28 research outputs found

    Review of Digital Image Forgery Detection

    Get PDF
    Forgery in digital images can be done by manipulating the digital image to conceal some meaningful or useful information of the image. It can be much difficult to identify the edited region from the original image in various cases. In order to maintain the integrity and authenticity of the image, the detection of forgery in the image is necessary. Adaption of modern lifestyle and advanced photography equipment has made tempering of digital image easy with the help of image editing soft wares. It is thus important to detect such image tempering operations. Different methods exist in literature that divide the suspicious image into overlapped blocks and extract some features from the images to detect the type of forgery that exist in the image. The image forgery detection can be done based on object removal, object addition, unusual color modifications in the image. Many existing techniques are available to overcome this problem but most of these techniques have many limitations. Images are one of the powerful media for communication. In this paper a survey of different types of forgery and digital image forgery detection has been focused

    A Forensic Scheme for Revealing Post-processed Region Duplication Forgery in Suspected Images

    Get PDF
    Recent researches have demonstrated that local interest points alone can be employed to detect region duplication forgery in image forensics. Authentic images may be abused by copy-move tool in Adobe Photoshop to fully contained duplicated regions such as objects with high primitives such as corners and edges. Corners and edges represent the internal structure of an object in the image which makes them have a discriminating property under geometric transformations such as scale and rotation operation. They can be localised using scale-invariant features transform (SIFT) algorithm. In this paper, we provide an image forgery detection technique by using local interest points. Local interest points can be exposed by extracting adaptive non-maximal suppression (ANMS) keypoints from dividing blocks in the segmented image to detect such corners of objects. We also demonstrate that ANMS keypoints can be effectively utilised to detect blurred and scaled forged regions. The ANMS features of the image are shown to exhibit the internal structure of copy moved region. We provide a new texture descriptor called local phase quantisation (LPQ) that is robust to image blurring and also to eliminate the false positives of duplicated regions. Experimental results show that our scheme has the ability to reveal region duplication forgeries under scaling, rotation and blur manipulation of JPEG images on MICC-F220 and CASIA v2 image datasets

    Image tampering detection using genetic algorithm

    Get PDF
    As digital images become an indispensable source of information, the authentication of digital images has become crucial. Various techniques of forgery have come into existence, intrusive, and non-intrusive. Image forgery detection hence is becoming more challenging by the day, due to the unwavering advances in image processing. Therefore, image forensics is at the forefront of security applications aiming at restoring trust and acceptance in digital media by exposing counterfeiting methods. The proposed work compares between various feature selection algorithms for the detection of image forgery in tampered images. Several features are extracted from normal and spliced images using spatial grey level dependence method and many more. Support vector machine and Twin SVM has been used for classification. A very difficult problem in classification techniques is to pick features to distinguish between classes. Furthermore, The feature optimization problem is addressed using a genetic algorithm (GA) as a search method. At last, classical sequential methods and floating search algorithm are compared against the genetic approach in terms of the best recognition rate achieved and the optimal number of features

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Comparative Analysis of Techniques Used to Detect Copy-Move Tampering for Real-World Electronic Images

    Get PDF
    Evolution of high computational powerful computers, easy availability of several innovative editing software package and high-definition quality-based image capturing tools follows to effortless result in producing image forgery. Though, threats for security and misinterpretation of digital images and scenes have been observed to be happened since a long period and also a lot of research has been established in developing diverse techniques to authenticate the digital images. On the contrary, the research in this region is not limited to checking the validity of digital photos but also to exploring the specific signs of distortion or forgery. This analysis would not require additional prior information of intrinsic content of corresponding digital image or prior embedding of watermarks. In this paper, recent growth in the area of digital image tampering identification have been discussed along with benchmarking study has been shown with qualitative and quantitative results. With variety of methodologies and concepts, different applications of forgery detection have been discussed with corresponding outcomes especially using machine and deep learning methods in order to develop efficient automated forgery detection system. The future applications and development of advanced soft-computing based techniques in digital image forgery tampering has been discussed

    Enhanced Block-Based Copy-Move Image Forgery Detection Using K-Means Clustering Technique

    Get PDF
    In this thesis, the effect of feature type and matching method has been analyzed by comparing different combinations of matching method – feature type for copy-move image forgery detection. The results showed an interaction between some of the features and some of the matching methods. Due to the importance of matching process, this thesis focused on improving the matching process by proposing an enhanced block-based copy-move forgery detection pipeline. The proposed pipeline relied on clustering the image blocks into clusters, and then independently performing the matching of the blocks within each cluster which will reduce the time required for matching and increase the true positive ratio (TPR) as well. In order to deploy the proposed pipeline, two combinations of matching method - feature type are considered. In the first case, Zernike Moments (ZMs) were combined with Locality Sensitive Hashing (LSH) and tested on three datasets. The experimental results showed that the proposed pipeline reduced the processing time by 73.05% to 84.70% and enhanced the accuracy of detection by 5.56% to 25.43%. In the second case, Polar Cosine Transform (PCT) was combined with Lexicographical Sort (LS). Although the proposed pipeline could not reduce the processing time, it enhanced the accuracy of detection by 32.46%. The obtained results were statistically analyzed, and it was proven that the proposed pipeline can enhance the accuracy of detection significantly based on the comparison with other two methods

    A survey on passive digital video forgery detection techniques

    Get PDF
    Digital media devices such as smartphones, cameras, and notebooks are becoming increasingly popular. Through digital platforms such as Facebook, WhatsApp, Twitter, and others, people share digital images, videos, and audio in large quantities. Especially in a crime scene investigation, digital evidence plays a crucial role in a courtroom. Manipulating video content with high-quality software tools is easier, which helps fabricate video content more efficiently. It is therefore necessary to develop an authenticating method for detecting and verifying manipulated videos. The objective of this paper is to provide a comprehensive review of the passive methods for detecting video forgeries. This survey has the primary goal of studying and analyzing the existing passive techniques for detecting video forgeries. First, an overview of the basic information needed to understand video forgery detection is presented. Later, it provides an in-depth understanding of the techniques used in the spatial, temporal, and spatio-temporal domain analysis of videos, datasets used, and their limitations are reviewed. In the following sections, standard benchmark video forgery datasets and the generalized architecture for passive video forgery detection techniques are discussed in more depth. Finally, identifying loopholes in existing surveys so detecting forged videos much more effectively in the future are discussed

    Copy-move forgery detection in digital images

    Get PDF
    The ready availability of image-editing software makes it important to ensure the authenticity of images. This thesis concerns the detection and localization of cloning, or Copy-Move Forgery (CMF), which is the most common type of image tampering, in which part(s) of the image are copied and pasted back somewhere else in the same image. Post-processing can be used to produce more realistic doctored images and thus can increase the difficulty of detecting forgery. This thesis presents three novel methods for CMF detection, using feature extraction, surface fitting and segmentation. The Dense Scale Invariant Feature Transform (DSIFT) has been improved by using a different method to estimate the canonical orientation of each circular block. The Fitting Function Rotation Invariant Descriptor (FFRID) has been developed by using the least squares method to fit the parameters of a quadratic function on each block curvatures. In the segmentation approach, three different methods were tested: the SLIC superpixels, the Bag of Words Image and the Rolling Guidance filter with the multi-thresholding method. We also developed the Segment Gradient Orientation Histogram (SGOH) to describe the gradient of irregularly shaped blocks (segments). The experimental results illustrate that our proposed algorithms can detect forgery in images containing copy-move objects with different types of transformation (translation, rotation, scaling, distortion and combined transformation). Moreover, the proposed methods are robust to post-processing (i.e. blurring, brightness change, colour reduction, JPEG compression, variations in contrast and added noise) and can detect multiple duplicated objects. In addition, we developed a new method to estimate the similarity threshold for each image by optimizing a cost function based probability distribution. This method can detect CMF better than using a fixed threshold for all the test images, because our proposed method reduces the false positive and the time required to estimate one threshold for different images in the dataset. Finally, we used the hysteresis to decrease the number of false matches and produce the best possible result

    Detection of intentionally made changes in image content

    Get PDF
    Digital images and video signals represent the most frequently transmitted contents. Namely, with the development of modern digital cameras and smartphones, the use of multimedia content increases every day. They are used in everyday life, for getting information and also as authenticated proofs or corroboratory evidence in different areas like: forensic studies, law enforcement, journalism and others...Multifraktalna analiza se pokazala kao dobar alat za analizu postojećih slika, kao i segmentaciju određenih regiona, izdvajanje ivica, uglova slike i slično. Kako kopirani i nalepljeni delovi imaju sličnu strukturu, može se primeniti multifraktalna analiza, koja u osnovi analizira samosličnost. Multifraktalni spektar daje globalni opis slike (ili, opštije, fenomena koji se ispituje). Vrednost Hölder-ovog eksponenta zavisi od položaja u strukturi i opisuje lokalnu regularnost signala. Naime, različiti objekti na slici imaju različite spektre, različite pozicije maksimuma, minimuma, prve nule itd, što se pokazalo kao interesantan skup različitih parametara pomoću kojih se mogu detektovati namerne promene na slikama..
    corecore