4 research outputs found

    Modelamiento y control de un sistema de tráiler autónomo

    Get PDF
    Se propone una solución mediante un sistema de control de robot móvil tipo tráiler aplicado a una empresa que se encarga del transporte de material, y se demuestra que es una solución aplicable y viable. Se definió un modelo matemático que consiste en integrar dos técnicas de control: lineal LQR y lógica difusa. Se muestran resultados favorables del sistema de control y seguimiento de trayectoria, y se señalan las mejoras que se tienen al integrar ambas técnicas de control y que el sistema es capaz de responder correctamente a fin de guiar al robot por cualquier tipo de trayectoria

    Path tracking and stabilization for a reversing general 2-trailer configuration using a cascaded control approach

    No full text
    In this paper a cascaded approach for stabilizationand path tracking of a general 2-trailer vehicle configurationwith an off-axle hitching is presented. A low level LinearQuadratic controller is used for stabilization of the internalangles while a pure pursuit path tracking controller is used ona higher level to handle the path tracking. Piecewise linearityis the only requirement on the control reference which makesthe design of reference paths very general. A Graphical UserInterface is designed to make it easy for a user to design controlreferences for complex manoeuvres given some representationof the surroundings. The approach is demonstrated with challengingpath following scenarios both in simulation and on asmall scale test platform.iQMati

    A path planning and path-following control framework for a general 2-trailer with a car-like tractor

    Full text link
    Maneuvering a general 2-trailer with a car-like tractor in backward motion is a task that requires significant skill to master and is unarguably one of the most complicated tasks a truck driver has to perform. This paper presents a path planning and path-following control solution that can be used to automatically plan and execute difficult parking and obstacle avoidance maneuvers by combining backward and forward motion. A lattice-based path planning framework is developed in order to generate kinematically feasible and collision-free paths and a path-following controller is designed to stabilize the lateral and angular path-following error states during path execution. To estimate the vehicle state needed for control, a nonlinear observer is developed which only utilizes information from sensors that are mounted on the car-like tractor, making the system independent of additional trailer sensors. The proposed path planning and path-following control framework is implemented on a full-scale test vehicle and results from simulations and real-world experiments are presented.Comment: Preprin
    corecore