7 research outputs found

    Head-Trajectory-Tracking Control of a Snake Robot and Its Robustness Under Actuator Failure

    Get PDF
    This brief considers the problem of trajectory tracking of a planar snake robot without a lateral constraint. The reference trajectory of the head position and the orientation of link 1 are given, and torque control is determined to reduce tracking errors. The performance of the controller was tested in a number of simulations. The robustness during actuator failure was also studied. We assumed that one of the actuators was broken and the corresponding joint became passive. Furthermore, as a more realistic situation, we considered an instance when some of the states were not readily accessible from the sensor readings and needed to be estimated by an observer. The extended Kalman filter was employed for this purpose, and the performance of the closed-loop system with the observer was also tested in simulations

    Motion control of a snake robot moving between two non-parallel planes

    Get PDF
    A control method that makes the head of a snake robot follow an arbitrary trajectory on two non-parallel planes, including coexisting sloped and flat planes, is presented. We clarify an appropriate condition of contact between the robot and planes and design a controller for the part of the robot connecting the two planes that satisfies the contact condition. Assuming that the contact condition is satisfied, we derive a simplified model of the robot and design a controller for trajectory tracking of the robot’s head. The controller uses kinematic redundancy to avoid violating the limit of the joint angle and a collision between the robot and the edge of a plane. The effectiveness of the proposed method is demonstrated in experiments using an actual robot

    Formation Control of Underactuated Bio-inspired Snake Robots

    Get PDF
    This paper considers formation control of snake robots. In particular, based on a simplified locomotion model, and using the method of virtual holonomic constraints, we control the body shape of the robot to a desired gait pattern defined by some pre-specified constraint functions. These functions are dynamic in that they depend on the state variables of two compensators which are used to control the orientation and planar position of the robot, making this a dynamic maneuvering control strategy. Furthermore, using a formation control strategy we make the multi-agent system converge to and keep a desired geometric formation, and enforce the formation follow a desired straight line path with a given speed profile. Specifically, we use the proposed maneuvering controller to solve the formation control problem for a group of snake robots by synchronizing the commanded velocities of the robots. Simulation results are presented which illustrate the successful performance of the theoretical approach.© ISAROB 2016. This is the authors' accepted and refereed manuscript to the article. Locked until 2017-07-27

    Snake Robots for Surgical Applications: A Review

    Get PDF
    Although substantial advancements have been achieved in robot-assisted surgery, the blueprint to existing snake robotics predominantly focuses on the preliminary structural design, control, and human–robot interfaces, with features which have not been particularly explored in the literature. This paper aims to conduct a review of planning and operation concepts of hyper-redundant serpentine robots for surgical use, as well as any future challenges and solutions for better manipulation. Current researchers in the field of the manufacture and navigation of snake robots have faced issues, such as a low dexterity of the end-effectors around delicate organs, state estimation and the lack of depth perception on two-dimensional screens. A wide range of robots have been analysed, such as the i2Snake robot, inspiring the use of force and position feedback, visual servoing and augmented reality (AR). We present the types of actuation methods, robot kinematics, dynamics, sensing, and prospects of AR integration in snake robots, whilst addressing their shortcomings to facilitate the surgeon’s task. For a smoother gait control, validation and optimization algorithms such as deep learning databases are examined to mitigate redundancy in module linkage backlash and accidental self-collision. In essence, we aim to provide an outlook on robot configurations during motion by enhancing their material compositions within anatomical biocompatibility standards

    Path following control of planar snake robots using a cascaded approach

    Get PDF
    This paper considers path following control of snake robots along straight paths. Under the assumption that the forward velocity of the snake robot is nonzero and positive, we prove that the proposed path following controller K-exponentially stabilizes a snake robot to any desired straight path. The performance of the path following controller is investigated through simulations and through experiments with a physical snake robot, where the controller successfully steers the snake robot toward and along the desired straight path

    Path following control of planar snake robots using a cascaded approach

    No full text
    This paper considers path following control of snake robots along straight paths. The proposed controller propels the snake robot forward according to the motion pattern lateral undulation while simultaneously adjusting the heading of the robot according to a line-of-sight guidance law that steers the robot towards and subsequently along the desired path. Under the assumption that the forward velocity of the snake robot is nonzero and positive, we prove that the proposed path following controller K-exponentially stabilizes a snake robot to any desired straight path. The paper presents simulation results that illustrate the effectiveness of the path following controller

    Path following control of planar snake robots using a cascaded approach

    No full text
    - Author postprintThis paper considers path following control of snake robots along straight paths. Under the assumption that the forward velocity of the snake robot is nonzero and positive, we prove that the proposed path following controller K-exponentially stabilizes a snake robot to any desired straight path. The performance of the path following controller is investigated through simulations and through experiments with a physical snake robot, where the controller successfully steers the snake robot toward and along the desired straight path
    corecore