5 research outputs found

    Scheduling multicasts on unit-capacity trees and meshes

    Get PDF
    This paper studies the multicast routing and admission control problem on unit-capacity tree and mesh topologies in the throughput-model. The problem is a generalization of the edge-disjoint paths problem and is NP-hard both on trees and meshes. We study both the offline and the online version of the problem: In the offline setting, we give the first constant-factor approximation algorithm for trees, and an O((log log n)^2)-factor approximation algorithm for meshes. In the online setting, we give the first polylogarithmic competitive online algorithm for tree and mesh topologies. No polylogarithmic-competitive algorithm is possible on general network topologies [Bartal,Fiat,Leonardi, 96], and there exists a polylogarithmic lower bound on the competitive ratio of any online algorithm on tree topologies [Awerbuch,Azar,Fiat,Leighton, 96]. We prove the same lower bound for meshes

    Problèmes de routages dans les réseaux optiques

    Get PDF
    Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal

    Scheduling multicasts on unit-capacity trees and meshes

    Get PDF
    This paper studies the multicast routing and admission control problem on unit-capacity tree and mesh topologies in the throughput model. The problem is a generalization of the edge-disjoint paths problem and is NP-hard both on trees and meshes. We study both the offline and the online version of the problem: In the offline setting, we give the first constant-factor approximation algorithm for trees, and an O((log log n)2)-factor approximation algorithm for meshes. In the online setting, we give the first polylogarithmic competitive online algorithm for tree and mesh topologies. No polylogarithmic-competitive algorithm is possible on general network topologies (Lower bounds for on-line graph problems with application to on-line circuits and optical routing, in: Proceedings of the 28th ACM Symposium on Theory of Computing, 1996, pp. 531-540) and there exists a polygarithmic lower bound on the competitive ratio of any online algorithm on tree topologies (Making commitments in the face of uncertainity: how to pick a winner almost every time, in: Proceedings of the 28th Annual ACM Symposium on Theory of Computing, 1996, pp. 519-530). We prove the same lower bound for meshes

    Path Coloring on the Mesh

    No full text
    In the minimum path coloring problem, we are given a list of pairs of vertices of a graph. We are asked to connect each pair by a colored path. Paths of the same color must be edge disjoint. Our objective is to minimize the number of colors used. This problem was raised by Aggarwal et al [1] and Raghavan and Upfal [22] as a model for routing in all-optical networks. It is also related to questions in circuit routing. In this paper, we improve the O(ln N ) approximation result of Kleinberg and Tardos [14] for path coloring on the N \Theta N mesh. We give an O(1) approximation algorithm to the number of colors needed, and a poly(ln ln N ) approximation algorithm to the choice of paths and colors. To the best of our knowledge, these are the first sub-logarithmic bounds for any network other than trees, rings, or trees of rings. Our results are based on developing new techniques for randomized rounding. These techniques iteratively improve a fractional solution until it approaches integral..
    corecore