7 research outputs found

    Non-parametric policy search with limited information loss

    Get PDF
    Learning complex control policies from non-linear and redundant sensory input is an important challenge for reinforcement learning algorithms. Non-parametric methods that approximate values functions or transition models can address this problem, by adapting to the complexity of the data set. Yet, many current non-parametric approaches rely on unstable greedy maximization of approximate value functions, which might lead to poor convergence or oscillations in the policy update. A more robust policy update can be obtained by limiting the information loss between successive state-action distributions. In this paper, we develop a policy search algorithm with policy updates that are both robust and non-parametric. Our method can learn non- parametric control policies for infinite horizon continuous Markov decision processes with non-linear and redundant sensory representations. We investigate how we can use approximations of the kernel function to reduce the time requirements of the demanding non-parametric computations. In our experiments, we show the strong performance of the proposed method, and how it can be approximated efficiently. Finally, we show that our algorithm can learn a real-robot under-powered swing-up task directly from image data

    Implementing Bayesian Inference with Neural Networks

    Get PDF
    Embodied agents, be they animals or robots, acquire information about the world through their senses. Embodied agents, however, do not simply lose this information once it passes by, but rather process and store it for future use. The most general theory of how an agent can combine stored knowledge with new observations is Bayesian inference. In this dissertation I present a theory of how embodied agents can learn to implement Bayesian inference with neural networks. By neural network I mean both artificial and biological neural networks, and in my dissertation I address both kinds. On one hand, I develop theory for implementing Bayesian inference in deep generative models, and I show how to train multilayer perceptrons to compute approximate predictions for Bayesian filtering. On the other hand, I show that several models in computational neuroscience are special cases of the general theory that I develop in this dissertation, and I use this theory to model and explain several phenomena in neuroscience. The key contributions of this dissertation can be summarized as follows: - I develop a class of graphical model called nth-order harmoniums. An nth-order harmonium is an n-tuple of random variables, where the conditional distribution of each variable given all the others is always an element of the same exponential family. I show that harmoniums have a recursive structure which allows them to be analyzed at coarser and finer levels of detail. - I define a class of harmoniums called rectified harmoniums, which are constrained to have priors which are conjugate to their posteriors. As a consequence of this, rectified harmoniums afford efficient sampling and learning. - I develop deep harmoniums, which are harmoniums which can be represented by hierarchical, undirected graphs. I develop the theory of rectification for deep harmoniums, and develop a novel algorithm for training deep generative models. - I show how to implement a variety of optimal and near-optimal Bayes filters by combining the solution to Bayes' rule provided by rectified harmoniums, with predictions computed by a recurrent neural network. I then show how to train a neural network to implement Bayesian filtering when the transition and emission distributions are unknown. - I show how some well-established models of neural activity are special cases of the theory I present in this dissertation, and how these models can be generalized with the theory of rectification. - I show how the theory that I present can model several neural phenomena including proprioception and gain-field modulation of tuning curves. - I introduce a library for the programming language Haskell, within which I have implemented all the simulations presented in this dissertation. This library uses concepts from Riemannian geometry to provide a rigorous and efficient environment for implementing complex numerical simulations. I also use the results presented in this dissertation to argue for the fundamental role of neural computation in embodied cognition. I argue, in other words, that before we will be able to build truly intelligent robots, we will need to truly understand biological brains

    Incorporating Human Expertise in Robot Motion Learning and Synthesis

    Get PDF
    With the exponential growth of robotics and the fast development of their advanced cognitive and motor capabilities, one can start to envision humans and robots jointly working together in unstructured environments. Yet, for that to be possible, robots need to be programmed for such types of complex scenarios, which demands significant domain knowledge in robotics and control. One viable approach to enable robots to acquire skills in a more flexible and efficient way is by giving them the capabilities of autonomously learn from human demonstrations and expertise through interaction. Such framework helps to make the creation of skills in robots more social and less demanding on programing and robotics expertise. Yet, current imitation learning approaches suffer from significant limitations, mainly about the flexibility and efficiency for representing, learning and reasoning about motor tasks. This thesis addresses this problem by exploring cost-function-based approaches to learning robot motion control, perception and the interplay between them. To begin with, the thesis proposes an efficient probabilistic algorithm to learn an impedance controller to accommodate motion contacts. The learning algorithm is able to incorporate important domain constraints, e.g., about force representation and decomposition, which are nontrivial to handle by standard techniques. Compliant handwriting motions are developed on an articulated robot arm and a multi-fingered hand. This work provides a flexible approach to learn robot motion conforming to both task and domain constraints. Furthermore, the thesis also contributes with techniques to learn from and reason about demonstrations with partial observability. The proposed approach combines inverse optimal control and ensemble methods, yielding a tractable learning of cost functions with latent variables. Two task priors are further incorporated. The first human kinematics prior results in a model which synthesizes rich and believable dynamical handwriting. The latter prior enforces dynamics on the latent variable and facilitates a real-time human intention cognition and an on-line motion adaptation in collaborative robot tasks. Finally, the thesis establishes a link between control and perception modalities. This work offers an analysis that bridges inverse optimal control and deep generative model, as well as a novel algorithm that learns cost features and embeds the modal coupling prior. This work contributes an end-to-end system for synthesizing arm joint motion from letter image pixels. The results highlight its robustness against noisy and out-of-sample sensory inputs. Overall, the proposed approach endows robots the potential to reason about diverse unstructured data, which is nowadays pervasive but hard to process for current imitation learning
    corecore