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Abstract

Learning complex control policies from non-linear and redundant sensory input is an im-
portant challenge for reinforcement learning algorithms. Non-parametric methods that
approximate values functions or transition models can address this problem, by adapting
to the complexity of the data set. Yet, many current non-parametric approaches rely on
unstable greedy maximization of approximate value functions, which might lead to poor
convergence or oscillations in the policy update. A more robust policy update can be ob-
tained by limiting the information loss between successive state-action distributions. In this
paper, we develop a policy search algorithm with policy updates that are both robust and
non-parametric. Our method can learn non-parametric control policies for infinite horizon
continuous Markov decision processes with non-linear and redundant sensory representa-
tions. We investigate how we can use approximations of the kernel function to reduce the
time requirements of the demanding non-parametric computations. In our experiments, we
show the strong performance of the proposed method, and how it can be approximated effi-
ciently. Finally, we show that our algorithm can learn a real-robot under-powered swing-up
task directly from image data.

Keywords: Reinforcement Learning, Kernel Methods, Policy Search, Robotics

1. Introduction

Learning continuous valued control policies directly from sensory input presents a major
obstacle to applying reinforcement learning (RL) methods effectively in realistic settings. In
such settings, there exist two major problems. First, the dimensionality of sensory inputs
often makes discretization of the state space infeasible. Secondly, in such settings, the
amount of data that can be used to learn policies is often severely limited, increasing the
bias in policy updates which can lead to oscillations or divergence (Mannor et al., 2007;
Peters et al., 2008).

For the first problem, algorithms have been developed that rely on human-designed
features for value function approximations or specialized parametric policies (Kaelbling
et al., 1996; Kober et al., 2013; Bartlett, 2003). However, the applicability of such methods
is limited in non-linear, redundant sensory domains where defining good features to linearly
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approximate value functions or policies is non-trivial. Alternative methods use deep neural
networks to represent value functions or policies non-linearly (Mnih et al., 2015; Schulman
et al., 2015; Lillicrap et al., 2016; Mnih et al., 2016). These representations have many
parameters, and thus tend to require sampling many data points.

Recently, there has been a lot of progress towards avoiding the dependence on engineered
features by using non-parametric techniques. Such techniques often use kernel functions
to implicitly define a (possibly infinite) features space, replacing the manual definition
of features. In contrast to task-specific hand-tuned feature spaces, many popular kernels
are applicable to a large number of problems as the resulting representation can adapt
to the complexity of the data. Non-parametric techniques have successfully been used
in value-function methods, for example by Grünewälder et al. (2012b), Nishiyama et al.
(2012), and Kroemer and Peters (2011). An overview of related work on non-parametric
methods is given in Section 4.3 on page 32. Such methods generally require the inversion of
matrices that grow with the number of data points, which limits their applicability. Another
shortcoming is that these methods are still susceptible to the problem of data scarcity.

The problem of data scarcity is aggravated by the lack of a notion of the sampled data
or sampling policy in many reinforcement learning approaches. At any point in the learning
process, knowledge about the learning problem tends to be represented in two ways. First,
the outcomes of recently sampled state-action pairs are stored in memory. Secondly, the
current sampling policy implicitly represents the state-action pairs sampled longer ago (as
well as the initial policy). Any policy update that causes the policy to represent new samples
better might cause the policy to represent older samples less well, thus losing information.
Many methods update policies or value functions without regard to the sampling policy.
Since the recently sampled state-action pairs stored in, e.g., a mini-batch or replay memory
are usually not sufficient to completely characterize the learning problem, such updates can
result in a critical loss of essential information.

As a result, choosing an improved policy purely based on sampled returns often yields
fast but premature convergence to a sub-optimal policy. Such updates favor biased solutions
that eliminate states in which, by chance, only bad actions have been tried out. This
problem is known as optimization bias (Mannor et al., 2007). Optimization biases may
appear in both on- and off-policy reinforcement learning methods due to under-sampling
(e.g., if we cannot sample sufficiently many of the state-action pairs prescribed by a policy,
we will over-fit), model errors or even the policy update step itself.

In an on-line setting, many methods address this problem implicitly by staying close
to the previous policy. For example, policy gradient methods allow only small incremental
policy changes. The Fisher information metric—that occurs in policy updates using the
natural policy gradients (Kakade, 2002; Peters and Schaal, 2008)—can be seen as a Taylor
expansion of the loss of information or relative entropy between the path distributions
generated by the original and the updated policy (Bagnell and Schneider, 2003a). Instead
of bounding this Taylor approximation, we can explicitly bound the relative entropy between
successive state-action distributions, leading to our Relative Entropy Policy Search (REPS)
algorithm.1 We discuss related policy search methods that limit the information loss in
Section 4.1 on page 29.

1. This paper draws from our earlier conference papers (Peters et al., 2010; van Hoof et al., 2015a,b).
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In this paper, we propose a method based on this insight, that allows us to compute new
policies given a data distribution for both off-policy and on-policy reinforcement learning.
We start from the optimal control problem statement subject to the constraint that the loss
of information is bounded. For continuous domains, where a suitable set of features is often
not available, we develop a non-parametric version of this algorithm. This algorithm uses
general kernels to define (possibly infinite) feature spaces implicitly, and considers ways to
efficiently approximate this method to make it applicable to large data sets.

In our experiments, we show that our method outperforms other non-parametric meth-
ods on a reaching task and an under-powered swing-up task. We also show that our method
performs well compared to neural-network based methods on a variant of the puddle world
task with a 400-dimensional redundant input representation. Furthermore, we evaluate dif-
ferent approximations to process larger data sets efficiently. Finally, we show that using
such an approximation, a real-robot pendulum swing-up task can be learned from vision
data.

1.1 Problem Statement and Notation

In a Markov decision process (MDP), an agent in state s selects an action a ∼ π(a|s)
according to a (possibly stochastic) policy π and receives a reward Ra

s ∈ R. We will assume
continuous state-action spaces: s ∈ S = RDs , a ∈ A = RDa . If the Markov decision
process is ergodic, for each policy π, there exists a stationary distribution µπ(s) such that´
S
´
A Pa

ss′π(a|s)µπ(s)dads = µπ(s′), where Pa
ss′ = p(s′|a, s). The goal of a reinforcement

learning agent is to choose a policy such that the joint state-action distribution pπ(s,a) =
µπ(s)π(a|s) maximizes the average reward J(π) =

´
S
´
A π(a|s)µπ(s)Ra

sdads.
The goal of relative entropy policy search is to obtain policies that maximize the expected

reward J(π) while bounding the information loss with respect to reference distribution
q(s,a), i.e.,

max
π,µπ

¨
S×A
π(a|s)µπ(s)Ra

sdads, (1)

s. t.

¨
S×A
π(a|s)µπ(s)dads = 1, (2)

∀s′
¨
S×A
π(a|s)µπ(s)Pa

ss′dads = µπ(s′), (3)

KL(π(a|s)µπ(s)||q(s,a)) ≤ ε, (4)

where Eqs. (1)–(3) specify the general reinforcement learning objective (Eq. 1) with the
constraints that π(a|s)µπ(s) is a distribution (Eq. 2) and µπ is the stationary distribution
under policy π (Eq. 3). Equation (4) specifies the additional bound on the KL divergence,
where

KL(p(x)||q(x)) =

ˆ
p(x) log(p(x)/q(x))dx.

The reference distribution q is usually set to the state-action distribution induced by pre-
vious policies, where the initial explorative policy is a wide, uninformed distribution such
as a zero-centered Gaussian with a larger variance. In each iteration, the policy is adapted
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to maximize the expected reward while respecting the constraint on the KL divergence.
Thus, as learning progresses, the policy typically slowly converges towards a deterministic
reward-maximizing policy.

In this paper, we aim at developing a reinforcement learning algorithm for continuous
state-action MDPs with non-linear and redundant state representations. We assume the
transition and reward models of the MDP are unknown. Furthermore, we will concentrate
on infinite-horizon problems.

2. Stable Policy Updates for Stochastic Continuous MDPs

The relative entropy policy search optimization problem in Eqs. (1)–(4) defines controller
updates that maximize the expected average reward under a bound on the information loss.
However, for continuous systems with stochastic dynamics and non-parametric controllers,
it is not straightforward to solve the optimization problem directly. In this section, we
explain the steps to obtain a practical algorithm. First, we show how to find the dual of
the optimization problem. Subsequently, we discuss how this problem can be solved for
stochastic systems that are continuous and non-linear. After that, we discuss how to relax
the assumption of ergodicity of the MDP by transforming the average reward MDP into a
discounted reward MDP. Solving the optimization problem results in a new optimal policy
that is, however, only defined on the current set of samples. Therefore, we discuss how
the sample-based optimal policy can be generalized to the entire state space. Finally, we
discuss how to set the hyper-parameters of the different steps of our method with minimal
manual tuning.

2.1 Finding the Dual Problem

To find the dual to the optimization problem in Eqs. (1)–(4), first, we formulate the La-
grangian. For every constraint, we introduce a Lagrangian multiplier. Because Eq. (3) repre-
sents a continuum of constraints, we introduce a corresponding continuous state-dependent
Lagrangian multiplier V (s). Instead of summing the contributions for each constraint in the
Lagrangian, here, we have to integrate instead. Analogously to the sampling distribution
q(s,a), we will write pπ(s,a) = π(a|s)µπ(s) for the proposed state-action distribution to
keep the exposition brief. Therefore, the Lagrangian

L(p, η, V, λ) =

¨
A×S
pπ(s,a)Ra

sdads +

ˆ
S
V (s′)

(¨
A×S
pπ(s,a)Pa

ss′dads− µπ(s′)

)
ds′

+ λ

(
1−
¨
A×S
pπ(s,a)dads

)
+ η

(
ε−
¨
A×S
pπ(s,a) log

pπ(s,a)

q(s,a)
dads

)
.

Using the identity µπ(s) =
´
A pπ(s,a)da, the Lagrangian can be re-shaped in the more

convenient form

L(p, η, V, λ) = λ−Epπ(s,a) [V (s)]+ηε+Epπ(s,a)

[
Ra

s − λ+

ˆ
S
V (s′)Pa

ss′ds′ − η log
pπ(s,a)

q(s,a)

]
.
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To find the optimal p, we take the derivative of L with respect to p and set it to zero

∂L

∂pπ(s,a)
= Ra

s − λ+

ˆ
S
V (s′)Pa

ss′ds′ − η log
pπ(s,a)

q(s,a)
− η − V (s) = 0.

Therefore, we obtain the new state-action distribution

pπ(s,a) = q(s,a) exp

(Ra
s +
´
SV (s′)Pa

ss′ds′ − V (s)

η

)
exp

(−λ− η
η

)
. (5)

The function V (s) resembles a value function, such that δ(s,a, V ) = Ra
s +
´
SV (s′)Pa

ss′ds′−
V (s) can be identified as a Bellman error. Since pπ(s,a) is a probability distribution, we
can identify exp (−λ/η − 1) to be a normalization factor

exp (−λ/η − 1) =
1˜

A×S q(s,a) exp (δ(s,a, V )/η) dads
=

1

Eq(s,a) exp (δ(s,a, V )/η)
,

which yields the policy

π(a|s) ∝ q(s,a) exp

(
δ(s,a, V )

η

)
. (6)

To obtain the dual function, we re-insert the state-action distribution pπ(s,a) in the La-
grangian2

g(η, V, λ) =λ+ ηε+ Epπ(s,a)

[
δ(s,a, V )− λ− η log

pπ(s,a)

q(s,a)

]
=ηε+ η log

(
Eq(s,a) exp (δ(s,a, V )/η)

)
.

We typically do not know the sampling distribution q, as it depends on the unknown system
dynamics. However, the expected value over q can be approximated straightforwardly by
taking the average of samples 1, . . . , n taken from q. Note that λ and q do not appear in
the final expression of the dual function

g(η, V ) = ηε+ η log

(
1

n

n∑
i=1

exp (δ(si,ai, V )/η)

)
. (7)

To compute the Bellman error δ, the transition distribution is required. As this distribu-
tion is generally not known, δ needs to be approximated. The dual function (7) depends
implicitly on reference distribution q through the samples.

2.2 Solving the Dual Problem

To solve Eqs. (1)–(4), we need to find the Lagrangian parameters that minimize the dual
function in Eq. (7), i.e., (η∗, V ∗) = arg min g(η, V ). V is a function with domain S, hence, for
continuous domains, we will surely over-fit without additional assumptions. One possibility

2. A detailed derivation is given in Appendix A.
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would be to assume V a function linear in designed features, but good features are task-
specific and often hard to define. We will therefore make the more general assumption that
V ∗ is of the form

V ∗ =
∑
s̃∈S̃

αs̃ks(s̃, ·), (8)

for some set of states S̃ and scalars α, and a chosen reproducing kernel ks. In other words, we
assume V ∗ ∈ F for a reproducing kernel Hilbert space (RKHS) F with kernel ks. The kernel
ks implicitly defines a (possibly infinite dimensional) feature map φ(s) = ks(s, ·) (Schölkopf
et al., 1999). Such an implicit definition has the advantage that we do not need to explicitly
compute a feature basis for V ∗ (Hofmann et al., 2008). Kernels are in most cases easier to
choose than feature vectors as the complexity of V ∗ can grow with the amount of training
data. In the final algorithm, we will only work with inner product of implicit features
that can be computed using the kernel function, φ(s)Tφ(s′) = ks(s, s

′). Therefore, we do
not need to explicitly represent the (possibly infinite dimensional) feature maps (Hofmann
et al., 2008; Schölkopf et al., 1999).

2.2.1 Embedding the Transition Model.

Since the transition model Pa
ss′ in Eq. (5) is unknown, we need to approximate Es′ [V (s′)|s,a].

One way to do so would be to estimate the joint density p(s,a, s′) using, e.g., kernel density
estimation, and solving the integral

´
S V (s′)p(s,a, s′)ds′. However, kernel density estimation

in S ×A× S requires many training samples, and solving the integral generally requires a
time-consuming numerical procedure. Instead, as suggested by Song et al. (2009), we can
directly estimate a conditional operator CS′|S,A that maps features ψ(s,a) of state-action
pairs to the expected value of implicit features φ(s′) = ks(s

′, ·). The resulting embedding
µs′|s,a = Es′ [φ(s′)|s,a] can subsequently be used to approximate functions in F , such as V .
Using such embeddings avoids estimating the joint density and leads to good results even
for high-dimensional data, and renders calculations of expected values over a function in F
straightforward without numerical integration (Song et al., 2013).

In order to learn the conditional operator, we will use a kernel over the state-action
space to implicitly define state-action features ψ(s,a) = ks(s, ·)ka(a, ·). Given a sample
{(s1,a1, s

′
1), . . . , (sn,an, s

′
n)}, the empirical conditional embedding is defined as

µ̂S′|s,a = ĈS′|S,Aψ(s,a) = Φβ(s,a), (9)

ĈS′|S,A = Φ(Ksa + lCI)−1ΨT , (10)

where ĈS′|S,A is a learned conditional operator that allows the computation of embedding
strengths β(s,a) = (Ksa + lCI)−1ksa(s,a), as suggested by Grünewälder et al. (2012a,b). In
this equation, lC is a regularization coefficient, the matrices Ψ = [ψ(s1,a1), . . . ,ψ(sn,an)]
and Φ = [φ(s′1), . . . ,φ(s′n)] consist of implicit feature factors, whereas matrix Ksa = ΨTΨ
and vector ksa(s,a) = ΨTψ(s,a) contain kernel function evaluations between pairs of data
points.3 The mean embedding µ̂S′|s,a can be seen as a vector-valued kernel ridge regressor
that maps s,a pairs to the expected function ks(s

′, ·) (Grünewälder et al., 2012a).

3. This means [Ksa]ij = ks(si, sj)ka(ai,aj), [ksa(s,a)]i = ks(si, s)ka(ai,a).
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2.2.2 Evaluation of V .

In the next step, we want to use the conditional embedding to evaluate V . Conditional
embeddings in reproducing kernel Hilbert spaces have the property that conditional expec-
tations of functions in F can be calculated as inner product in the Hilbert space (Song et al.,
2009). Since V ∈ F , i.e., is of the form (8), the expected value of V can be approximated
using the embedded distribution (Song et al., 2009; Grünewälder et al., 2012a,b), i.e.,

Es′ [V (s′)|s,a] =
〈
V, µ̂S′|s,a

〉
F

=
n∑
i=1

βi(s,a)V (s′i).

In the dual function g from Eq. (7), V is now only evaluated at sampled states si and s′i.
As we assumed V ∈ F , the generalized representer theorem (Schölkopf et al., 2001) tells
us that there is at least one optimum of the form (8) with S̃ the set of all sampled states.4

Consequently, Es′ [V (s′)|s,a]−V (s) = αT K̃sβ(s,a)−αTks(s), where K̃s is the Gram matrix
with entries [K̃s]ji = ks(̃sj , s

′
i), and [ks(s)]j = ks(s̃j , s).

2.2.3 Finding a Numerical Solution.

The dual problem can now be restated in terms of η and α, as

min
η,α

g(η,α) = ηε+ η log

(
n∑
i=1

1

n
exp

(
δ(si,ai,α)

η

))
, s.t. η ≥ 0, (11)

δ(s,a,α) = Ra
s +αT

(
K̃sβ(s,a)− ks(s)

)
. (12)

This objective is convex, and since the analytic gradient and Hessian for this objective
are straightforward to obtain5, we employ second order optimization methods to find the
optimal η and α. Jointly optimizing for η and α is rather slow because of the need of a con-
strained optimization method. As proposed by Lioutikov et al. (2014), we use a coordinate-
descent-like approach where, iteratively, η and α are minimized separately, keeping the
value of the other variable fixed. Thus, a fast unconstrained convex optimization algorithm
can be used to minimize α, whereas a more expensive constrained minimizer can be used
for η. Minimizations are run for a fixed number of updates (instead of until convergence),
and every iteration is initialized at the result of the last optimization, to speed up the
optimization. Iterations continue until the constraints are fulfilled within an acceptable
tolerance.

If we choose kernels ks(si, sj) = φ̃(si)
T φ̃(sj) and ksa((si,ai), (sj ,aj)) = 1{(si,ai)}((sj ,aj)),

we obtain the original REPS formulation (Peters et al., 2010) as a special case, with corre-
sponding Bellman error

δ(s,a,α) = Ra
s +αT (φ̃(s′)− φ̃(s)). (13)

In these equations, 1 is the indicator function, φ̃ is a set of hand-crafted features, and s′ is the
observed outcome of applying action a in state s. Our generalization allows the selection

4. A sketch of the proof following Schölkopf et al. (2001) is given in Appendix B.
5. The dual and its partial derivatives and Hessians are given in Appendix A, together with a proof of

convexity of the dual function.
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of widely applicable kernels that do not depend on hand-crafted features. Furthermore,
avoiding the identity kernel function over the state-action space allows efficient learning in
stochastic systems.

2.3 Ensuring a Stationary Distribution

The REPS formulation (Eqs. 1–4) assumes the existence of a stationary distribution. How-
ever, not all MDPs have a stationary distribution for every policy π. For systems that
do have a stationary distribution, steady-state behavior might not be realizable for real
systems that need to be started and stopped. Furthermore, transient behavior, such as the
swing-up of a pendulum, might be of greater interest than steady-state behavior.

We can ensure the system has a stationary distribution that includes such transients by
resetting the system with a probability 1−γ at each time step. The system is subsequently
set to a state from the initial state distribution p1(s). In this case, the expected value of V
at the next time step is given by

E[V (s′)|s,a] =

ˆ
S
γPa

ss′V (s′) + (1− γ)p1(s′)V (s′)ds′,

= γαT K̃sβ(s,a) + (1− γ)αT µ̂S1, (14)

where µ̂S1 is the empirical (observed) embedding of the initial state distribution and Pa
ss′ are

the transition probabilities of the original MDP. Such a reset procedure enables learning by
removing the impracticable requirement of infinite roll-out length. In this way, we obtain
a discounted setting similar to that used in RL methods that optimize the accumulated
discounted reward.

2.4 Generalization of the Sample-Based Policy

The parameters resulting from the optimization, η and α, can be inserted back in Eqs. (12)
and (6) to yield the desired probabilities {pπ(s1,a1), . . . , pπ(sn,an)} at the sampled (s,a)
pairs (where pπ(s,a) = π(a|s)µπ(s) as before). Conditioning on the current state yields the
policy to be followed in the next iteration. However, since states and actions are continuous,
we need to generalize from these weighted samples to nearby data points. To this end, we
want to find a generalizing stochastic policy π̃(a|s) conditioned on the observed policy
samples.

We first consider parametric policies π̃(a|s;θ) linear in features φ(s) with parameters θ.
Later, we will generalize our results to non-parametric policies. We place a Gaussian prior
over the unknown policy parameters, and choose a Gaussian noise model for the conditional
over actions. Consequently, a Bayesian model is specified that will allow us to find a
posterior over parameters θ

p(θ) = N (0, α−1I),

π̃(a|s;θ) = N (θTφ(s), β−1I).

By conditioning on the sampled state-action pairs, we obtain the familiar update equation

p(θ|a1, . . . ,an, s1, . . . , sn) = z−1p(θ)

n∏
i=1

π̃(ai|si;θ) (si,ai) ∼ pπ(a, s).
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Algorithm 1 Policy iteration with relative entropy policy search (REPS)

repeat
generate roll-outs according to π̃i−1

minimize dual η∗,α∗ ← arg min g(η,α) Eq. 11

calculate Bellman errors for each sample δj ← Rj +α∗T
(
φ̃(s′j)− φ̃(sj)

)
Eq. 13

calculate the sample weights wj ← exp(δj/η
∗) Sec. 2.4

fit a generalizing policy π̃i(a|s) = N (µ(s), σ2(s)) Sec. 2.4
until convergence

Here, z−1 is a normalization factor. However, our samples are drawn from q(a, s) and
not pπ(a, s). From a log transformation of the update equation, we see that we can use
importance sampling to estimate θ using the approximation

log p(θ|a1, s1, . . . ,an, sn) = log p(θ) +
n∑
i=1

log π̃(a|s;θ) + const. (si,ai) ∼ pπ(a, s),

≈ log p(θ) +
n∑
i=1

pπ(a, s)

q(a, s)
log π̃(a|s;θ) + const. (si,ai) ∼ q(a, s),

= log p(θ) +
n∑
i=1

log π̃(a|s;θ)
pπ(a,s)
q(a,s) + const. (si,ai) ∼ q(a, s),

As the new state-action distribution pπ is of the form given in (6), we can write the impor-
tance weights

wi =
pπ(si,ai)

q(si,ai)
= exp

(
δ(si,ai, V

∗)

η∗

)
.

Since π̃(a|s;θ) is Gaussian in our model, raising to the power of wi simply scales the variance
by 1/wi. By exponentiating both sides again, and using the familiar procedure for weighted
Bayesian linear regression (Gelman et al., 2004), we find the predictive distribution

π̃(a|s) = N (βφ(s)TSnΦ
TD−1A,φ(s)TSnφ(s) + β−1), Sn = (βΦTD−1Φ + αI)−1, (15)

where D is a diagonal weighting matrix with Dii = 1/wi and A = [a1, . . . ,an]T .
The policy mean is of the form of the lower bound introduced by Dayan and Hinton

(1997), and the policy that maximizes this lower bound can be found through a weighted
linear regression (Peters and Schaal, 2007), although that framework does not employ a
Bayesian formulation and therefore cannot represent uncertainty in the parameters. Note
that instead of basing the weights on a transformation of the reward function, our approach
uses a transformation of the Bellman error, which takes the long-term expected rewards
into account. The critical step of choosing the transformation was done by manual design
in earlier work (Peters and Schaal, 2007; Dayan and Hinton, 1997)), while here the trans-
formation directly results from the optimization problem (1)–(4). Algorithm 1 shows how
the different steps of our approach fit together in the special case of linear value functions
and policy, when sampled outcomes are used to approximate the Bellman error. This form
of the algorithm was introduced in our earlier work (Peters et al., 2010).
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Algorithm 2 Policy iteration with non-parametric REPS (NP-REPS)

repeat
generate roll-outs according to π̃i−1

calculate kernel embedding strengths βj ← (Ksa + lCI)−1ksa(sj ,aj) Sec. 2.2
minimize kernel-based dual η∗,α∗ ← arg min g(η,α) Eq. 11

calculate kernel-based Bellman errors δj ← Rj +α∗T
(
K̃sβj − ks(sj)

)
Eq. 12

calculate the sample weights wj ← exp(δj/η
∗) Sec. 2.4

fit a generalizing non-parametric policy π̃i(a|s) = N (µ(s), σ2(s)) Sec. 2.5
until convergence

2.5 Non-Parametric Generalizing Policies

For non-parametric policies, Eq. (15) can be kernelized straightforwardly, to yield

π̃(a|s)=N (µ(s), σ2(s)), µ(s)=ks(s)T (Ks + lD)−1A, (16)

σ2(s) = k(s, s) + l − ks(s)T (Ks + lD)−1ks(s), (17)

where kernel vector ks(s) = φ(s)TΦ, kernel matrix Ks = ΦTΦ, and l is a free regularization
hyper-parameter. Together with other hyper-parameters, such as the kernel bandwidth, l
can be set by performing cross-validation on a maximum marginal likelihood objective.

Kober et al. (2011) derived an EM-based policy search approach that uses similar cost-
sensitive Gaussian processes (GPs). The regularization term in these GPs is modulated with
the inverse of the weight at each data point. However, there are some notable differences.
First of all, in our case the weights w are found by transforming the advantage function
rather than the reward function, allowing decision making in longer-horizon problems. Fur-
thermore, that approach used a maximum likelihood perspective which allows derivation of
the mean, but not the variance. In contrast, we derive our policy update using importance
sampling from a Bayesian perspective that allows a principled derivation of the covariance
update. Algorithm 2 shows how the different steps of our approach, non-parametric relative
entropy policy search (NP-REPS), fit together.

2.6 Hyper-parameter Optimization

The conditional operator has open hyper-parameters, namely, the hyper-parameters of the
kernels over s and a as well as the regularization parameter lC . We set lC and the hyper-
parameters of kernel ka through two-fold cross-validation on the objective

n∑
i=1

∥∥∥φ(s̃i)
Tφ(s′i)− φ(s̃i)

T ĈS′|S,Aψ(si,ai)
∥∥∥2
,

which minimizes the difference between actual embedding strength and the embedding
strength predicted using the conditional operator ĈS′|S,A introduced in Eq. (10). This
objective is based on the cross-validation objective proposed by Grünewälder et al. (2012a),
but exploits the fact that the embedding will only be evaluated at known functions φ(s̃).

10
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The hyper-parameters of ks, the kernel for the predicted variable s′, cannot be tuned
this way as trivial solutions exist. For example, essentially constant features φ(s′) with
very high bandwidth minimize the prediction error. Instead, we set the hyper-parameters
of ks through minimization of the mean squared TD error in a two-fold cross-validation
procedure. We choose this objective since the (residual) TD error is a common objective
for feature selection (Parr et al., 2008) in reinforcement learning.

We optimize the hyper-parameters of the Gaussian process policy separately from finding
the hyper-parameters of the conditional operator. The employed optimization objective is
the weighted marginal likelihood, with weights wi as discussed in Section 2.5. This objective
is maximized in a cross-validation procedure where every roll-out is used as separate fold.

2.7 Efficient Approximations for Large Data Sets

The proposed algorithm requires inverting several n × n matrices, where n is the number
of samples. If open hyper-parameters (such as regularization parameters or kernel band-
widths) need to be optimized, this inversion happens inside the optimization loop. As a
consequence, learning becomes slow if more than approximately 5000 samples are used (on
current computing hardware). Especially for complex problems and problems requiring a
high control frequency, such a soft limit can be prohibitive. In order to scale our method to
larger problems, approximate methods with high time efficiency have to be considered. In
this section, we will discuss two families of such approximation methods: sparsification of
the kernel matrix, and approximation of the kernel function using stochastic features. Re-
lated work on efficient calculations for non-parametric reinforcement learning are discussed
in Section 4.4 on page 33.

2.7.1 Sparsification Approaches.

One way of scaling up kernel methods is to consider sparsifications, where a small number
of pseudo-inputs are used rather than the full data set. Multiple sparsification schemes have
been proposed in the context of supervised learning, notably the likelihood approximation
used in the projected latent variables (PLV) approach (Seeger et al., 2003) and the Bayesian
derivation of sparse pseudo-input Gaussian processes (SPGPs) by Snelson and Ghahramani
(2006).

Such sparsifications have been used in a number of RL algorithms (Engel et al., 2003;
Xu et al., 2014; Jung and Polani, 2007; Xu et al., 2007; Lever and Stafford, 2015). In many
of these algorithms, a quadratic program is optimized to learn the embedding strength of
the data points in the active set m. This approach typically results in an approximation
k(x,x′) ≈ km(x)TK−1

mmkm(x′). In this equation, km(x) and Kmm are a vector and a matrix,
respectively, of similarities to the active set of m data-points (Jung and Polani, 2007; Xu
et al., 2007). The same effective kernel is used in the PLV approach (Seeger et al., 2003).
Note that, effectively, a non-stationary kernel is obtained, that is parametrized by the data
points in the active set m (Jung and Polani, 2007; Xu et al., 2007).

The SPGP approach uses a very similar kernel, but includes a state-dependent regular-
ization term. This term proves to be helpful in gradient-based hyper-parameter optimiza-
tion (Snelson and Ghahramani, 2006). The covariance of output points is then given by
KnmK−1

mmKmn + lI + Λ. In this equation, the nth element on the diagonal of Λ is given by
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k(xn,xn)− km(xn)TK−1
mmkm(xn). The matrix Knm denotes a Gram matrix between all n

input points and the active subset of m data points, while km and km denote a scalar and
vector of corresponding kernel values.

To derive a sparsification with the same type of effective kernel using the reward-
dependent regularization terms introduced in Section 2.5, we can consider the regular update
equation for the non-parametric policy mean in Eq. (16),

µ(x) = kn(x)T (Knn + lD)−1y,

where y is the vector of all training outputs. We replace the occurrences of the kernel with
the effective kernel

µ(x) = km(x)TK−1
mmKmn(KnmK−1

mmKmn + lD + Λ)−1y.

Now, we can apply the Woodbury identity to obtain the update equation

µ(x) = km(x)T (Kmm + Kmn(lD + Λ)−1Knm)−1Kmn(lD + Λ)−1y.

The empirical conditional embedding (Eq. 10) can similarly be approximated using this
effective kernel. Considering the regular update equation for the non-parametric policy
covariance in Eq. (17), in similar a fashion we can derive the predictive variance

σ2(x) = k(x,x)− km(x)T (K−1
mm + (Kmm + Kmn(lD + Λ)−1Knm)−1)km(x) + l.

Analogously, a cost-regularized version of the PLV approach can be obtained in a similar
form, but omitting the Λ terms. As the proposed sparsification scheme depends on the
inverse of Kmm, numerical problems can potentially ensue if the active subset m is poorly
chosen (such that two almost-equal data points are present). To address this issue, we
regularize Kmm where necessary.

Alternatively, we consider fitting a regular Gaussian process to a set of M inducing
inputs, with pseudo-targets given by weighted linear regression. For pseudo-outputs ỹ
of M sparse inputs, a Gaussian process would predict ŷ = Knm(Kmm + lI)−1ỹ at all
(active and passive) inputs. Since we know the true outputs y for the training data, a
maximum likelihood solution can be found using weighted linear regression, considering
Knm(Kmm + lI)−1 as design matrix. This approach yields the update equations for the
mean

µ(x) = kmK̃
−1
mmỹ,

where K̃
−1
mm is the regularized inverse (Kmm + lI)−1. The inducing output values ỹ are

ỹ = (K̃
−1
mmKmnDKnmK̃

−1
mm + l2I)−1K̃

−1
mmKmnDy,

where l2 is an additional regularization parameter. As the covariance does not depend
on the inducing output at the training points, the standard update equation for Gaussian
processes can be used in this case. The update equation for the mean corresponds to that

of a Gaussian process with an effective kernel k(x, x′) = km(x)T K̃
−1
mmK̃

−1
mmkm(x′).

12



Non-parametric Policy Search with Limited Information Loss

2.7.2 Random Fourier Features.

Instead of sparsification, where the exact kernel function is used at a subset of data points,
we might instead use an approximation of the kernel function at all data points. One such
approach is proposed by Rahimi and Recht (2007). They define a distribution p(z) over
mapping functions z such that the inner products in sampled feature spaces are unbiased
estimates of the kernel evaluation k(x,y) = E[z(x)T z(y)] ≈ z(x)T z(y), where zi(·) ∼ p(z).
They propose two kinds of random features that obey this criterion: Fourier features and
binning features. As the binning features are suitable only for kernels that solely rely on the
L1 norm between data points, we will focus on the Fourier features in this section. These
features have been used successfully in various classification and regression tasks (Rahimi
and Recht, 2007; Hernández-Lobato et al., 2014; Lu et al., 2016).

For the Fourier features, we require the Fourier transform αp(ω) of a stationary (shift-
invariant) kernel k(x,y), where α is a normalization factor that ensures p(ω) is a probability
distribution. The inverse Fourier transform is thus

k(x,y) = α

ˆ
Rd
p(ω)eiω

T (x−y)dω = 2αE[cos(ωTx + b) cos(ωTy + b)], b ∼ U(0, 2π).

We can approximate this integral using samples (ωi, bi) with i = 1, . . . , L and obtain

k(x,y) ≈ 2α
1

L

L∑
i=1

cos(ωTi x + bi) cos(ωTi y + bi) = z(x)T z(y),

with zi(x) =
√

2αL−1 cos(ωTi x + bi). As the chosen number of samples L gets smaller, the
approximation gets coarser but computations will get faster, as we will need to invert L×L
covariance matrices.

In this article, we will use the squared-exponential (or Gaussian) kernel kes(x,y) =
α exp(−0.5||x−y||Σ−1) with diagonal covariance Σ. This kernel has a corresponding Fourier
transform pes(ω) = N (0,Σ). Furthermore, for periodic data we will use a periodic kernel
kp(x,y) = α exp(−2 sin2(0.5|x− x′|)/σ2). This kernel is equivalent to the Gaussian kernel
on periodic features

kp(x,y) = kes([cos(x), sin(x)]T , [cos(y), sin(y)]T ).

Therefore, suitable random features can be generated as

zi(x) =
√

2αL−1 cos([cos(x), sin(x)]ωi + bi).

Products of Gaussian and periodic kernels can likewise be written as a single multivariate
Gaussian kernel on appropriate features of the inputs and handled in a similar way. As a
result, all matrix inversions are now performed on L× L rather than n× n matrices.

3. Experiments

We first evaluate our method first on a reaching task, and the under-powered pendulum
swing-up task. Then, we will consider two tasks with redundant inputs: we compare differ-
ent methods on a variant of the puddle-world task with a 400-dimensional input representa-
tion, and show the ability of the proposed method to learn a variant of the swing-up task on
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a real robot that has access only to camera images rather than joint angles. In this section,
we will first discuss elements of our set-up that are the same across tasks. Subsequently,
we discuss implementation specifics and results for each task separately.

3.1 Experimental Set-up

We assume a realistic exploration setup in which the agent cannot choose arbitrary state-
action pairs. Instead, as shown in Alg. 2, from an initial state distribution our agent explores
using its stochastic policy. After every 10 roll-outs, the model learner and the policy of the
agents are updated. To bootstrap the model and the policy, the agent is given 30 roll-outs
using a random exploratory policy initially. To avoid excessive computations, we include a
simple forgetting mechanism that only keeps the latest 30 roll-outs at any time.6 As each
roll-out contains 49 time steps on average in the larger tasks (as episodes are reset with a
constant probability after each step), most computations are performed on approximately
1500× 1500 matrices.

After each update, in simulated runs, the learning progress is evaluated by running the
learned policy on 100 roll-outs with a fixed random seed. This data is not used for learning.
For every method, we performed 10 trials, each consisting of 20 iterations so that 220
roll-outs were performed per trial (30 initial roll-outs plus 10 per iteration). In real-robot
runs we evaluate the learned policy on the training samples, and performed 6 trials of 10
iterations each. The model and policy are refined incrementally in every iteration.

3.2 Compared Methods

We compared learning progress of the proposed approach to that of various other ap-
proaches. On the one hand, we consider the non-parametric value-function based meth-
ods introduced by Grünewälder et al. (2012b) and Pazis and Parr (2011). On the other
hand, we will compare to the performance of neural-network based methods introduced by
Lillicrap et al. (2016) and Schulman et al. (2015) that are well-suited for redundant input
data. We also compare to versions of REPS with the sample-based model approximation
used by Peters et al. (2010) and Daniel et al. (2016), and one that uses a fixed feature set.
The relationship of the proposed approach to earlier non-parametric reinforcement learning
methods will be discussed in Section 4.3 on page 32.

3.2.1 Sample Based Model.

REPS only needs Es′ [V (s′)|s,a] at observed state-action pairs (si,ai). Therefore, if the
system is deterministic, this expectation is simply V (s′i) at the observed values for (si,ai).
In stochastic systems, this sample-based method is used as approximation.

3.2.2 Feature Based REPS with Fixed Basis Functions.

Instead of the non-parametric form of V assumed in this paper, we can follow earlier work
and define a fixed feature basis (Peters et al., 2010; Daniel et al., 2016). We choose to use a

6. As a consequence, the reference distribution q is a mixture of the previous three state-action distributions
in our experiments.
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similar number of the same radial basis functions used in the non-parametric method, but
distribute these according to a regular grid over the state-action space.

3.2.3 Approximate Value Iteration.

In this approach by Grünewälder et al. (2012b), the value function is assumed to be an
element of the chosen RKHS. The maximization of the Q function requires discretizing a,
for which we choose 25 uniform bins in the allowable range. A deterministic policy selects
a∗ = arg maxQ(si, ·), but this policy does not explore, yielding bad performance in on-
policy learning. To obtain an exploration-exploitation trade-off we replace the maximum
by the soft-max operator a∗ ∝ exp(Q(si, ·)c/stdev(Q(si, ·))). The free parameter c specifies
the greediness of the exploration/exploitation trade-off on normalized Q values. In an on-
policy scheme, the new policy is used to obtain samples for the next iteration.

As a comparison to this on-policy scheme, we also compare using a grid of state-action
pairs as training data. For a dense grid, this method has a richer input than all other
methods, as those other methods start with uninformed roll-outs from the initial-state
distribution. In a real system, obtaining such a grid is often unrealistic as the state cannot
be set arbitrarily.

3.2.4 Non-parametric Approximate Linear Programming.

Pazis and Parr (2011) introduced a non-parametric method, NPALP, that assumes the value
function is Lipschitz. This assumption allows the RL problem to be formalized as a linear
program. This method assumes the dynamics are deterministic. A greedy policy is obtained
that is optimal if all state-action pairs have been visited. Since visiting all state-action pairs
is infeasible in continuous systems, we include exploration by adding Gaussian distributed
noise to the action in a fraction ε of the selected actions.

3.2.5 Trust Region Policy Optimization.

This method, introduced by Schulman et al. (2015), uses a bound on the expected Kullback-
Leibler divergence between successive policies, inspired by a theoretical policy iteration
algorithm that guarantees non-decreasing expected returns. The method, TRPO, requires
a parametric policy to be defined, but has been shown to work well with deep neural-
network policies that can be used in many different tasks, thanks to their flexibility. We
use the reference implementation provided in the RLlab framework (Duan et al., 2016).
This TRPO implementation requires a fixed time horizon, so we evaluate this model on a
modified version of the tasks where the episodes are of fixed length, equal to the expected
episode length used for other methods.

3.2.6 Deep Deterministic Policy Gradients.

Lillicrap et al. (2016) introduced a policy gradient algorithm, DDPG, that works with
deterministic policies. DDPG is an actor-critic method that uses neural networks for both
the Q function and the policy. After each time step, the new experience sample is stored
in an ‘experience replay’ buffer, a randomly sampled batch from this buffer is then used
to calculate the policy gradient. This technique diminishes the problem that successive
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samples tend to be highly correlated. We again use the RLlab implementation (Duan et al.,
2016) with fixed episode length.

3.2.7 Linear Least Squares Policy Iteration

As an example of a linear method, we use LSPI (Lagoudakis and Parr, 2003). This method
learns a Q function by minimizing temporal differences. We only include this method
to show that linear methods in general do not suffice on our task with pixel inputs. As
suggested by Lagoudakis and Parr (2003), we use this method off-line, in contrast to the
other methods. Thus, all data used in this method has been gathered using the initial
exploration policy.

3.3 Approximation Methods

We compare the approximation methods described in Section 2.7 to each other, as well as to
a naive baseline. This comparison evaluates the trade-off between a better approximation
quality and a faster computation time across a range of different numbers of features and
inducing inputs.

3.3.1 Sub-sampling as Baseline.

For the sub-sampling baseline, we simply train the method as described in Section 2.2 with
a subset of the data points, ignoring the points that are not in the random subset.

3.3.2 Sparse Pseudo-input Gaussian Processes (SPGP).

We use the method proposed by Snelson and Ghahramani (2006) to approximate the Gaus-
sian process policy. To incorporate the desirability of data points, we use the modifications
proposed in Section 2.7. There is no straightforward extension of this method to learn
the Bellman error terms (Eq. 12). Therefore, in these steps of the algorithm we interpret
the matrix Knm introduced in Section 2.7 as a feature matrix. Subsequently, we calculate
the Bellman error terms using the feature-based formulation introduced by Peters et al.
(2010). In contrast to that work, we do not use single sample roll-outs, but calculate the
embedding strengths β (Section 2.2) using a linear kernel with the pseudo-features as in-
put. Snelson and Ghahramani (2006) suggest choosing the active subset by maximizing
the marginal likelihood. However, this maximization is a computationally intensive pro-
cess, and for the value function approximation, there is no criterion available equivalent to
the maximum likelihood criterion for the supervised learning set-up. Therefore, we choose
random subsets when applying this method.

3.3.3 Projected Latent Variables (LPV).

Additionally, we compare to the sparsification method proposed by Seeger et al. (2003). As
in the previous method, we interpret the Knm matrix as features and use these to calculate
embedding strengths and Bellman error terms.
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3.3.4 Regression-based Sparse GPs.

We also consider the regression-based sparse Gaussian Processes proposed in Section 2.7.
Again, the Knm matrix is interpreted as design matrix for calculation of the embedding
strengths and Bellman error terms.

3.3.5 Fourier Transform Based Approximation

The last method we consider is based on the work of Rahimi and Recht (2007), with the
extension to desirability-weighted samples as described in Section 2.7. As this method
approximates the policy using features, we can use these features to calculate embedding
strengths and Bellman error terms in the feature-based formulation introduced by Peters
et al. (2010).

3.4 Reaching Task Experiment

In the reaching task, we simulate a simple two-link planar robot. In this task, the agent’s
actions directly set the accelerations of the two joints. Each link is of unit length and
mass, and the system is completely deterministic. The agent gets negative reinforcement
r(s,a) = −10−4||a||22− ||x−xdes||22 according to the square of the applied action and of the
distance of its end-effector to the Cartesian position xdes = [0.5, 0]. Note that actions are
two dimensional and states are four dimensional (joint positions and velocities). The robot
starts stretched-out with the end-effector at x = [0, 2]. The maximum applied acceleration
is 50ms2. We use γ = 0.96, which resets roll-outs after 24 samples, on average.

We use the commonly used squared-exponential (or Gaussian) kernel for angular ve-
locities θ̇ and actions. This kernel is defined as kse(xi,xj) = exp(−(xi − xj)

TD(xi − xj))
(with D a diagonal matrix containing free bandwidth parameters). However, for the an-
gles θ we need a kernel that represents its periodicity. We use the kernel kp(xi, xj) =

exp(−∑d sin((x
(d)
i − x

(d)
j )/(2π))2/l2d), where l is a vector of free bandwidth parameters.

Consequently, we obtain a complete kernel

k((θi, θ̇i, ai), (θj , θ̇j , aj)) = kp(θi,θj)kse(θ̇i, θ̇j)kse(ai,aj),

composed of three simpler kernel functions.
Feature-based REPS needs a grid over the complete state-action space. Due to difficul-

ties with the six-dimensional state-action space, we omitted this method. The exploration
parameter ε of the NPALP method was set to 0.1, with the standard deviation of Gaus-
sian noise set to 30Nm2. The Lipschitz constant was set to 1 with the velocity dimensions
scaled by 1/5 for calculating distances. The exploration parameter c of the approximate
value iteration method was set to 1.5. These values were manually tuned to yield fast and
consistent learning progress. For REPS, we use a KL bound ε of 0.5 in our experiments,
as this value empirically yielded acceptably fast learning progress while keeping updates
smooth enough on a range of learning problems.

3.4.1 Results of the Reaching Task.

The results of the reaching task are shown in Figure 1. As this task is deterministic, the
sample-based model is optimal and provides an upper bound to the performance we can
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expect to get. Since non-parametric REPS with model learning needs to iteratively learn
the transition distribution, its convergence is slower. After inspection of individual trials,
the wide variance seems to be caused by occasional failures to find good hyper-parameters
for the state-action kernel.

NP-REPS, with model
NP-REPS, sample based
NPALP
Value iteration on-policy
Value iteration grid

Figure 1: Comparison of learning progress of
different methods on the reaching
task. As this environment is deter-
ministic, sample-based approxima-
tions of the transition functions are
optimal. Error bars show twice the
standard error of the mean. The
value-iteration method does not de-
pend on roll-outs, its performance is
shown for comparison.

The baseline methods NPALP and value
iteration using RKHS embeddings obtain
good performance after the couple of iter-
ations. However, if we iterate performing
roll-outs and policy updates after those first
steps, these methods fail to improve the pol-
icy consistently. The grid based value iter-
ation scheme fails in this case: due to mem-
ory limitations the maximum grid size we
could use was [5× 5× 5× 5× 2× 2] in the
6-dimensional space, which appears to be
insufficient to learn the task.

3.5 Low-Dimensional
Swing-up Experiment

In this experiment, we simulate a pendulum
with a length l = 0.5m and a mass m =
10kg distributed along its length. A torque
a can be applied at the pivot. The pen-
dulum is modeled by the dynamics equa-
tion θ̈ = (glm sin θ+a−kθ̇)/(ml2/3), where
k = 0.25Ns is a friction coefficient and g = 9.81 is the gravitational constant. The con-
troller’s sampling frequency is 20 Hz, i.e., every 0.05s the agent gets a reward and chooses
a new action. The maximum admissible torque is 30Nm, which prevents a direct swing-up
from the downwards position. Additive noise with a variance of 1/dt disturbs the controls,
resulting in a standard deviation of about 4.5Nm per time step. The reward function was
set to r(s, a) = −10θ2− 0.1θ̇2− 10−3a2, where θ is mapped to [−0.5π, 1.5π) to differentiate
the rewards of clockwise and counter-clockwise swing-ups. We use a reset probability of
0.02 (γ = 0.98).

The algorithms directly access the state variable encoding the angle θ and the angular
velocity θ̇, i.e., the state is defined as s = [θ, θ̇]T . The same kernels are used as in the reaching
task experiment (Section 3.4). The NPALP method was not designed for stochastic systems
and is consequently omitted. We set the grid size for feature-based REPS to [10× 10× 10]
and for the value-iteration method to [19 × 11 × 11]. The greediness parameter c for on-
policy value-iteration was set to 2 after manual tuning. We compare the KL bound ε used
in the previous experiment, 0.5, to two extreme settings ε = 5 and ε = 0.05 to illustrate the
effect of this bound.
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NP-REPS, with model
NP-REPS, sample based
REPS feature-based + model

Value iteration grid
Value iteration on-policy

(a) Comparison of learning progress of different
methods on the swing-up task.
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(b) Comparison of learning progress under dif-
ferent bounds ε on the KL-divergence.

Figure 2: Results of the low-dimensional swing-up experiment. Our non-parametric relative
entropy method outperforms the other on-policy learners. Error bars show twice
the standard error of the mean.

3.5.1 Results of the Low-Dimensional Swing-up.

We show a comparison of the discussed methods in Figure 2a. The value iteration method
starts out competitively, but fails to keep improving the policy. Large variance indicates
the learning process is unstable. The bounded policy update in REPS makes the learning
progress smooth by limiting information loss, limiting exploitation to retain more explo-
ration in early stages of the learning process.
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Figure 3: Mean of the learned stochastic pol-
icy. Superimposed are 15 trajecto-
ries starting at the x-axis between
0 and 2π. Most roll-outs reach the
desired inverted pose, possibly af-
ter one swing back and forth. One
roll-out overshoots and makes a full
rotation before stabilizing the pen-
dulum.

The sample-based baseline model per-
forms considerably worse in this experi-
ment, as it cannot account for stochastic
transitions. The variant with fixed features
performs well initially, but in later itera-
tions, the non-parametric method is able to
focus its representative power on frequently
visited parts of the state space, resulting in
an improved performance.

We show a comparison for different val-
ues of the KL bound ε in Figure 2b. We
plotted two rather extreme values for ε. For
a large value of ε = 5, we observe behavior
that is similar to the greedy value iteration
scheme. Initially, performance increases,
but learning progress has a high variance
and is not smooth. Sub-optimal perfor-
mance to both the proposed value ε = 0.5
and the greedy value-iteration is caused by
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instability of the policy fitting described in Section 2.5 when the sample weights span sev-
eral orders of magnitude. For a low value of ε = 0.05, learning progress is very stable but
slow. We found that setting ε = 0.5 yielded good performance in all tasks we tried.

In contrast to the previous experiment, here, the grid-based value iteration method
worked well, as shown in Figure 2a. The policy learned by NP-REPS, shown in Figure 3,
sometimes overshoots the inverted position, which the grid based value iteration avoids.
However, to reach this performance, a grid of training samples covering the full state-action
space was needed. Providing such a grid is only feasible in simulation, as without an existing
controller, it is generally not possible to start the dynamical system with arbitrary position
and velocity. Furthermore, on higher-dimensional tasks, a grid of sufficient resolution would
require impracticably many samples.

3.6 Image-based Puddle World Experiment

In this experiment, we investigated a modified version of the classical puddle-world task
with a 400-dimensional redundant representation. In the puddle world task, the agent
has to navigate to one corner of a two-dimensional world while avoiding high-cost areas
(‘puddles’). The aim of this experiment is to confirm the ability of our proposed method
to handle such representation, and to compare our method to other method that have been
shown to work well with raw sensory representations. We mostly follow the description for
the puddle world by Sutton (1996). As size of the goal region we use the area above the
line x+ y = 1.8. We represent the state by a simple rendered pixel image, where the agent
is represented by a circle of 8% of the image size (the agent does not ‘see’ the puddles, but
has to learn where they are from experience). We found that for the policy search methods
we studied, a relatively low discount factor (γ = 0.96) or corresponding reset probability
(0.04) provided lower-variance results. Such a discount factor makes long-term rewards less
salient, thus we modified the per time step reward to -10. To make the task sensible in an
average-reward setting, we do not restart when the goal area is reached, rather requiring
the agent to learn to maintain this desired position.

A Gaussian kernel directly on pixel images would be very sensitive to even small shifts.
A better choice is a kernel exponential in the squared difference between low-pass filtered
images. To this end, we convolve the image with a Gaussian kernel of 20% of the image
size. The same representation is also used for the other methods. Note, that methods based
on neural networks would be able to learn this and other invariances, but this additional
expressive power comes at the cost of many parameters that have to be learned. The image
is finally down-scaled to 20 × 20 pixels to be able to reduce the size of a batch of images
in working memory. This does not change much for non-parametric methods (as relative
distance between images should stay roughly constant), and reduces the number of weights
in neural network based methods. We again performed 10 separate trials for each method,
using 15 iterations for REPS and an equivalent amount of training experiments for the
other methods. In each iteration, 20 roll-outs were performed, retaining the roll-outs from
the last 3 iterations in memory as before.

The methods under comparison were tuned as follows. For NP-REPS, we set the band-
width of the value function to half the maximal pixel intensity and added a l2 regularizer
10−9αTα to Eq. (11) to avoid over-fitting as this yielded good empirical performance.
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Other hyper-parameters were optimized as explained previously, with the bandwidth of all
pixels for the model and policy tied together to speed up optimization. The KL-bound ε was
again set to 0.5. For LSPI, we discretized the actions in horizontal and vertical directions
to three values: the maximum in either direction or 0.

For the neural-network based methods, we started from the default values in the RLlab
implementation (Duan et al., 2016). We adapted the batch size / epoch length to the
20 roll-outs performed per iteration. We manually tuned other parameters to maximize
empirical performance. This procedure resulted in a KL bound of 0.05 for TRPO (much
higher than the default, which is tuned for situations where a lot of data is available but the
task is harder). For DDPG, we obtained a learning rate of 10−4 for both the Q function and
policy, a minimum replay memory size of 1500 and a maximum memory size of 5000 and
a batch size of 64 (the relatively high batch size made the method more sample efficient).
For DDPG, we used a Gaussian exploration strategy with a decay period of 5000, as well
as multi-layer perceptron for the Q function. We tried several convolutional and three-layer
feed-forward architectures, and got best performance for two layers with 4 hidden units
each for TRPO and two layers with 8 hidden units for DDPG.

3.6.1 Results of the Image-based Puddle World Experiment.

Figure 4: Results of the image-based puddle-
world experiment. The RLlab ver-
sion of DDPG only reports perfor-
mance once the replay memory is
initialized, so this graph starts after
80 roll-outs. Error bars show twice
the standard error of the mean.

The performance of the compared methods
is shown in Figure 4. The poor performance
of the LSPI method directly on raw pix-
els indicates that the problem is non-linear.
TRPO with a neural network policy learns
relatively slowly (we tried higher learning
rates, however, these made learning more
unstable but did not yield higher average re-
turns). In our experiments, TRPO needed
at least 1000 roll-outs to converge to a good
solution. DDPG with a neural network pol-
icy and Q function learns about as fast as
NP-REPS, but yields high-variance results
that tend to be slightly worse by the end of
the experiment.

We want to stress two potential limita-
tions of this experiment. First, difference
between the compared methods might be
due to either the representation of the pol-
icy and/or value function or the algorithm
itself. Where NP-REPS uses kernel meth-
ods to represent the V function and the policy, TRPO and DDPG use neural networks.
LSPI used a value function linear in the raw pixels with a greedy policy. Where in this
experiment a non-parametric representation seems beneficial, in domains with visual dis-
tractors neural networks might do better. Secondly, this experiment evaluates how well
TRPO and DDPG do in a situation with a low number of training roll-outs, whereas these
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methods are commonly used to work with a much higher number of roll-outs where they
tend to do well.

3.7 Approximation Experiment on the Swing-up Task

We evaluated different schemes for approximating the kernel matrix on the pendulum swing-
up task described in Section 3.5. We do this by training policies using the various methods
discussed in Section 3.3. The trade-off between accuracy and computational speed is de-
fined by the number of inducing inputs for the sparse kernel methods, or by the number
of random features used for the Fourier-transform based approximation. The number of
features (respectively, inducing inputs) was varied to investigate the trade-off between ap-
proximation accuracy and computation speed. We measured the learning progress using the
average reward, and additionally logged the time needed per iteration for each condition.
We report the average time needed over 10 trials of 10 iterations.

3.7.1 Results and Discussion of the Approximation Experiment.

A comparison of our results using different numbers of features is shown in Figure 5. In
Figure 5a, all available inputs were used, and hence no approximation is needed. Thus,
the sub-sampling method reduces to the original methods, and performs best. However, if
the number of available bases is reduced to 500 (about one third of the available training
points), just training on a sampled subset performs very badly, as shown in Figure 5b. In
this set-up, the approximation based on a Fourier transform of the kernel seems the most
suitable, both in terms of sample efficiency and of asymptotic average reward.

In Figure 5c, the available number of bases is reduced even more, to about 7% of the
available training data. In this case, the regression-based sparsification method allows faster
learning than the Fourier-based methods and both other sparsification methods, possibly
because we used induced inputs ỹ that were optimal in a least-square sense. Considering
that only 7% of the basis is available, the drop in performance relative to the full availability
is modest.

Overall, the SPGP and LPV sparsification methods perform very similarly and yield sim-
ilar asymptotic values as the regression-based sparsification methods. The main difference
between these methods is the additional regularization term based on the approximation
accuracy that Snelson and Ghahramani (2006) introduced. One of the main benefits of
this additional regularization is a better behavior of the marginal likelihood for the purpose
of optimizing the inducing input points (Snelson and Ghahramani, 2006). As we did not
optimize for these points (as that would be too computationally costly to do inside the
reinforcement-learning loop), our results seems plausible in this respect.

An indication of the time requirement of the different methods is given in Figure 5d. The
implementations of the algorithms are not directly comparable, so drawing hard conclusions
about the algorithms is not possible on the basis of this data. For example, cross-validation
can be implemented using a fast decremental update of the matrix inverse only for the
sub-sampled and Fourier-based methods. For the other sparsification methods, there is no
straightforward way to implement this speed-up so these were trained using a 2-fold cross-
validation setup (rather than using one fold for each trajectory, which would have been
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(a) Different approximation methods using
1500 features or all available (on average
1500) inducing inputs.
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(d) Time requirement of different approxima-
tion methods on a 2.7 GHz processor running
in single threads, log scale.

Figure 5: Results of the evaluation of different approximation methods using different num-
bers of features. In all graphs, error bars indicate twice the standard error of the
mean. The learning curves show error bars only for every fifth iteration to keep
the figures interpretable. At a medium number of features (b), the Fourier-based
random features deliver performance that is almost equal to the original algo-
rithm, while requiring fewer computational resources (d). More computational
resources can be saved by using only 100 features or inducing inputs, at the cost
of a larger performance gap to the original algorithm (c).

even more expensive computationally). Therefore, these three methods (‘SPGP’, ‘LPV’,
and ‘Sparse’) are slowest in cases with many available inducing inputs.

When all data is available, applying any approximation takes more time than the baseline
‘sampling’ method. However, the ‘Fourier’ method tends to be much faster when the number
of features is reduced—one of the reasons for this effect is that in our implementation,
calculated features are cached. This caching benefits feature-based approximations, but
not kernel-based ones. Compared to using all available bases without approximating, the
‘Fourier’ method with 500 bases is about twice as fast at a similar level of performance.
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3.8 Real-Robot Swing-up Experiment from Vision Data

In this last experiment, we aim to validate our method on a real-robot task. We consider
two scenarios: the learner either has access to the joint angles and velocity, or only to a
redundant image-based representations of the state obtained through a camera pointed at
the robot. Considering the time it takes to perform robot evaluations, and the wear to the
robotic system, we provide a proof-of-concept of the proposed method without comparing
to other methods.

3.8.1 Robot Set-up and System Dynamics.

To the end-effector of a Kuka light-weight robot arm, we attached a wooden rod with a
mass of roughly 1kg and a length of roughly 80 cm. Red cardboard was used to make the
pendulum visually salient. We aim to swing this rod up using the last degree-of-freedom,
and limit the torque of the corresponding motor such that the pendulum cannot be swung
up directly from the downwards position. This set-up is shown in Figure 6a.

A couple of characteristics of the robot system make the task different from the simulated
pendulum swing-up task in the previous section. The robot link is limited in its range of
motion to less than 2π and in its velocity to less than about 4.2/s, whereas the simulation
had no such limitation. To prevent the robot from moving hard into these limits, we add
a feedback signal that stops the robot if it gets close to those limits for safety.7 The joint
limits are illustrated in Figure 6b.

To perform exploration on the real robot, another issue to address is that high jerk
motions might damage the gearboxes. Therefore, instead of controlling the torque as in
the previous experiments, we will control an increment to the torque. This increment will
smoothly be added to the previous torque over the course of one time step. Controlling
the increment, rather than directly controlling the torque, has the additional benefit that
the applied torque tends to be more consistent over time, preventing ‘washing out’ of high-
frequency control signals on the robot system. To preserve Markov properties, the previous
torque has to be appended to the state vector. To provide comparable results over the
different robot trials, instead of resetting the system randomly, we reset the system every
50 time steps to a set of ten different starting angles. The starting velocity and acceleration
are set to zero.

3.8.2 Camera Set-up and Image Processing.

The camera provides video frames at a rate of about 30Hz, but this rate can fluctuate
slightly during the experiments. To prevent synchronization issues between the camera and
the control system, we let the arrival of camera images govern the time step length. Since
we want to control the robot at about ten Hertz, we choose a new action whenever every
third camera image is received. Consequently, not all torques are applied for the same
duration, providing a source of transition noise.

To keep the amount of storage space and processing time limited, we down-sample the
images to 15 × 20 pixels and reduce the image to a single channel (by subtracting the
average brightness from the red channel value, since the color of the pendulum is red). The

7. The exact feedback signals used are given in Appendix C.

24



Non-parametric Policy Search with Limited Information Loss

(a)

0π

−π/2

−π

π/2

π/4

−5/4π

θ

(b)

Figure 6: The set-up of the real-robot swing-up experiment with redundant representation.
(a) The robot set-up. One of the robot arms holds a pendulum which has a mass
of about 1 kg and a length of about 80 cm. The Kinect camera in the foreground
is used to provide feedback to the robot (proprioceptive joint information is not
available to the robot). (b) An illustration of the set-up that illustrates the
coordinate system used. As the image is shown from the camera’s point of view,
the coordinate system is inverted (clockwise θ). In the shaded area, an additional
torque is applied to keep the robot from running into the joint limit at π/2.

image is blurred slightly with a low-pass filter to smooth out sensor noise, using a Gaussian
kernel with a bandwidth of 6% of the image width. To provide the learner with a notion
of velocity, the 15 × 20 pixel image and the 15 × 20 difference image to the previous time
step were given to the robot as a concatenated 600-dimensional feature vector, as shown in
Figure 7.

3.8.3 Employed Reward Function and Kernel.

In contrast to the earlier experiment, the real robot system is not periodic as it cannot turn
the joint more than 2π. Consequently, we need a reward function that punishes the robot
for getting too close to the joint limit. We use the reward function

r(s, a) = exp
(
−(1.5θ)2

)
− 2(θ − 0.25)1{x∈R:x>0.25}(θ)− 0.0005a2,

where the first term rewards the robot for being close to the upright position and the second
term penalizes the robot for being too close to the joint limit. All else being equal, we prefer
solutions that do not needlessly change the torque, as jerky motion can damage the robots.
Therefore, the third term penalizes large control actions.

As kernel on the state variables, we used a Gaussian kernel with three separate band-
width parameters: one for all pixels of the current image, one for all pixels of the difference
image, and one for the previously applied torque. The bandwidth parameters for all pixels
of each image were tied together in this way to keep the hyper-parameter optimization
manageable. For the learned transition model, the kernel on the action (torque increment)
is again a squared exponential.
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- -

Figure 7: Sensor representation used by the robot. The Kinect camera image is down-
sampled into 15 by 20 pixels and converted to a single-channel image by sub-
tracting the average intensity from the red channel values. From the resulting
sequence of images, the current image and the difference between the current im-
age and the previous image are concatenated with the previously applied torque,
yielding a 601-dimensional feature vector.
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In this experiment, the heuristic for setting the bandwidth for the value function approx-
imation according to the TD-error did not always work. Therefore, these three bandwidth
parameters were set by hand to 0.5, 1.4, and 4.0, respectively, as these values allowed good
prediction performance while being able to represent the value function with enough ac-
curacy. The bandwidth parameters and other kernel parameters for the learned transition
model and the policy were set automatically by maximizing the same cross-validation ob-
jectives used in the previous experiments. The bound on the KL divergence was set to
ε = 0.8.

We used the Fourier feature approximation to the full kernel matrix, as the simulation
experiments showed these features to yield good performance with an intermediate number
of bases while also requiring relatively little computation time. Furthermore, computing
the features and evaluating the linear Bayesian policy is straightforward to implement on a
robotic system and can run in real-time as it has relatively low computational demands. We
used 1000 random basis features, as the system is intrinsically higher dimensional compared
to the simulated pendulum swing-up experiment (as we appended the previously applied
torque to the state vector).

Sometimes, a feasible solution to the dual optimization problem could not be found.
We considered this effect could be due to over-fitting to the sensor noise in the camera
that made the system partially observable. We addressed this issue by projecting the 1000-
dimensional feature vectors on all principal components with principal values at least 5% of
the maximum principal value for purpose of optimization of the dual function (Eq. 11) only.
This procedure yielded between 100 and 200 components on our data set and addressed the
problem satisfactorily. The dimension reduction also sped up the optimization of the dual
function. Models and policies were still learned in the original 1000-dimensional spaces, as
these steps contain regularization terms that make them robust to such over-fitting.

3.8.4 Results for the Real-robot Swing-up from Vision Data.

The results of the robot swing-up task are shown in Figure 8.8 Of the six trials we performed,
five resulted in policies that successfully swing-up and balance the pendulum. An example
of the phase-space is shown in Figure 8a. It is apparent that the pendulum oscillates near
the target position which occasionally causes the pendulum to drop. The pendulum-camera
system has some system delay which could cause such oscillations, and which also prevents
a finer time discretization.

Figure 8b shows the average learning progress for the task. The system learns from
an initial uninformed policy that hardly obtains high rewards. Our result shows that non-
parametric methods are a promising approach to dealing with redundant state representa-
tions such as images, since the task is successfully learned. Nevertheless, knowing a good
representation, such as joint values, still resulted in better learning performance. Generally,
many different representations could be used as long as a kernel yields appropriate similar-
ity values can be defined that. In the end, the algorithm only performs operations based
on those similarity values. Some pixels will never change their value. Such pixels are not
problematic, as stationary kernels such as the squared exponential are not influenced by
them.

8. A video illustrating the experiment and the results is available at http://youtu.be/y00HJu2qcO0.

27

http://youtu.be/y00HJu2qcO0


Van Hoof, Neumann and Peters

angle (rad)
-1.5 π -π -0.5 π 0 0.5 π

an
gu

la
r v

el
oc

ity
 (r

ad
/s

)

-4

-2

0

2

4

-3

-2

-1

0

1

2

3

(a) Phase-space trajectories with torque.

av
er

ag
e 

re
wa

rd

number of rollouts
0 20 40 60 80 100 120

0

0.2

0.4

0.6

0.8
NP-REPS with pictures
NP-REPS with joint values

(b) Learning progress over six trials.

Figure 8: Results of the real-robot experiment from vision data. (a) Phase-space trajecto-
ries of one of the learned policies. Color indicates the applied torque (Nm). In
most trajectories, the robot manages to swing up the pendulum and balance it
around the upright position (θ = 0). Near this position, the pendulum tends to
oscillate as a consequence of time discretization and system delays. (b) Learning
progress with input from either joint angles or pictures only. The REPS algo-
rithm would converge to a locally optimum solution regardless of input modality,
but seems to need more training time to reach such a local optimum using visual
input. The graph shows the average reward over six independent trials. Error
bars show twice the standard error.
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4. Related Work

Over the years, many different reinforcement learning (RL) algorithms have been proposed,
as reviewed by, among others, Bertsekas and Tsitsiklis (1996); Szepesvári (2010); Sutton and
Barto (1998); Busoniu et al. (2010); Powell (2007); Bartlett (2003); Kaelbling et al. (1996);
Wiering and Otterlo (2012); and Deisenroth et al. (2013). Many of the most well-known
algorithms are value-function methods. However, there is no notion of the sampled data or
sampling policy in the value function, making it impossible to limit the loss of information
as the policy is updated (Peters et al., 2010). Furthermore, in continuous state-action
spaces, such methods need to be approximated, which means that policy iteration does not
necessarily improve the policy (Kakade and Langford, 2002; Bartlett, 2003).

Policy search methods are a complementary class of reinforcement learning approaches,
which explicitly represent the sampling policy (Deisenroth et al., 2013). Such methods might
additionally represent a value function, e.g. (Williams, 1992; Peters and Schaal, 2008; Sut-
ton and Barto, 1998), in which case they are referred to as actor-critic algorithms. Policy
search methods allow the learning agent to take the sampled data or the sampling policy into
account. Policy search methods offer other advantages: policies might be easier to represent
than value functions and convergent algorithms for policy search are known (Bagnell and
Schneider, 2003a). Furthermore, for certain policy parameterizations, stability guarantees
can be given (Deisenroth et al., 2013). If prior knowledge or task demonstrations are avail-
able, these can usually be integrated straightforwardly in policy search methods (Deisenroth
et al., 2013; Peters and Schaal, 2006). For these reasons, policy search methods have in
practice proven to work well on real (e.g. robotic) systems (Deisenroth et al., 2013).

In high-dimensional domains, both value-function and policy search methods have often
relied on hand-crafted feature representations (Kaelbling et al., 1996; Kober et al., 2013;
Bartlett, 2003). This hand-tuning can largely be avoided by learning a suitable represen-
tation (Jonschkowski and Brock, 2015; Böhmer et al., 2013). Such an approach, however,
often requires a lot of training data and usually relies on non-convex optimization. Defining
a representation can also be side-stepped by using non-parametric methods (Ormoneit and
Sen, 2002; Rasmussen and Kuss, 2003), that implicitly use very rich representations that
can adapt to the complexity of the data. Such methods, however, have the disadvantage
that they usually rely on inverting matrices that grow with the data set. As a solution,
efficient approximations can be used (Seeger et al., 2003; Snelson and Ghahramani, 2006;
Rahimi and Recht, 2007).

We discuss these issues in more detail in the remainder of this section. First, we discuss
various RL methods that provide stable policy updates. Subsequently, we give an overview
of different studies addressing RL with high-dimensional states, followed by a discussion
of non-parametric RL techniques. Finally, we discuss various methods for efficiently ap-
proximating non-parametric methods that allow such methods to be applied to large data
sets.

4.1 Policy Updates with Limited Information Loss.

Perhaps the most straightforward way to limit the information loss of a policy is to stay
close to a previous policy. Policy gradient methods (Williams, 1992; Sutton et al., 1999),
for example, limit the policy update δθ to a step in the gradient direction of fixed Euclidean
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length δθT δθ = ε. However, this metric is not invariant to re-parametrization of the
policy. This problem can be addressed by instead using the Fisher information metric
F in the constraint δθTF(θ)δθ = ε, as suggested by Kakade (2002). This constraint can
be interpreted as the second-order Taylor expansion of the loss of information (relative
entropy) between the path distributions of the original and the updated policy (Bagnell
and Schneider, 2003a).

There are two main approaches to specifying such an information constraint. As sug-
gested by Bagnell and Schneider (2003a), the loss of information between successive path
distributions might be bounded. Such a formulation is equivalent to bounding the expected
loss of information between successive policies, since the transition dynamics are the same
under both path distributions. In our previous work (Peters et al., 2010), we instead pro-
posed to bound the information loss between successive state-action distributions.

The first formulation has led to various algorithms that provide stable policy updates.
For example, the dynamic policy programming algorithm (Azar et al., 2011) uses the relative
entropy between successive policies as an additional cost term in the value function. Similar
update equations have been derived from two points of view. Firstly, from the point of view
of maximizing the cumulative reward under constraints on the communication bandwidth
or data processing capacity (Tishby and Polani, 2011), or, equivalently, minimizing the pol-
icy complexity under a constraint on the policy’s value (Still and Precup, 2012). Another
derivation minimizes the relative entropy from the trajectory distribution conditioned on ob-
taining maximal rewards to the proposed policy (Rawlik et al., 2013b). In these approaches,
the trade-off between greedy exploitation and maintaining stable updates—analogous to the
(inverse) temperature of a Boltzmann distribution—is a free parameter. To obtain conver-
gence, an update schedule that decays the temperature over time has to be designed. In
contrast to adding the relative entropy as a cost-term, Levine and Abbeel (2014) employ a
bound on the relative entropy between successive policies.

Another line of work, that is related to bounding the divergence between successive
policies, has focused on guaranteeing improvement of the policy by limiting the policy up-
date. In conservative policy iteration (Kakade and Langford, 2002) and safe policy iteration
(Pirotta et al., 2013), the updated policy is a mixture of the old policy and a greedy policy
that maximized a lower bound on the policy improvement. Trust region policy optimization
(Schulman et al., 2015) similarly guarantees policy improvement, using the relative entropy
between successive policies in the lower bound.

Kober et al. (2013) observed that “in practice, reinforcement learning algorithms tend
to work best for real systems when they are constrained to make modest changes to the
distribution over states while learning”. However, depending on the system dynamics, a
small change in the policy might cause a large change in the distribution of states visited by
the policy. Thus, it may be advantageous to limit the relative entropy between successive
state-action distributions rather than between successive policies or trajectory distributions.
Empirically, a bound on the state-action distribution has been shown to outperform a bound
on the policy for relatively large step-sizes (Lioutikov et al., 2014). Moreover, bounding
the information loss between subsequent state-action distributions has been shown to have
optimal regret in an adversarial Markov decision process (MDP) settings for discrete finite
horizon problems (Zimin and Neu, 2013).
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In our previous work (Peters et al., 2010), the Relative Entropy Policy Search (REPS)
algorithm was derived based on such a bound on the relative entropy between successive
state-action distributions. Policies learned using REPS re-weight the previous state-action
distribution using a soft-max of the advantage function. This soft-max policy is reminis-
cent of the common ad-hoc exploration-exploitation trade-off using Boltzmann exploration
(Kaelbling et al., 1996; Sutton, 1990; Lin, 1993), expectation-maximization based updates
(Peters and Schaal, 2007; Kober et al., 2011), and the previously discussed algorithms by
Azar et al. (2011) and Rawlik et al. (2013b). The advantage of REPS is, that the ‘temper-
ature’ parameter that governs exploration is set directly by the algorithm. As a result, the
algorithm is invariant to re-scaling of the reward function, and the temperature automati-
cally decreases as the policy converges.

Alternative techniques search an optimal policy within the space of policies of similar
exponential form (Lever and Stafford, 2015; Bagnell and Schneider, 2003b). In REPS, the
exponential form does not result from an imposed search-space of the policy, but is a direct
consequence of solving the bounded optimization problem. Under specific assumptions
on the environment and the reward functions, exponential transformations of the value
functions are also used in the definition of the optimal policy in the non-parametric method
by Rawlik et al. (2013a). The embedding of the exponentiated value function, however,
suffers from numerical problems where the value function is low.

Earlier approaches based on the REPS formulation (Lioutikov et al., 2014; Kupcsik
et al., 2013; Peters et al., 2010; Daniel et al., 2016) have shown to be successful on a variety
of problems. In all these approaches, a function-valued Lagrangian multiplier V emerges
from the resulting optimization problem, which can be seen as a value function (Peters
et al., 2010). However, these approaches assume the Lagrangian multiplier V is linear in
manually-defined features, making it hard to apply the algorithm to domains with high-
dimensional non-linear sensor representations. We relaxed this assumption, by requiring V
to be a member of a non-linear RKHS, allowing implicit infinite feature representations. In
contrast to earlier approaches based on the REPS optimization problem, our method can
naturally handle non-parametric policies, such as Gaussian process policies.

REPS requires the estimation of the Bellman error. This estimation can, for example, be
performed using a learned transition model. Thus far, work on learned transition models for
REPS has been limited. The transition dynamics have been approximated by deterministic
single-sample outcomes (Daniel et al., 2016; Peters et al., 2010) which only works well for
deterministic environments, or by time-dependent linear models (Lioutikov et al., 2014).
Gaussian process models have been used in the bandit setting (Kupcsik et al., 2013) to
learn a simulator that predicts the outcome of new roll-outs. Instead, similar to previous
value function methods (Grünewälder et al., 2012b; Boots et al., 2013; Nishiyama et al.,
2012), we will employ empirical conditional RKHS embeddings to obtain non-linear models
for step-based reinforcement learning.

4.2 Reinforcement Learning for High-dimensional State Representations.

Recently, several researchers have started to address the problem of reinforcement learning
with high-dimensional state representations such as camera images. In many of these works,
learning consists of two fully separate steps: learning a representation and, subsequently,
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learning a policy or value function. One possible approach is to view the problem as
reducing the dimensionality of the high-dimensional states while losing as little information
as possible. For such a purpose, deep neural networks such as deep auto-encoders have
become popular. For example, Lange et al. (2012) and Mattner et al. (2012) used such
networks to learn state representations that were subsequently exploited to learn visual tasks
using fitted Q-iteration or non-parametric approximate dynamic programming, respectively.
Finn et al. (2016) used spatial auto-encoders, that exploit the spatial coherence of images,
to learn visual pushing tasks using guided policy search.

The discussed methods do not explicitly make use of the structure of reinforcement
learning problems. In domains where salient sensory distractors occur, taking such structure
into account can help avoid representing those distractors. Jonschkowski and Brock (2015)
proposed a method that takes observed transitions and rewards into account using a set of
robotic priors, to learn representations for, among others, a visual navigation task. Another
way to take the dynamics into account is to use slow-feature analysis, which encodes diffusion
distances based on the transition kernel (Böhmer et al., 2013). The learned representations
were used in an LSPI approach to learn visual navigation. A visual navigation task was
also addressed by Boots et al. (2011), who select features based on their ability to predict
characteristics of possible future events. Forcing the dynamics to be linear in the latent space
is another way of enforcing a task-relevant representation. Watter et al. (2015) showed this
principle to be successful at learning representations for model-predictive control of several
dynamical systems in an off-policy setting.

The goal of finding a state representation that takes the task structure into account can
also be reached by directly learning neural network policies that map from high-dimensional
sensory information to control actions (Levine et al., 2016). In this approach, the hidden
neurons act as feature representation. As the network is trained to reproduce correct ac-
tions, those neurons are optimized to provide a representation that helps the learning agent
succeed at its task. This method requires having a low-dimensional task representation
available at train time. It guides the neural network training using locally optimized tra-
jectories. Mnih et al. (2015) instead directly used a neural network as an approximate Q
function, as such an approach is able to scale to large networks and data sets. Their method
obtained superb performance on playing Atari games, but is limited to problems with a dis-
crete set of actions. Other methods have used neural networks that represent policies and
have achieved impressive results on simulated dynamical systems, including bipedal loco-
motion and a driving simulator (Schulman et al., 2015; Mnih et al., 2016; Lillicrap et al.,
2016). These methods, however, tend to require data sets with a million transitions or
more to achieve these results. Such large data sets are impractical to obtain for real phys-
ical systems, e.g., robots. Furthermore, all neural-network based learning methods rely on
non-convex optimization of all the network weights.

4.3 Non-parametric Reinforcement Learning Methods.

Non-parametric kernel methods use an implicit representation of the data, and therefore
avoid the explicit choice of a feature representation. Many different approaches in rein-
forcement learning have been re-formulated to use non-parametric methods. For example,
non-parametric value iteration methods have been proposed for (partially observable) MDPs
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(Grünewälder et al., 2012b; Nishiyama et al., 2012), and non-parametric approximate dy-
namic programming method have been proposed by Ormoneit and Sen (2002), Taylor and
Parr (2009), Deisenroth et al. (2009), Kroemer and Peters (2011) and Xu et al. (2014). Engel
et al. (2003) proposed a Gaussian process (GP) temporal difference algorithm, and further-
more, there are examples of non-parametric policy iteration schemes such as kernelized
least-squares policy evaluation (Jung and Polani, 2007) and least-squares policy iteration
(Xu et al., 2007; Rasmussen and Kuss, 2003). The approximate linear programming algo-
rithm, proposed by Pazis and Parr (2011), does not use kernels. Instead, this model-free
method assumes the value function is Lipschitz, and assumes deterministic dynamics. Such
value function methods use greedy maximization with respect to approximated value func-
tions. Consequentially, these methods use deterministic actions. If exploration of the state
space is required, heuristics such as an ε-greedy or a soft-max policy can be used. Further-
more, Grünewälder et al. (2012b) and Nishiyama et al. (2012) consider only discrete action
sets and assume the state-action space can be sampled uniformly. For robotic systems, this
can generally only be done in simulation.

Policy-search methods can be applied to address these shortcomings, by iteratively im-
proving a policy. Kober et al. (2011) introduced cost-regularized kernel regression, which
finds non-parametric policies for contextual bandits. In contrast, other approaches have
focused on step-based decision making. For example, Bagnell and Schneider (2003b) devel-
oped a policy gradient method embedding a desirability function that defines a policy in a
RKHS. However, their approach is restricted to discrete actions, and as a model-free method,
cannot exploit learnable system dynamics. More recently, Lever and Stafford (2015) intro-
duced another policy gradient approach, which searches for the mean function of a Gaussian
process policy within a RKHS. Although this method cannot represent non-Gaussian poli-
cies, unlike the method of Bagnell and Schneider (2003b), it can represent policies that are
close to deterministic more easily. A disadvantage of this method is that a schedule to decay
the co-variance of the Gaussian towards zero has to be manually defined. Vien et al. (2016)
introduced a non-parametric variant of the natural policy gradient, together with a natural
actor-critic algorithm and expectation-maximization based updates.

Alternative non-parametric methods were proposed by Rawlik et al. (2013a) and Deisen-
roth and Rasmussen (2011). The method by Rawlik et al. (2013a) considers continuous-time
systems with continuous actions. This method assumes the environments injects observ-
able control noise and that the system is control-affine. Deisenroth and Rasmussen (2011)
describe a model-based iterative method. They explicitly marginalize the uncertain non-
parametric model to avoid over-greedy optimization. However, their method requires the
reward function to be known and to be of squared exponential form. Additionally, it selects
actions greedily and so it does not address the exploration problem.

4.4 Efficient Approximation for Non-parametric RL Methods.

Kernel-based non-parametric methods usually require inverting Gram matrices, which are
of dimension n × n, where n is the number of data points. This step is a bottleneck for
scaling up these methods to large data sets (1000 - 10000 samples being the upper limit
where most of these methods start to be prohibitively slow). Therefore, non-parametric
approaches benefit from efficient approximations for large data sets.
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Multiple non-parametric RL algorithms handle large data sets by selecting a subset of
data points, and then finding coefficients for each of the kernels using a quadratic program-
ming problem (Engel et al., 2003; Xu et al., 2014; Jung and Polani, 2007; Xu et al., 2007;
Lever and Stafford, 2015). In most cases, this sparsification approach results in an approxi-
mation of the kernel function by a non-stationary kernel function parametrized by a subset
of active data-points, as pointed out by Jung and Polani (2007) and Xu et al. (2007). If all
data-points were chosen to be active, this approximation would be exact.

A sparsification approach for the method of Ormoneit and Sen (2002) has been proposed
by Barreto et al. (2011). The proposed stochastic factorization approach, however, works
only on stochastic kernel matrices, such as used in Nadaraya-Watson kernel regression.
Another approach for applying cost-regularized kernel regression to large data sets is to
apply a learning algorithm to separate subsets of the data and combine the results (Macedo
et al., 2014). However, as the authors state, this approximation is not mathematically
equivalent to the original problem, and if, as suggested, data from multiple iterations is
combined, the on-policy assumption of the algorithm would be violated.

Yet another method takes an approach complimentary to sparsification approaches.
Whereas sparse Gaussian process approaches essentially find coefficients for the true kernel
matrix at a subset of data points, Rahimi and Recht (2007) propose an approach that
evaluates an approximation to the kernel function at all training data points. To the best
of our knowledge, this type of approximations has, so far, not been explored in the context
of reinforcement learning. This approach approximates the kernel function as an inner
product of random Fourier features. As such, it is reminiscent of the work by Fard et al.
(2013) and Ghavamzadeh et al. (2010), who use random projections for parametric value
function methods. However, these studies aim at reducing the dimensionality of sparse or
redundant features using random projections, the method of Rahimi and Recht (2007) is
used to project low-dimensional vectors into high-dimensional feature spaces so that the
function approximation problems become linear. Konidaris et al. (2011) employ Fourier
basis features for value function approximation. The parameters of the basis features were
predetermined whereas in our approach the parameters are drawn from a distribution based
on the kernel bandwidth, which can be optimized using standard techniques.

5. Conclusion and Future Work

In this paper, we have developed a policy search method with smooth, robust updates to
solve continuous MDPs. Our method uses learned non-parametric models and allows the
use of non-parametric policies, avoiding hand-crafted features. By taking the sampling dis-
tribution into account during policy updates, stable learning progress was obtained even
with relatively small batches of data. By embedding the conditional transition distribution,
expectations over functions of the next state can be computed without density estima-
tion. The resulting predictions are robust even with state representations with hundreds of
dimensions.

We show that the resulting algorithm is able to outperform other non-parametric algo-
rithms on a reaching task and a pendulum swing-up task with control noise in on-policy
settings. We also show good performance of the proposed algorithm relative to neural-
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network based methods on a variant of the puddle-world task with a redundant input
representation.

A limiting factor in applying the method to larger problems is the computational cost
of inverting the Gram matrix. To address this issue, we evaluated different approaches
to approximate this matrix that allow the inverse to be calculated efficiently. We found
the approximation of the kernel function using random Fourier features to have desirable
properties: they are computationally fast, easy to implement, and yielded good performance
for moderate numbers of basis features. Sparsification yielded better performance on a
smaller set of basis functions.

We evaluated the applicability of the algorithm to a real-robot under-powered swing-up
task, with 600-dimensional visual representations of the pendulum’s state. Here, we found
that our method could successfully learn policies that swing up and balance the pendulum,
from high-dimensional data.

Many tasks concerning sensory data are similar to the real-robot under-powered swing-
up task, in that they have a high extrinsic dimensionality, but are intrinsically low-dimensional.
Kernel-based algorithms perform all operations on kernel values, so they are invariant to
the extrinsic dimensionality. Our kernel-based RL algorithm can, thus, be applied to such
tasks without a separate dimension reduction. However, underlying distractor dimensions
would negatively impact kernel-based algorithms unless the kernel parameters would be set
(by design or using learning techniques) to ignore those effects.

The proposed algorithm is designed with data scarcity in mind, and shows good empirical
performance in such cases. However, even with the proposed approximation of the Gram
matrix, the run-time of the algorithm can still be a limiting factor. As the complexity of
learning problems grows, we need more data and more approximating features, increasing
the computational requirements. Thus, the proposed algorithm is likely to be a good choice
when obtaining samples is costly or restricted, but might not be the best choice when
samples are cheap relative to computation time.

In future work, we want to investigate synergies between the optimization problem and
the generalizing policy. We will also address hyper-parameter optimization in systems with
multi-dimensional controls, as our current objective does not always yield suitable hyper-
parameters. We plan to apply our algorithm on real-world robotic tasks, including tasks
with high-dimensional visual or tactile sensors, and investigate how to exploit structural
knowledge about dynamical systems in such tasks. To avoid the need to enhance visual
salience, learning task-relevant kernels will be essential.
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Appendix A. The Dual and its Derivatives

To obtain the dual function, we re-insert the state-action probabilities pπ = π(a|s)µπ(s) in
the Lagrangian to obtain the dual

g(η, V, λ) =λ+ ηε+ Epπ(s,a)

[
δ(s,a, V )− λ− η log

pπ(s,a)

q(s,a)

]
,

=λ+ ηε+ Epπ(s,a) [−λ+ λ] + Epπ(s,a) [δ(s,a, V )− δ(s,a, V ) + η] ,

=λ+ ηε+ Epπ(s,a)η dads = λ+ ηε+ η = ηε+ η log(Z),

=ηε+ η log
(
Eq(s,a) exp (δ(s,a, V )/η)

)
,

where we used that exp (−λ/η − 1) = Z−1, so λ + η = η log(Z). The expected value over
q can straightforwardly be approximated by taking the average of samples 1, . . . , n taken
from q. Note that λ and q do not appear in the final expression.

g(η, V ) = ηε+ η log

(
1

n

n∑
i=1

exp (δ(si,ai, V )/η)

)
.

When employing the kernel embedding, the Bellman error is written as

δ(si,ai,α) = Rai
si +αT (Kβ(si,ai)− ks(si)).

We define

wi =
exp (δ(si,ai,α)/η)∑n
i=j exp (δ(sj ,aj ,α)/η)

to keep equations brief and readable. The partial derivatives can be written as:

∂g(η,α)

∂η
=− 1

η

n∑
i=1

wiδ(si,ai,α) + ε+ log

(
1

n

n∑
i=1

exp (δ(si,ai,α)/η)

)
,

∂g(η,α)

∂α
=

n∑
i=1

wi (Kβ(si,ai)− ks(si)) ,

and furthermore, we obtain the Hessian:

H(g(η,θ) =
1

η

n∑
i=1

(
wi

[
−δ(si,ai,α)

Kβ(si,ai)− ks(si)

] [
−δ(si,ai,α)

Kβ(si,ai)− ks(si)

]T)

− 1

η

n∑
i=1

(
wi

[
−δ(si,ai,α)

Kβ(si,ai)− ks(si)

]) n∑
i=1

(
wi

[
−δ(si,ai,α)

Kβ(si,ai)− ks(si)

])T
.

The Hessian of a function is positive semi-definite on a set if and only if the function
is convex on that set. Since η is the Lagrange multiplier for an inequality constraint, we
have η ≥ 0.To show that H(g(η,θ)) is positive semi-definite on (η, θ) ∈ [0,+∞) × Rn we
introduce the following abbreviation:

ui =

[
−δ(si,ai,α)

Kβ(si,ai)− ks(si)

]T
.
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Now, we can re-write the Hessian

H(g(η,α)) =
1

η

n∑
i=1

(
wiuiu

T
i

)
− 1

η

n∑
i=1

(wiui)
n∑
i=1

(wiui)
T

=
1

η

n∑
i=1

(
wiuiu

T
i

)
− 2

η

n∑
i=1

(wiui)
n∑
j=1

(wjuj)
T

+
1

η

n∑
i=1

(wi)

n∑
j=1

(wjuj)

n∑
j=1

(wjuj)
T

=
1

η

n∑
i=1

wi

uiu
T
i − 2ui

n∑
j=1

(wjuj)
T +

n∑
j=1

(wjuj)
n∑
j=1

(wjuj)
T


=

1

η

n∑
i=1

wi
ui −

n∑
j=1

wjuj

ui −
n∑
j=1

wjuj

T
 .

Note that we have used the property that
∑n

i=1wi = 1. H is positive semi-definite if
aTHa ≥ 0 for any a.

aTHa =aT

1

η

n∑
i=1

wi
ui −

n∑
j=1

wjuj

ui −
n∑
j=1

wjuj

T

a

=
1

η

n∑
i=1

wiaT
ui −

n∑
j=1

wjuj

ui −
n∑
j=1

wjuj

T

a


=

1

η

n∑
i=1

wi
aTui −

n∑
j=1

wja
Tuj

2 .

The factors
(
aTui −

∑n
j=1wja

Tuj

)2
are squares of real numbers and thus non-negative.

Since the wi are the result of a soft-max operation and thus non-negative, this holds for the
weighted sum, too. Thus, for any η ≥ 0, aTHa ≥ 0 and g is convex.
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Appendix B. Optimization with Respect to V

We want to show that at least one of the functions V minimizing the dual functional g can
be represented using a weighted sum of kernel functions centered at the sample states, i.e.,
that

V ∗ =
∑
s̃∈S̃

αs̃ks(s̃, ·), (18)

where S̃ is the set of states samples during the roll-outs. We follow some steps in the
proof of Schölkopf et al. (2001). They consider arbitrary objective functions c mapping to
R ∪ {∞} of the form

c((s1, y1, V (s1)), . . . , (sm, ym, V (sm))), (19)

which can represent an error function between the value of a function V (s) at the samples
si and the corresponding desired outputs yi. In our case, we do not have desired output
values yi for our objective function. This is inconsequential as c can be arbitrary, and so
can be independent of all y values.

Any function V can be written as V =
∑

s̃∈S̃ αs̃ks(s̃, ·)+v(s), where v(s) is an additional
bias term. If V is constrained to be in the Hilbert space defined by k, Schölkopf et al. [2001]
show that c is independent of the bias term v(s). This means that for any optimal V ′ that
is not of the proposed form, there is a V ∗ of the proposed form that has the same objective
value which is obtained by subtracting v(s) from V ′.

As the dual function g satisfies the conditions to cost function c, for us this means that
there is at least one V ∗ optimizing g of the proposed form. Note that it is inconsequential
that the dual g also depends on Lagrangian parameter η. For any optimum (η∗, V ∗′), if V ∗′

is not of the proposed form, projecting V ∗′ on the proposed basis yields another function
V ∗ that satisfies g(η∗, V ∗′) = g(η∗, V ∗), so (η∗, V ∗) must be an optimum as well.

Therefore, there is always at least one minimum of any such function c of the proposed
form.
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Appendix C. Feedback signals to avoid joint angle and velocity limits

In our real robot set-up, the control action selected by the algorithm is the increment in
the torque to be applied. However, to avoid running into joint angle and velocity limits,
the resulting torque is modified when these limits are approached. Therefore, the torque
applied at time step t

τ (t+1) = max
(

min
(
τt + u+ τ (t)

s + τ
(t)
d , τ (t)

max

)
, τ

(t)
min

)
,

where τ
(t)
s and τ

(d)
s terms that act as spring and damper when the robot gets close to the

joint limit, and τ
(t)
max and τ

(t)
min are the maximum and minimum torque, respectively, that

can be applied without breaking the velocity limit. The definition of θ, as well as the joint
limit and the area where the feedback terms are applied, are illustrated in Figure 6b.

The feedback terms are defined as follows. The spring-like term

τ (t)
s =


0 if − 5/4π < θ < 1/4π,

15(−5/4π − θ) if θ < −5/4π,

15(1/4π − θ) if 1/4π < θ,

is applied whenever the joint gets close to the joint limit at 1/2π = −3/2π. The damper-like
term

τ
(t)
d =


0.3(−5/4π − θ)θ̇ if θ < −5/4π and θ̇ > 0,

0.3(1/4π − θ)θ̇ if 1/4π < θ and θ̇ < 0,

0 otherwise,

is applied in the same region, as the feedback has to be higher when the pendulum has a
high velocity. To prevent the velocity from exceeding the velocity limit, additionally, the
minimum and maximum torques

τ (t)
max = min

(
τ (t−1)

max + 0.05, 20(3.85− θ̇) + 4.5 cos(θ)
)
,

τ
(t)
min = max

(
τ

(t−1)
min − 0.05, 20(−3.7− θ̇) + 4.5 cos(θ)

)
,

are applied. The cosine term is a rough compensation for the torque induced by gravity.
The term linear in θ̇ is a linear damping term. Furthermore, the system has some delays
which tended to induce oscillations close to the maximum torque. Therefore, the maximum
(respectively minimum) can only be increased (decreased) by a small amount relative to
the previous value.
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