𝑠
𝑖

∑
𝑛

𝑗=0
𝑏
𝑗
(𝑝
1
, . . . , 𝑝

𝑛
) 𝑠𝑗

. (6)

Notice that 𝐻(𝑠, 𝑝
1
, . . . , 𝑝

𝑚
) is a nonlinear function of

𝑝
1
, . . . , 𝑝

𝑚
. Furthermore, each parameter 𝑝

𝑖
is a random

variable with a variational range.
For 𝑠 = 𝑗𝜔, the nominal transfer function becomes

𝐻(𝑠) = 𝐻 (𝑗𝜔) = 𝐻 (𝑗𝜔) 𝑒
𝑗𝜃(𝜔)

. (7)

From it, one can obtain a variational transfer func-
tion with bounded magnitude and phase regions, which is
described by [3]

𝐻
𝑙
(𝜔) ≤ 𝐻 (𝜔) ≤ 𝐻

𝑢
(𝜔) ,

𝜃
𝑙
(𝜔) ≤ 𝜃 (𝜔) ≤ 𝜃

𝑢
(𝜔) ,

(8)

where 𝐻
𝑙
(𝜔) and 𝐻

𝑢
(𝜔) are the lower and upper bounds of

themagnitude, respectively, and 𝜃
𝑙
(𝜔) and 𝜃

𝑢
(𝜔) are the lower

and upper bounds of the phase. The evaluation of (7) gives a
complex valued result, where the magnitude𝐻(𝜔) = |𝐻(𝑗𝜔)|

and the phase angle 𝜃(𝜔) = ∠𝐻(𝑗𝜔) are real values. The goal
is to find the bounds of the magnitude and phase for 𝐻(𝑗𝜔),
such that one can obtain (8). Henceforth, in the presence of
process variations, the signal is perturbed from its nominal
behavior, and it is usually bounded between itsminimumand
maximum limits, as sketched in Figure 5.
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Table 1: Symbolic formulation and numerical evaluation of D(s), N(s), and H(s) by applying the new GBST.

Circuit features Computer time (seconds)
Circuit Elements Nodes Equations D(s) N(s) H(s)
Differential pair 35 26 1.1235 0.122 0.1464 1.4895
RFC OTA [16] 106 56 1.6603 0.201 0.1869 2.2633
LV Amp [15] 33 18 2.35 0.058 0.0464 2.4544
Common source 8 6 0.8581 0.041 0.0205 0.9811
741 112 77 0.5123 1.37 0.822 2.7043

Nominal design

With process variation

H(j𝜔) = H(𝜔)e
j𝜃(𝜔)

H(𝜔) ∈ [Hl(𝜔), Hu(𝜔)]

𝜃(𝜔) ∈ [𝜃l(𝜔), 𝜃u(𝜔)]

Figure 5: Transfer function description including parameter varia-
tions.

L

C
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�out�in

+

−

+

−

Figure 6: RLC circuit.

For instance, using the lower bound of the magnitude
response |𝐻(𝑗𝜔)| at frequency 𝜔, then the objective function
is minimized and described by

minimize 󵄨󵄨󵄨󵄨𝐻 (𝑗𝜔, 𝑥)
󵄨󵄨󵄨󵄨

subject to 𝑥
𝑙
≤ 𝑥 ≤ 𝑥

𝑢
.

(9)

In (9) 𝑥 = [𝑝
1
, . . . , 𝑝

𝑚
] represents the circuit parame-

ters variable vector, subject to the optimization constraints
[𝑥
𝑙
, 𝑥
𝑢
]. In ICdesign foundries and cell library vendors supply

the constraints. Algorithm 4 summarizes this process.

3.1. A Simple Example in MATLAB. Let us consider Figure 6.
In the frequency domain, capacitors and inductors are ana-
lyzed as complex impedances, and then the transfer function
is given by

𝐻(𝑗𝜔) =
𝑉out
𝑉in

=
1/𝑗𝜔𝐶

𝑅 + 𝑗𝜔𝐿 + (1/𝑗𝜔𝐶)
. (10)

Assuming that 𝐶 and 𝐿 have variations of 20% from
their nominal values 𝐶 = 1 𝜇𝐹 and 𝐿 = 1 𝜇𝐻, then 𝐶 ∈

[0.8, 1.2] 𝜇𝐹 and 𝐿 ∈ [0.8, 1.2] 𝜇𝐻. For this example, the
iterative method called active set was used. As a result, three
snapshots at different frequency points are shown in Figure 7.

3.2. Line Search Algorithm. A line search algorithm searches
for a decrease in 𝑓 in a descent direction using the Armijo
rule [17, 18] for stepsize control. The steplength is chosen to
minimize 𝑓 along the ray {𝑥 + 𝜆Δ𝑥 | 𝜆 ≥ 0}, where Δ𝑥 is
called the descent direction and the point 𝑥 + 𝜆Δ𝑥 is called
𝑥
+
, or even to just reduce 𝑓 “enough” [19]. That way, given

the current point 𝑥
𝑐
and descent direction Δ𝑥, it looks for 𝜆,

such that

𝑓 (𝑥
𝑐
+ 𝜆Δ𝑥) ≤ 𝑓 (𝑥

𝑐
) . (11)

However, if the decreasing achieved by this inequality for
some𝜆 is too small, it is not possible to guarantee convergence
to a local minimum. So in order to avoid this issue, 𝜆 must
satisfy Armijo rule (sufficient decrease) given by

𝑓 (𝑥
𝑐
+ 𝜆Δ𝑥) ≤ 𝑓 (𝑥

𝑐
) + 𝜆𝛾∇𝑓(𝑥

𝑐
)
𝑇

Δ𝑥, (12)

where 𝛾 ∈ (0, 1) [20]. This is shown in Figure 8.
In Figure 8, the interval where (12) is accomplished is

[0, 𝜆max]. We can rewrite this by (13) where the Armijo
condition [18] to accept a trial point𝑥

+
is given by (14), and𝑀

is an integer greater than zero. If 𝑥
+
is rejected, the steplength

is redefined by (15), where 𝜆∗ minimizes a quadratic model.
This strategy of repeatedly testing sufficient decrease and
reducing the stepsize if the test fails is called backtracking.The
projected gradient (PGRAD) and spectral projected gradient
(SPG) methods used herein for variational analysis of CMOS
amplifiers are based on backtracking line search. Consider

𝑓 (𝑥
+
) ≤ 𝑓 (𝑥

𝑐
) + 𝛾∇𝑓(𝑥

𝑐
)
𝑇

(𝑥
+
− 𝑥
𝑐
) , (13)

𝑓 (𝑥
+
) ≤ max
0≤𝑗≤min{𝑐,𝑀−1}

𝑓 (𝑥
𝑐−𝑗

) + 𝛾∇𝑓(𝑥
𝑐
)
𝑇

(𝑥
+
− 𝑥
𝑐
) , (14)

𝜆 = max {𝜎
1
𝜆,min {𝜎

2
𝜆, 𝜆
∗

}} . (15)

3.3. Projected Gradient Method. The PGRAD method is
described in [21]. It is the natural extension of the steepest
descent algorithm [20], used in unconstrained optimization
to bound constrained problems.

Given a current iterate 𝑥
𝑐
, the new iterate is

𝑥
+
= 𝑃 (𝑥

𝑐
− 𝜆∇𝑓 (𝑥

𝑐
)) , (16)
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(1) Parse circuit netlist.
(2) Set bounds on parameters affected by process variations.
(3) Derive the symbolic expression, for example, the transfer function.
(4) for All frequencies 𝜔

𝑖
do

(5) Constrained optimization to find magnitude bounds on 𝜔
𝑖
.

Algorithm 4: Calculation of frequency response bounds using our graph-based symbolic technique from Section 2 and constrained
optimization.

(1) if 󵄩󵄩󵄩󵄩𝑃 (𝑥
𝑐
− ∇𝑓 (𝑥

𝑐
)) − 𝑥

𝑐

󵄩󵄩󵄩󵄩 = 0, that is, 𝑥
𝑐
is stationary then

(2) Stop
(3) Compute 𝑑

𝑐
= 𝑃 (𝑥

𝑐
− 𝛼
𝑐
∇𝑓 (𝑥

𝑐
)) − 𝑥

𝑐

(4) Set 𝜆 ← 1

(5) Set 𝑥
+
= 𝑥
+
+ 𝜆𝑥
𝑐

(6) if 𝑓(𝑥
+
) ≤ 𝑓(𝑥

𝑐
) + 𝛾 ⟨𝑥

+
− 𝑥
𝑐
, ∇𝑓(𝑥

𝑐
)⟩ then

(7) 𝜆
𝑐
= 𝜆, 𝑥

𝑐+1
= 𝑥
+
, 𝑠
𝑘
= 𝑥
𝑐+1

− 𝑥
𝑐
, 𝑦
𝑘
= ∇𝑓(𝑥

𝑐+1
)

(8) Go to Step 12
(9) else
(10) Define 𝜆new ∈ [𝜎

1
𝜆, 𝜎
2
𝜆] and 𝜆 ← 𝜆new

(11) Go to Step 5
(12) Compute the trial step length 𝛼

𝑐+1
= 𝛼
𝑐

󵄩󵄩󵄩󵄩𝑓(𝑥𝑐)
󵄩󵄩󵄩󵄩

2

/
󵄩󵄩󵄩󵄩𝑓(𝑥𝑐+1)

󵄩󵄩󵄩󵄩

2

Algorithm 5: Projected gradient method.

where the gradient ∇𝑓(𝑥) is defined by

∇𝑓 (𝑥) = (
𝜕𝑓 (𝑥)

𝜕𝑥
1

, . . . ,
𝜕𝑓 (𝑥)

𝜕𝑥
𝑛

)

for 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
) .

(17)

In (17), 𝜆 is a steplength parameter given by the Armijo
rule, where one searches on a ray from 𝑥

𝑐
in a direction

where 𝑓 is locally decreasing [18]. Besides, in order to
implement a line search scheme, one must specify what
sufficient decrease means. Therefore, for bound constrained
problems the sufficient decrease condition for line search is
defined by

𝑓 (𝑥 (𝜆)) − 𝑓 (𝑥) ≤
−𝛼

𝜆
‖𝑥 − 𝑥 (𝜆)‖

2

, (18)

where
𝑥 (𝜆) = 𝑃 (𝑥 − 𝜆∇𝑓 (𝑥)) for 𝜆 ≥ 0. (19)

In this case 𝜆 = 𝛽
𝑚, where 𝛽 ∈ (0, 1) and 𝑚 ≥ 0,

which is the smallest nonnegative integer such that there is
sufficient decrease in 𝑓. For the end condition, it is necessary
to define the active and inactive sets. The set of constraints is
called feasible set (Ω), and a point in this set is a feasible point.
Because the feasible set is compact, there is always a solution
for this minimization problem. The 𝑖th constraint is active at
𝑥 ∈ Ω if either 𝑥

𝑖
= 𝐿
𝑖
or 𝑥
𝑖
= 𝑈
𝑖
. If the 𝑖th constraint

is not active, it is called inactive. Therefore, one can write
𝐴(𝑥) and 𝐼(𝑥) for the active and inactive sets, respectively.
An active/inactive set is the set of indexes 𝑖 such that the 𝑖th
constraint is active/inactive. In this manner,

𝑟
0
=
󵄩󵄩󵄩󵄩𝑥0 − 𝑥

0
(1)

󵄩󵄩󵄩󵄩 . (20)

The stop criterion is given by (21), where 𝜏
𝑟
and 𝜏

𝑎
are

relative and absolute tolerances. Consider

‖𝑥 − 𝑥 (1)‖ ≤ 𝜏
𝑎
+ 𝜏
𝑟
𝑟
0
. (21)

This optimization method is shown in Algorithm 5. It
starts with 𝑥

0
∈ Ω and uses a sufficient decrease parameter

𝛾 ∈ (0, 1) and safeguarding parameters 0 ≤ 𝜎
1
≤ 𝜎
2
≤ 1.

Initially, 𝛼
0
= 1/‖𝑓(𝑥

0
)‖
2. Given 𝑥

𝑐
and 𝛼

𝑐
≥ 0 the algorithm

shows how to obtain 𝑥
𝑐+1

and 𝛼
𝑘+1

and when to stop the
optimization engine.

3.4. Spectral Projected Gradient Method. The SPG method
improves choosing the steplength, which greatly speeds
up the convergence of gradient methods [22]. Unlike the
projected gradient method, the spectral projected gradient
one [21] is more related to the quasi-Newton family [17].
The main idea behind the spectral choice of steplength is
that the steepest descent method is very slow but it can
be accelerated taking, instead of the stepsize that comes
from the minimization of the function along the gradient
of the current iteration, the one that comes from the one-
dimensional minimization at the previous step.

The point in the first iteration of this method should be
a feasible point; that is, the algorithm starts with 𝑥

0
∈ Ω

and uses an integer 𝑀 ≥ 1, a small parameter 𝛼min ≥ 0, a
large parameter 𝛼max ≥ 𝛼min, a sufficient decrease parameter
𝛾 ∈ (0, 1), and safeguarding parameters 0 ≤ 𝜎

1
≤ 𝜎
2
≤ 1.

Consider ‖𝑃(𝑥
𝑐
− ∇𝑓(𝑥

𝑐
)) − 𝑥

𝑐
‖ = 0.
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(1) if 󵄩󵄩󵄩󵄩𝑃 (𝑥
𝑐
− ∇𝑓 (𝑥

𝑐
)) − 𝑥

𝑐

󵄩󵄩󵄩󵄩 = 0, that is, 𝑥
𝑐
is stationary then

(2) Stop
(3) Compute 𝑑

𝑐
= 𝑃 (𝑥

𝑐
− 𝛼
𝑐
𝑔 (𝑥
𝑐
)) − 𝑥

𝑐
.

(4) Set 𝜆 ← 1

(5) Set 𝑥
+
= 𝑥
𝑐
+ 𝜆Δ𝑓(𝑥

𝑐
)

(6) if 𝑓 (𝑥
+
) ≤ max
0≤𝑗≤min{𝑐,𝑀−1}

𝑓 (𝑥
𝑐−𝑗

) + 𝛾𝜆 ⟨𝑑
𝑐
, ∇𝑓 (𝑥

𝑐
)⟩ then

(7) Define 𝜆
𝑐
= 𝜆, 𝑥

𝑐+1
= 𝑥
+
, 𝑠
𝑐
= 𝑥
𝑐+1

− 𝑥
𝑐
, 𝑦
𝑐
= ∇𝑓 (𝑥

𝑐+1
) − ∇𝑓 (𝑥

𝑐
)

(8) Got to Step 11
(9) else
(10) Set 𝜆new ∈ [𝜎

1
𝜆, 𝜎
2
𝜆], 𝜆 ← 𝜆new and go to Step 5

(11) Compute 𝑏
𝑐
= ⟨𝑠
𝑐
, 𝑦
𝑐
⟩.

(12) if 𝑏
𝑘
≤ 0 then

(13) 𝛼
𝑐+1

= 𝛼max.
(14) else
(15) 𝛼

𝑐
= ⟨𝑠
𝑐
, 𝑠
𝑐
⟩ and 𝛼

𝑐+1
= min {𝛼max,max {𝛼min, 𝛼𝑐/𝑏𝑐}}

Algorithm 6: Spectral projected gradient method.
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Figure 7: Frequency response of the RLC circuit [3]. Solid curve is the magnitude response with nominal parameters. The dashed curves are
the lower and upper bounds due to variations. The three surfaces at the top have 𝐿 and 𝐶 as 𝑥-axis and 𝑦-axis, respectively, and 𝑧-axis shows
the magnitude variations at three sampling frequencies.

The method is shown in Algorithm 6, where 𝜆new uses
one-dimensional quadratic interpolation and it is safe-
guarded taking 𝜆 ← 𝜆/2 when the minimum of the one-
dimensional quadratic lies outside [0.1, 0.9𝜆]. The line search
condition in step 6 guarantees that the sequence {𝑥

𝑐
} remains

inΩ
0
= {𝑥 ∈ Ω : 𝑓(𝑥) ≤ 𝑓(𝑥

0
)}.

3.5. Remarks. The projected gradient and spectral projected
gradient methods start at 𝑥

0
∈ Ω and use as search direction

the internal projected gradient direction. In case of rejection
of the first trial point, the next ones are computed along

the same line. Also, for both methods, the calculation of
𝜆new uses a one-dimensional quadratic interpolation. Both
algorithms involve a projection on the convex set Ω, a
function evaluation 𝑓(𝑥), and a gradient evaluation per
iteration ∇𝑓(𝑥).

4. Simulation Results

The analog ICs for testing the variational methods PGRAD
and SPG that use 𝐻(𝑠) derived by the new GBST are shown
in Figure 9. That way, after deriving the transfer function
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Figure 8: Line search representation.
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Figure 9: Circuits used for the variational analysis: (a) differential
pair, (b) 2-stage OTA, and (c) 3-stage OTA.
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Figure 10: Bounds for the differential pair applying (a) PGRAD and
(b) SPG.

by applying the new GBST, and after setting the desired
frequencies, the PGRADand SPGmethods are applied to find
the magnitude and phase bounds for𝐻(𝑠).

Both the PGRAD and SPG methods were programmed
in C and compiled in an Ubuntu Linux environment with
the GNU C compiler gcc-4.6.1, with 4GB RAM in an Intel
Core i3. The performance bounds results for the differential
pair are shown in Figure 10 and for the 3-stage OTA in
Figure 11. The lines in blue are those corresponding to Monte
Carlo simulations, which are well bounded by the bounds
computed by the variational methods PGRAD and SPG.
Table 2 summarizes the results where it can be appreciated
that both variational methods show better times than by
performing repeated Monte Carlo simulations when using
HSPICE.
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Figure 11: Bounds for the 3-stage OTA applying (a) PGRAD and (b)
SPG.

Table 2: Time comparison between the variational methods and
HSPICE.

Circuit PGRAD SPG HSPICE
Differential pair 15.312ms 16.363ms 1.716 s
2-stage OTA 44.559ms 91.936ms 81.65ms
3-stage OTA 38.315ms 39.233ms 2.163 s

5. Conclusions

A new graph-based symbolic technique (GBST) for deriving
exact analytical expressions for analog ICs, such as𝐻(𝑠), and
whose symbolic expressions are used to perform variational
analysis to obtain performance frequency bounds has been

introduced. The variational analysis needs as input the 𝐻(𝑠)

computed by applying our proposed GBST, and it was based
on nonlinear constrained optimization using two line search
methods, namely, projected gradient (PGRAD) and spectral
projected gradient (SPG).

It was demonstrated that the bound analysis based on
GBST is suitable for analog ICs. In addition, the time
computation of PGRAD and SPG for obtaining the frequency
response bounds of analog ICs was improved with respect
to HSPICE, when performing repeated Monte Carlo simula-
tions. As shown in the last section, computing the frequency
response bounds by usingGBST showed a gain of 100x for the
differential pair and 50x for the 3-stage amplifier, compared
to repeated Monte Carlo simulations, thus justifying the
usefulness of using GBST.
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