46 research outputs found

    A learning-based path relinking algorithm for the bandwidth coloring problem

    Get PDF
    This paper proposes a learning-based path relinking algorithm (LPR) for solving the bandwidth coloring problem and the bandwidth multicoloring problem. Based on the population path-relinking framework, the proposed algorithm integrates a learning-driven tabu optimization procedure and a path-relinking operator. LPR is assessed on two sets of 66 common benchmark instances, and achieves highly competitive results in terms of both solution quality and computational efficiency compared to the state-of-the-art algorithms in the literature. Specifically, the algorithm establishes 7 new upper bounds while matching the best known results for 56 cases. The impacts of the learning mechanism and the path relinking operators are investigated, confirming their critical role to the success of the proposed algorithm

    Sonet Network Design Problems

    Full text link
    This paper presents a new method and a constraint-based objective function to solve two problems related to the design of optical telecommunication networks, namely the Synchronous Optical Network Ring Assignment Problem (SRAP) and the Intra-ring Synchronous Optical Network Design Problem (IDP). These network topology problems can be represented as a graph partitioning with capacity constraints as shown in previous works. We present here a new objective function and a new local search algorithm to solve these problems. Experiments conducted in Comet allow us to compare our method to previous ones and show that we obtain better results

    Algorithms for the minimum sum coloring problem: a review

    Get PDF
    The Minimum Sum Coloring Problem (MSCP) is a variant of the well-known vertex coloring problem which has a number of AI related applications. Due to its theoretical and practical relevance, MSCP attracts increasing attention. The only existing review on the problem dates back to 2004 and mainly covers the history of MSCP and theoretical developments on specific graphs. In recent years, the field has witnessed significant progresses on approximation algorithms and practical solution algorithms. The purpose of this review is to provide a comprehensive inspection of the most recent and representative MSCP algorithms. To be informative, we identify the general framework followed by practical solution algorithms and the key ingredients that make them successful. By classifying the main search strategies and putting forward the critical elements of the reviewed methods, we wish to encourage future development of more powerful methods and motivate new applications
    corecore