7,874 research outputs found

    Model Selection with Low Complexity Priors

    Get PDF
    Regularization plays a pivotal role when facing the challenge of solving ill-posed inverse problems, where the number of observations is smaller than the ambient dimension of the object to be estimated. A line of recent work has studied regularization models with various types of low-dimensional structures. In such settings, the general approach is to solve a regularized optimization problem, which combines a data fidelity term and some regularization penalty that promotes the assumed low-dimensional/simple structure. This paper provides a general framework to capture this low-dimensional structure through what we coin partly smooth functions relative to a linear manifold. These are convex, non-negative, closed and finite-valued functions that will promote objects living on low-dimensional subspaces. This class of regularizers encompasses many popular examples such as the L1 norm, L1-L2 norm (group sparsity), as well as several others including the Linfty norm. We also show that the set of partly smooth functions relative to a linear manifold is closed under addition and pre-composition by a linear operator, which allows to cover mixed regularization, and the so-called analysis-type priors (e.g. total variation, fused Lasso, finite-valued polyhedral gauges). Our main result presents a unified sharp analysis of exact and robust recovery of the low-dimensional subspace model associated to the object to recover from partial measurements. This analysis is illustrated on a number of special and previously studied cases, and on an analysis of the performance of Linfty regularization in a compressed sensing scenario

    Low Complexity Regularization of Linear Inverse Problems

    Full text link
    Inverse problems and regularization theory is a central theme in contemporary signal processing, where the goal is to reconstruct an unknown signal from partial indirect, and possibly noisy, measurements of it. A now standard method for recovering the unknown signal is to solve a convex optimization problem that enforces some prior knowledge about its structure. This has proved efficient in many problems routinely encountered in imaging sciences, statistics and machine learning. This chapter delivers a review of recent advances in the field where the regularization prior promotes solutions conforming to some notion of simplicity/low-complexity. These priors encompass as popular examples sparsity and group sparsity (to capture the compressibility of natural signals and images), total variation and analysis sparsity (to promote piecewise regularity), and low-rank (as natural extension of sparsity to matrix-valued data). Our aim is to provide a unified treatment of all these regularizations under a single umbrella, namely the theory of partial smoothness. This framework is very general and accommodates all low-complexity regularizers just mentioned, as well as many others. Partial smoothness turns out to be the canonical way to encode low-dimensional models that can be linear spaces or more general smooth manifolds. This review is intended to serve as a one stop shop toward the understanding of the theoretical properties of the so-regularized solutions. It covers a large spectrum including: (i) recovery guarantees and stability to noise, both in terms of â„“2\ell^2-stability and model (manifold) identification; (ii) sensitivity analysis to perturbations of the parameters involved (in particular the observations), with applications to unbiased risk estimation ; (iii) convergence properties of the forward-backward proximal splitting scheme, that is particularly well suited to solve the corresponding large-scale regularized optimization problem

    Model Consistency of Partly Smooth Regularizers

    Full text link
    This paper studies least-square regression penalized with partly smooth convex regularizers. This class of functions is very large and versatile allowing to promote solutions conforming to some notion of low-complexity. Indeed, they force solutions of variational problems to belong to a low-dimensional manifold (the so-called model) which is stable under small perturbations of the function. This property is crucial to make the underlying low-complexity model robust to small noise. We show that a generalized "irrepresentable condition" implies stable model selection under small noise perturbations in the observations and the design matrix, when the regularization parameter is tuned proportionally to the noise level. This condition is shown to be almost a necessary condition. We then show that this condition implies model consistency of the regularized estimator. That is, with a probability tending to one as the number of measurements increases, the regularized estimator belongs to the correct low-dimensional model manifold. This work unifies and generalizes several previous ones, where model consistency is known to hold for sparse, group sparse, total variation and low-rank regularizations

    Sensitivity Analysis for Mirror-Stratifiable Convex Functions

    Get PDF
    This paper provides a set of sensitivity analysis and activity identification results for a class of convex functions with a strong geometric structure, that we coined "mirror-stratifiable". These functions are such that there is a bijection between a primal and a dual stratification of the space into partitioning sets, called strata. This pairing is crucial to track the strata that are identifiable by solutions of parametrized optimization problems or by iterates of optimization algorithms. This class of functions encompasses all regularizers routinely used in signal and image processing, machine learning, and statistics. We show that this "mirror-stratifiable" structure enjoys a nice sensitivity theory, allowing us to study stability of solutions of optimization problems to small perturbations, as well as activity identification of first-order proximal splitting-type algorithms. Existing results in the literature typically assume that, under a non-degeneracy condition, the active set associated to a minimizer is stable to small perturbations and is identified in finite time by optimization schemes. In contrast, our results do not require any non-degeneracy assumption: in consequence, the optimal active set is not necessarily stable anymore, but we are able to track precisely the set of identifiable strata.We show that these results have crucial implications when solving challenging ill-posed inverse problems via regularization, a typical scenario where the non-degeneracy condition is not fulfilled. Our theoretical results, illustrated by numerical simulations, allow to characterize the instability behaviour of the regularized solutions, by locating the set of all low-dimensional strata that can be potentially identified by these solutions

    A multi-level preconditioned Krylov method for the efficient solution of algebraic tomographic reconstruction problems

    Full text link
    Classical iterative methods for tomographic reconstruction include the class of Algebraic Reconstruction Techniques (ART). Convergence of these stationary linear iterative methods is however notably slow. In this paper we propose the use of Krylov solvers for tomographic linear inversion problems. These advanced iterative methods feature fast convergence at the expense of a higher computational cost per iteration, causing them to be generally uncompetitive without the inclusion of a suitable preconditioner. Combining elements from standard multigrid (MG) solvers and the theory of wavelets, a novel wavelet-based multi-level (WMG) preconditioner is introduced, which is shown to significantly speed-up Krylov convergence. The performance of the WMG-preconditioned Krylov method is analyzed through a spectral analysis, and the approach is compared to existing methods like the classical Simultaneous Iterative Reconstruction Technique (SIRT) and unpreconditioned Krylov methods on a 2D tomographic benchmark problem. Numerical experiments are promising, showing the method to be competitive with the classical Algebraic Reconstruction Techniques in terms of convergence speed and overall performance (CPU time) as well as precision of the reconstruction.Comment: Journal of Computational and Applied Mathematics (2014), 26 pages, 13 figures, 3 table
    • …
    corecore