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SENSITIVITY ANALYSIS
FOR MIRROR-STRATIFIABLE CONVEX FUNCTIONS

JALAL FADILI∗, JÉRÔME MALICK† , AND GABRIEL PEYRÉ‡

Abstract. This paper provides a set of sensitivity analysis and activity identification results for
a class of convex functions with a strong geometric structure, that we coined “mirror-stratifiable”.
These functions are such that there is a bijection between a primal and a dual stratification of the
space into partitioning sets, called strata. This pairing is crucial to track the strata that are identi-
fiable by solutions of parametrized optimization problems or by iterates of optimization algorithms.
This class of functions encompasses all regularizers routinely used in signal and image processing,
machine learning, and statistics. We show that this “mirror-stratifiable” structure enjoys a nice
sensitivity theory, allowing us to study stability of solutions of optimization problems to small per-
turbations, as well as activity identification of first-order proximal splitting-type algorithms. Existing
results in the literature typically assume that, under a non-degeneracy condition, the active set asso-
ciated to a minimizer is stable to small perturbations and is identified in finite time by optimization
schemes. In contrast, our results do not require any non-degeneracy assumption: in consequence,
the optimal active set is not necessarily stable anymore, but we are able to track precisely the set
of identifiable strata.We show that these results have crucial implications when solving challenging
ill-posed inverse problems via regularization, a typical scenario where the non-degeneracy condition
is not fulfilled. Our theoretical results, illustrated by numerical simulations, allow us to characterize
the instability behaviour of the regularized solutions, by locating the set of all low-dimensional strata
that can be potentially identified by these solutions.

Key words. convex analysis, inverse problems, sensitivity, active sets, first-order splitting
algorithms, applications in imaging and machine learning

AMS subject classifications. 65K05, 65K10, 90C25, 90C31.

1. Introduction. Variational methods and non-smooth optimization algorithms
are ubiquitous to solve large-scale inverse problems in various fields of science and
engineering, and in particular in data science. The non-smooth structure of the op-
timization problems promotes solutions conforming to some notion of simplicity or
low-complexity (e.g. sparsity, low-rank, etc.). The low-complexity structure is often
manifested in the form of a low-dimensional “active set”. It is thus of prominent
interest to be able to quantitatively characterize the stability of these active sets to
perturbations of the objective function. Of crucial importance is also the identifi-
cation in finite time of these active sets by iterates of optimization algorithms that
numerically minimize the objective function. This type of problems and results is
referred to as “activity identification”; a review of the relevant literature will be pro-
vided in the sequel (at the beginning of each section). In a nutshell, the existing
identification results guarantee a perfect stability of the active set to perturbations,
or a finite identification of this active set via algorithmic schemes, under some non-
degeneracy conditions (see in particular [39, 24, 58]). The crucial non-degeneracy
assumption, that takes generally the form (3.1), can be viewed as a geometric gen-
eralization of strict complementary in non-linear programming. However, as we will
illustrate shortly through some preliminary numerics, such a condition is too strin-
gent and is often barely verified. The goal of this paper is to investigate the situation
where this non-degeneracy assumption is violated.

∗Normandie Univ, ENSICAEN, CNRS, GREYC, France.
†CNRS and LJK, Grenoble, France
‡CNRS and DMA, ENS Paris, France.
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1.1. Motivating Examples. In order to better grasp the relevance of our anal-
ysis, let us first start with the setting of inverse problems that pervades various fields
including signal processing and machine learning. We will come back to this setting
in Section 4 with further discussions and references.

Regularized Inverse Problems. Assume one observes

y = ẙ + w ∈ RP where ẙ
def.
= Φx̊ (1.1)

where w is some perturbation (called noise) and Φ ∈ RP×N (called forward operator,
or design matrix in statistics). Solving an inverse problem amounts to recovering
x̊, to a good approximation, knowing y and Φ according to (1.1). Unfortunately, in
general, P can be much smaller than the ambient dimension N , and when P = N ,
the mapping Φ is in general ill-conditioned or even singular.

A classical approach is then to assume that x̊ has some ”low-complexity”, and
to use a prior regularization R promoting solutions with such low-complexity. This
leads to the following optimization problem

min
x∈RN

E(x, (λ, y))
def.
= R(x) +

1

2λ
||y − Φx||2, (P(λ, y))

Let us discuss two popular examples of regularizing functions promoting a low-complexity
structure. These two functions will be used in our numerical experiments.

Example 1 (`1 norm). For x ∈ RN , its `1 norm reads

R(x) = ||x||1
def.
=

N∑
i=1

|xi|, (1.2)

where xi is the i-th entry of x. As advocated for instance by [15, 55], the `1 enforces
the solutions of (P(λ, y)) to be sparse, i.e. to have a small number of non-zero
components. Indeed, the `1 norm can be shown to be the tightest convex relaxation
(in the sense of bi-conjugation) of the `0 pseudo-norm restricted to the unit Euclidian
ball [37]. Recall that `0 pseudo-norm of x ∈ RN measures its sparsity

||x||0
def.
= ]

{
i ∈ {1, . . . , N} : xi 6= 0

}
.

Sparsity has witnessed a huge surge of interest in the last decades. For instance, in
signal and imaging sciences, one can approximate most natural signals and images
using sparse expansions in an appropriate dictionary (see e.g. [45]). In statistics,
sparsity is a key toward model selection and interpretability [9].

Example 2 (Nuclear norm). For a matrix x ∈ Rn1×n2 ∼ RN , where N = n1n2,
the nuclear norm is defined as

||x||∗
def.
= ||σ(x)||1 =

n∑
i=1

σi(x),

where n
def.
= min(n1, n2) and σ(x) = (σ1(x), . . . , σn(x)) ∈ Rn+ is the vector of singular

values of x. The nuclear norm is the tightest convex relaxation of the rank (in the sense
of bi-conjugation) restricted to the unit Frobenius ball [36]. This underlies its wide use

to promote solutions of (P(λ, y)) with low rank, where we recall rank(x)
def.
= ||σ(x)||0.

Low-rank regularization has proved useful for a variety of applications, including con-
trol theory and machine learning; see e.g. [28, 1, 11]
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Active set(s) identification. The above discussed regularizers R are non-smooth
convex functions. This non-smoothness arises in a highly structured fashion and is
usually associated, locally, with some low-dimensional active subset of RN (in many
cases, such a subset is an affine or a smooth manifold). Thus R will favor solutions
of (P(λ, y)) that lie in a low-dimensional active set and would allow the inversion of
the system (1.1) in a stable way. More precisely, one would like that under small per-
turbations w, the solutions of (P(λ, y)) move stably along the active set. A byproduct
of this behaviour is that from an algorithmic perspective, if an optimization algorithm
is used to solve (P(λ, y)), one would hope that the iterates of the scheme identify the
active set in finite time.

Identifying the low-dimensional active set in a stable way is highly desirable for
several reasons. One reason is that it is a fundamental property most practitioners are
looking for. Typical examples include neurosciences [27] where the goal is to recover
a spike train from neural activity, or astrophysics [53] where it is desired to separate
stars from a background. In both examples, sparsity can be used as a modeling
hypothesis and the recovery method should comply with it in a stable way. A second
reason is algorithmic since one can also take advantage of the low-dimensionality of
the identified active set to reduce computational burden and memory storage, hence
opening the door to higher-order acceleration of optimization algorithms (see [38, 46]).

Unfortunately, this desirable behaviour rarely occurs in practical applications.
Yet one still observes some form of partial stability (to be given a rigorous meaning
in Section 3 and 4), as confirmed by the numerical experiment of the next paragraph.

1.2. Illustrative numerical experiment. We consider a simple “compressed
sensing” scenario, with the `1 norm R = || · ||1 [12] and the nuclear norm R = || · ||∗ [13]
as regularizers. The operator Φ ∈ RN×P is drawn uniformly at random from the
standard Gaussian ensemble, i.e. the entries of Φ are independent and identically
distributed Gaussian random variables with zero-mean and unit variance. In the case
R = || · ||1, we set (N,P ) = (100, 50) and the vector to recover x̊ is drawn uniformly

at random among sparse vectors with R0(̊x)
def.
= ||̊x||0 = 10 and unit non-zero entries.

In the case R = || · ||∗, we set (N,P ) = (400, 300) (n1 = n2 = n = 20) and the
matrix to recover x̊ is drawn uniformly at random among low-rank matrices with

R0(̊x)
def.
= rank(̊x) = 4 and unit non-zero singular values. For each problem suite

(R,N,P ), 1000 realizations of (̊x,Φ, w) are drawn, and y is then generated according
to (1.1). The entries of the noise vector w are drawn uniformly from a Gaussian with
standard deviation 0.1, we set λ = 0.28 for R = || · ||1 and λ = 10 for R = || · ||∗.

For each realization of (̊x,Φ, w), we solve the associated problem (P(λ, y)) using
CVX [31] to get a high precision; denote x?(λ, y) the obtained solutions. We also
solve (P(λ, y)) by the Forward-Backward (FB) scheme which reads in this case1

xk+1 = proxλγR(xk + γΦ∗(y − Φxk)).

In our setting, with γ = 1.8/σmax(Φ∗Φ) and non-emptiness of Argmin(E(·, λ, y), it is
well-known that the sequence (xk)k∈N converges to a point in Argmin(E(·, λ, y)).

The top row of Figure 1.1 displays the histogram of the complexity index excess

δ
def.
= R0(x?(λ, y))−R0(̊x) which clearly shows that we do not have exact stability

1The definition of the proximal mapping proxτR (for τ > 0) is given in (5.3). The proximal
mappings of the `1 and nuclear norms are

proxµ||·||1 (x) =
(
sign(xi) max(0, |xi| − µ)

)
i
, proxµ||·||∗ (x) = U diag(proxµ||·||1 (σ(x)))V ∗,

where x = U diag(σ(x))V ∗ is a SVD decomposition of x.
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Fig. 1.1. Top row: Histogram of the complexity index excess δ = R0(x?(λ, y))−R0 (̊x) where
x?(λ, y) is the solution of (P(λ, y)) with noisy observation y = ẙ+w for a small perturbation w and
a well-chosen parameter value λ = c0||w||. Bottom row: Evolution of the complexity index R0(xk)
where (xk)k∈N is the FB iterates sequence converging to some x?(λ, y) ∈ Argmin(E(·, λ, y)).

under the perturbations w. Indeed, although R0(x?(λ, y)) is still rather small, its
value is in most cases larger than the complexity index R0(̊x). The bottom row of
Figure 1.1 depicts the evolution with k of the complexity index R0(xk) for two random
instances of x̊ (in blue and red) corresponding to two different values of δ. One can
observe that the iterates identify in finite time some low-dimensional active set with
a complexity index strictly larger than the one associated to x̊ (the red curves). We
will provide a more detailed discussion of this phenomenon in Section 6.

As we will emphasize in the review of previous work, existing results on sensitivity
analysis and low-complexity regularization only focus the case where R0(x?(λ, y)) =
R0(̊x) (i.e. δ = 0), whose underlying claim is that the low-complexity model is per-
fectly stable to perturbations, which typically requires some non-degeneracy assump-
tion to hold. In many situations, however, including the compressed sensing scenario
described above, but also in super-resolution imaging (see [26]) and other challenging
inverse problems, non-degeneracy-type hypotheses are too restrictive. It is the goal
of this paper to develop a more general sensitivity analysis, that goes beyond the
non-degenerate case, to improve our understanding of stability to perturbations of
low-complexity regularized inverse problems.

1.3. Contributions and Outline. Our first contribution consists in introduc-
ing, in Section 2, a class of proper lower-semicontinuous (lsc) convex functions that
we coin “mirror-stratifiable”. The subdifferential of such a function induces a primal-
dual pairing of stratifications, which is pivotal to track identifiable strata. We discuss
several examples of functions enjoying such a structure. With this structure at hand,
we then turn to the main result of this paper, formalized in Theorem 1, and on which
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all the others rely. This result shows finite enlarged activity identification for a mirror-
stratifiable function without the need of any non-degeneracy condition. In addition,
the identifiable strata are precisely characterized in terms primal-dual optimal solu-
tions. Sections 3, 4 and 5 instantiate this abstract result for a set of concrete problems,
respectively: sensitivity of composite ”smooth+non-smooth” optimization problems
(Theorem 2), enlarged activity identification by proximal splitting schemes such as
Forward-Backward and Douglas-Rachford algorithms (Theorems 4 and 5), and finally,
enlarged identification for regularized inverse problems (Theorem 3). Before stating
these results, we make a short review of the associated literature. Finally Section 6
illustrates these theoretical findings with numerical experiments, in particular in a
compressed sensing scenario involving the `1 and nuclear norms as regularizers. Fol-
lowing the philosophy of reproducible research, all the code to reproduce the figures
of this article is available online2.

2. Mirror-Stratifiable Functions. In this section, we introduce the class of
mirror-stratifiable convex functions, and present the sensitivity property they provide
(Theorem 1). We also illustrate that many popular regularizers used in data science
are mirror-stratifiable. Most the results of this section (in particular all the examples)
are easy to obtain by basic calculus; we therefore do not give these proofs in the text
and we gather some of them in Appendix A.

2.1. Stratifications and definitions. We start with recalling the following
standard definition of stratification.

Definition 1 (Stratification). A stratification of a set D ⊂ RN is a finite
partition M = {Mi}i∈I such that for any partitioning sets (called strata) M and M ′

we have

M ∩ cl(M ′) 6= ∅ =⇒ M ⊂ cl(M ′).

If the strata are open polyhedra, then M is a polyhedral stratification, and if they are
C2-smooth manifolds then M entails a C2-stratification.

A stratification is naturally endowed with the partial ordering 6 in the sense that

M 6M ′ ⇐⇒ M ⊂ cl(M ′) ⇐⇒ M ∩ cl(M ′) 6= ∅. (2.1)

The relation is clearly reflexive and transitive. Furthermore, we have

cl(M) =
⋃

M ′6M

M ′. (2.2)

An immediate consequence of Definition 1 is that for each point x ∈ D, there
is a unique stratum containing x, denoted Mx. Indeed, suppose that there are two
non-empty open strata M1 and M2 such that M1∩M2 = {x}, and thus M1∩M2 6= ∅.
This implies, using (2.1), that M1 6M2 and M2 6M1, and thus M1 = M2.

At this stage, it is worth emphasizing that the strata are not needed to be mani-
folds in the rest of the paper. It is however the case that in many practical cases that
we will discuss, strata are indeed manifolds, and sometimes affine manifolds.

Example 3 (Polyhedral sets and functions). A partition of a polyhedral set into
its open faces induces a natural finite polyhedral stratification of it. In turn, let R :

2Code available at https://github.com/gpeyre/2017-SIOPT-stratification
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RN → R def.
= R∪{+∞} be a polyhedral function, and consider a polyhedral stratification

of its epigraph, which is a polyhedral set in RN+1. Projecting all polyhedral strata onto
the first N -coordinates one obtains a finite polyhedral stratification of dom(R).

Remark 1. The previous example extends to semialgebraic sets and functions,
which are known to induce stratifications into finite disjoint unions of manifolds. In
fact, this holds for any tame class of sets/functions; see, e.g., [18].

We now single out a specific set of strata, called active strata, that will play a
central role for finite enlarged activity identification purposes.

Definition 2 (Active strata). Given a stratification M of D ⊂ RN and a point
x ∈ D, a stratum M ∈M is said active at x if x ∈ cl(M).

Proposition 1. Given a stratification M of D and a point x ∈ D. Then there
exists δ > 0 such that set of strata Mx′ for any x′ such that ||x′ − x|| < δ, coincides
with the set of strata M >Mx and with the set of active strata at x.

2.2. Mirror-Stratifiable functions. Following [19, Section 4], we define the
key correspondence operator whose role will become apparent shortly.

Definition 3. Let R : RN → R be a proper lsc convex function. The associated

correspondence operator JR : 2R
N → 2R

N

is defined as

JR(S)
def.
=
⋃
x∈S

ri(∂R(x)),

where ∂R is the subdifferential of R.
Observe that, by definition, JR is increasing for set inclusion

S ⊂ S′ =⇒ JR(S) ⊂ JR(S′). (2.3)

For this operator to be useful in sensitivity analysis, we will further impose that JR
is decreasing for the partial ordering 6 in (2.1), as captured in our main definition.
This is a key requirement that captures the intuitive idea that the larger a primal
stratum, the smaller its image by JR in the dual space.

In the following, we will denote R∗ the Legendre-Fenchel conjugate of R.
Definition 4 (Mirror-stratifiable functions). Let R : RN → R be a proper lsc

convex function; we say that R is mirror-stratifiable with respect to a (primal) strat-
ification M = {Mi}i∈I of dom(∂R) and a (dual) stratification M∗ = {M∗i }i∈I of
dom(∂R∗) if the following holds:

(i) Conjugation induces a duality pairing between M and M∗, and JR : M →
M∗ is invertible with inverse JR∗ , i.e. ∀M ∈M, M∗ ∈M∗ we have

M∗ = JR(M) ⇐⇒ JR∗(M∗) = M.

(ii) JR is decreasing for the relation 6: for any M and M ′ in M

M 6M ′ ⇐⇒ JR(M) > JR(M ′).

The primal-dual stratifications that make R mirror-stratifiable are not unique, as
will be exemplified in Remark 3. Though the definition is formal and the assumptions
looks restrictive, this class include many useful examples, as illustrated in the next
section. We finish this section with a remark, used in the sequel.

Remark 2 (Separability). For each m = 1, . . . , L, suppose that the proper lsc
convex function Rm : RNm → R is mirror-stratifiable with respect to stratifications
Mm and M∗m. Then it is easy to show, using standard subdifferential and conjugacy

calculus, that the function R : (xm)16m6L ∈ RN1 × · · · × RNL 7→
∑L
m=1Rm(xm) is

mirror-stratifiable with stratifications M1 × · · · ×ML and M∗1 × · · · ×M∗L.
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2.3. Examples. The notion of a mirror-stratifiable function looks quite rigid.
However, many of the regularization functions routinely used in data science are
mirror-stratifiable. Let us provide some relevant examples in this section. In partic-
ular, the `1-norm and the nuclear norm will be used in the numerical experiments.

2.3.1. Legendre functions. A lsc convex function R : RN → R is said to be a
Legendre function (see [50, Chapter 26]) if (i) it is differentiable and strictly convex
on the interior of its domain int(dom(R)) 6= ∅, and (ii) ||∇R(xk)|| → +∞ for every
sequence (xk)k∈N ⊂ int(dom(R)) converging to a boundary point of dom(R). Many
functions in convex optimization are Legendre; most notably, quadratic functions
and the log barrier of interior point methods. It was shown in [50, Theorem 26.5]
that R is Legendre if and only if its conjugate R∗ is Legendre, and that in this case
∇R is a bijection from int(dom(R)) to int(dom(R∗)) with ∇R∗ = (∇R)−1. As a
consequence, a Legendre function R is mirror-stratifiable with M = {int(dom(R))}
and M∗ = {int(dom(R∗))}.

2.3.2. `1-norm. Let R : x ∈ R 7→ |x|, whose conjugate R∗ = ι[−1,1]. It follows
that R is mirror-stratifiable withM = { ]−∞, 0[, {0}, ]0,+∞[} andM∗ = {{−1}, ]−
1, 1[, {+1}}. Using Remark 2, the next result is clear.

Lemma 1. The `1-norm and its conjugate ι[−1,+1]N are mirror-stratifiable with re-

spect to the stratificationsM = { ]−∞, 0[, {0}, ]0,+∞[}N of RN andM∗ = {{−1}, ]−
1, 1[, {+1}}N of [−1,+1]N .

A graphical illustration of this lemma in dimension 2 is displayed in Figure 2.1(a).
Remark 3 (Non-uniqueness of stratifications). In general, we do not have

uniqueness of stratifications inducing mirror-stratifiable functions. To illustrate this,
let us consider the `1 norm. Take the partitions M = { ]−∞, 0[∪]0,+∞[, {0}}N
of RN and M∗ = {{−1,+1}, ] − 1, 1[}N . These are valid stratifications though
the strata are not connected. Other possible valid stratifications are given by strata
Mj =

{
x ∈ RN : ||x||0 = j

}
and M∗j = J||·||1(Mj), for j = 0, 1, . . . , N . It is immediate

to check that the `1-norm is also mirror-stratifiable with respect to these stratifications.
However, as devised above, it is in general not wise to take such large strata as they
lead to less sharp localization and sensitivity results.

Remark 4 (Instability under the sum rule). The family of mirror-stratifiable
functions is unfortunately not stable under the sum. As a simple counter-example,
consider the pair of conjugate functions on R: R(x) = |x| + x2/2 and R∗(u) =
(max{|u| − 1, 0})2/2. We obviously have dom(∂R) = dom(∂R∗) = R. However we
observe that JR(R) = R \ {−1, 1}. This yields that JR cannot be a pairing between
any two stratifications of R, and therefore R cannot be mirror-stratifiable.

2.3.3. `1,2 norm. The `1,2 norm, also known as the group Lasso regularization,
has been advocated to promote group/block sparsity [60], i.e. it drives all the coef-
ficients in one group to zero together. Let B a non-overlapping uniform partition of
{1, . . . , N} into K blocks. The `1,2 norm induced by the partition B reads

||x||B =
∑
B∈B
||xB ||2

where xB is the restriction of x to the entries indexed by the block B. This is again
a separable function of the xB ’s. One can easily show that the `2 norm on R|B| and
its conjugate, the indicator of the unit `2-ball B

`
|B|
2

in R|B|, are mirror-stratifiable

with respect to the stratifications {{0},R|B| \ {0}} of RN and {S|B|−1
`2

, int(B
`
|B|
2

)}
7



(a)

(b)

Fig. 2.1. Graphical illustration of mirror-stratification for two norms: (a) `1 norm in dimen-
sion 2; (b) `1,2 norm in dimension 3 (with two blocks, of respectively sizes 1 and 2).

of B
`
|B|
2

), where S|B|−1
`2

is the corresponding unit sphere. In turn, the `1,2 norm is

mirror-stratifiable with respect to the stratifications M = {{0},R|B| \ {0}}K and
M∗ = {S|B|−1, int(B

`
|B|
2

)}K . An illustration of this result in dimension 3 is portrayed

in Figure 2.1(b).

2.3.4. Nuclear norm. Let us come back to the nuclear norm defined in Exam-
ple 2. For simplicity, we assume n1 = n2 = n. Let M be a stratum of the `1 norm
stratification. In the following, we denote by M sym its symmetrization. We observe
that σ−1(M sym) = {X ∈ Rn×n : rank(X) = ||z||0, z ∈M}. So many inverse images
σ−1(M sym) of strata M sym coincide. This suggests the following n+ 1 stratifications:
for a given i ∈ {0, . . . , N}

Mi =
{
X ∈ Rn×n : rank(X) = i

}
M∗i = {U ∈ Rn : σ1(U) = · · · = σi(U) = 1,∀j > i, |σj(U)| < 1} .

This yields that || · ||∗ is mirror-stratifiable with respect to these stratifications.

8



2.3.5. Polyhedral Functions. We here establish mirror-stratifiability of poly-
hedral functions, including the `1 norm, the `∞ norm and anisotropic TV semi-norm.

A polyhedral function R : RN → R can be expressed as

R(x) = max
i=1,...,k

{〈ai, x〉 − αi}+ ι⋂
i=k+1,...,m{x : 〈ai, x〉−αi60}(x). (2.4)

For any x ∈ dom(R), introduce the two sets of indices

Imax(x) = {i = 1, . . . ,m : 〈ai, x〉 − αi = R(x)} ,
I feas(x) = {i = 1, . . . ,m : 〈ai, x〉 = αi} .

For a given index set I ⊂ {1, . . . ,m}, we consider the affine manifold

MI
def.
=
{
x ∈ dom(R) : Imax(x) ∩ I feas(x) = I

}
. (2.5)

We see that some MI may be empty and that M = {MI}I is a stratification of
dom(R). The stratum MI is characterized by the optimality part Imax = I∩{1, . . . , k}
and the feasibility part I feas = I ∩ {k + 1, . . . ,m} of I. Similarly we define

M∗I = ri(conv {ai : i ∈ Imax}) + ri(cone
{
ai : i ∈ I feas

}
).

Let us formalize in the next proposition a result alluded to in [19].
Proposition 2. A polyhedral function R is mirror-stratifiable with respect to its

naturally induced stratifications {MI}I and {M∗I }I .
Remark 5 (Back to || · ||1). As we anticipated, Proposition 2 subsumes Lemma 1

as a special case. To see this, observe that

||x||1 = max
||u||∞61

〈u, x〉 = max
u∈{−1,+1}N

〈u, x〉 ,

which is of the form (2.4) with k = m = 2N . Thus there are 22N

affine manifolds as
defined by (2.5). But many of them are empty: there is only 3N (non-empty, distinct)
manifolds in the stratification of RN , and they coincide with those in Lemma 1.

2.3.6. Spectral Lifting of Polyhedral Functions. As we discussed in Re-
mark 4, JR may fail to induce a duality pairing between stratifications of R and R∗,
in which case R cannot be mirror-stratifiable. Hence, for this type of duality to hold,
one needs to impose stringent strict convexity conditions. To avoid this, and still
afford a large class of mirror-stratifiable functions that are of utmost in applications,
we consider spectral lifting of polyhedral functions, in the same vein as [19] did it for
partial smoothness.

A matrix function R : RN=n×n → R is said to be a spectral lift of a polyhedral
function if there exists a polyhedral function Rsym : Rn → R, invariant under signed
permutation of its coordinates, such that R = Rsym ◦σ where σ computes the singular
values of a matrix. Associated toM = {MI}I the (polyhedral) stratification induced
by Rsym, we consider its symmetrized stratification. We define the symmetrization of
M ∈M, as the set M sym

M sym =
{
x ∈ RN : ∃y ∈M such that for all i there exists j with |xi| = |yj |

}
.

The next result is a corollary of the main result of [19].
Proposition 3. A spectral function R = Rsym ◦ σ is mirror-stratifiable with

respect to the smooth stratification {σ−1(M sym)} and its image by JR.
Remark 6 (Back to || · ||∗). The nuclear norm is a spectral lift of the `1 norm.

Therefore, one can recover mirror-stratification of the nuclear norm, with the strati-
fications given in Section 2.3.4, by putting together Lemma 1 and Proposition 3.
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2.4. Activity Identification for Mirror-Stratifiable Functions. To our
point of view, the notion of mirror-stratifibility deserves a special study in view of
the following simple but powerful geometrical observation. We state it as a theorem
because of its utmost importance in the subsequent developments of this paper.

Theorem 1 (Enlarged activity identification). Let R be a proper lsc convex
function which is mirror-stratifiable with respect to primal-dual stratifications M =
{M} and M∗ = {M∗}. Consider a pair of points (x̄, ū) and the associated strata Mx̄

and M∗ū . If the sequence pair (xk, uk) → (x̄, ū) is such that uk ∈ ∂R(xk), then for k
large enough, xk is localized in a specific set of strata such that

Mx̄ 6Mxk
6 JR∗(M∗ū). (2.6)

Proof. By assumption on R, ∂R is sequentially closed [50, Theorem 24.4] and
thus ū ∈ ∂R(x̄). Now, since xk is close to x̄, upon invoking Proposition 1, we get

Mxk
>Mx̄

which shows the left-hand side of (2.6). Similarly, we have

M∗uk
>M∗ū . (2.7)

Using the fact that ∂R(xk) is a closed convex set together with (2.3) leads to

uk ∈ ∂R(xk) = cl(ri(∂R(xk))) = cl(JR({xk})) ⊂ cl(JR(Mxk
))

which entails Muk
6 JR(Mxk

). Using finally (2.7) and that by definition, JR is
decreasing for the relation 6, we get

M∗ū 6M∗uk
6 JR(Mxk

) =⇒ Mxk
6 JR∗(M∗ū),

whence we deduce the right-hand side of (2.6).
Mirror-stratification thus allows us to prove the simple but powerful claim of

Theorem 1. As we will see in the rest of the paper, this result will be the backbone
to prove sensitivity and finite enlarged activity identification results in absence of
non-degeneracy.

3. Sensitivity of Composite Optimization Problems. In this section, we
consider a parametric convex optimization problem of the form

min
x∈RN

E(x, p)
def.
= F (x, p) +R(x), (P(p))

depending on the parameter vector p ∈ Π, where Π is the parameter set, an open
subset of a finite dimensional linear space. Sensitivity analysis studies the properties
of solutions x?(p) of (P(p)) (assuming they exist) to perturbations of the parameters
vector p ∈ Π around some reference point p̊. In Section 3.1, we briefly review the
existing results on this topic and their limitations. We then introduce in Section 3.2
our new results obtained owing to the mirror-stratifiable structure.

3.1. Existing sensitivity results. Classical sensitivity results (see e.g. [7, 47,
21]) study the regularity of the set-valued map p 7→ x?(p). A typical result proves
Lipschitz continuity of this map provided that E is smooth enough and E(·, p̊) has
a local second-order (quadratic) growth at x?(p̊), i.e. that there exists some c > 0
such that E(x, p̊) > E(x?(p̊), p̊) + c||x − x?(p̊)||2 for x nearby x?(p̊). For C2-smooth
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optimization, this growth condition is equivalent to positive definiteness of the hessian
of E with respect to x evaluated at (x?(p̊), p̊) [29]. For classical smooth constrained
optimization problems, activity is captured by the subset of active inequality con-
straints. Under reasonable non-degeneracy conditions (see, for example, [29]), this
active set is stable under small perturbations to the objective.

A nice nonsmooth sensitivity theory is based on the notion of partial smooth-
ness [39]. Partial smoothness is an intrinsically geometrical assumption which, infor-
mally speaking, says that E behaves smoothly along an active manifold and sharply in
directions normal to the manifold. Furthermore, under a non-degeneracy assumption
at a minimizer (see (3.1)), it allows appealing statements of second-order optimality
conditions (including second-order generalized differentiation) and associated sensi-
tivity analysis around that minimizer [39, 40].

Let ∂E(x, p) be the subdifferential of E according to x. Specializing the result of
[24, Proposition 8.4] to a proper lsc convex function E(·, p), one can show that C2-
partial smoothness of E(·, p) at x?(p̊) relative to some fixed manifold (independent of
p) for 0, together with the non-degeneracy assumption

0 ∈ ri(∂E(x?(p̊), p̊)) (3.1)

is equivalent to the existence of an identifiable C2-smooth manifold, i.e. for x?(p) and
u?(p) ∈ ∂E(x?(p), p) close enough to x?(p̊) and 0, x?(p) lives on the active/partly
smooth manifold of x?(p̊). If these assumptions are supplemented with a quadratic
growth condition of E (see above) along the active manifold, then one also has C1

smoothness of the single-valued mapping p 7→ x?(p) [39, Theorem 5.7]. It can be
deduced from [23, Corollary 4.3] that for almost all linear perturbations of lsc convex
semialgebraic functions, the non-degeneracy and quadratic growth conditions hold.
However, this genericity fails to hold for many cases of interest. As an example, con-
sider E of (P(λ, y)) with λ > 0 fixed and p = y. If R is a proper lsc convex and
semialgebraic function, one has from [23] that for Lebesgue almost all Φ∗y, prob-
lem (P(λ, y)) has at most one minimizer at which furthermore non-degeneracy and
quadratic growth hold. Of course genericity in terms of Φ∗y does not imply that in
terms of y, which is our parameter of interest. Not to mention that we supposed λ
fixed while it is not in many cases of interest.

3.2. Sensitivity analysis without non-degeneracy. For a fixed p, (P(p)) is
a standard composite optimization problem. Here, we assume that the objective is the
sum of a C1(RN ) convex function F (·, p) and a nonsmooth proper lsc convex function
R. We denote ∇F (x, p) the gradient of F (·, p) at x.

We are going to show that if the minimizer x?(p̊) is unique, slight perturbations
p of p̊ generate solutions x?(p) that are in a “controlled” stratum Mx?(p) precisely
sandwiched to extreme strata defined from a primal-dual pair associated to p̊.

Theorem 2 (Sensitivity analysis with mirror-stratifiable functions). Let p̊ be a
given point in the parameter space Π. Assume that: (i) E(·, p̊) has a unique mini-
mizer x?(p̊), (ii) E is lsc on RN × Π, (iii) E(x?(p̊), ·) is continuous at p̊, (iv) ∇F
is continuous at (x?(p̊), p̊), and (v) E is level-bounded3 in x uniformly in p locally
around p̊. If R is mirror-stratifiable according to (M,M∗), then for all p close to p̊,

3 Recall from [51, Definition 1.16] that the function E : RN ×Π is said to be level-bounded in x
locally uniformly in p around p̊ if for each c ∈ R, there exists a neighbourhood V of p̊ and a bounded
set Ω such that the sublevel set

{
x ∈ RN : E(x, p) 6 c

}
⊂ Ω for all p ∈ V.
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(a)

(b)

Fig. 3.1. Graphical illustration of Theorem 2 for a projection problem on the `∞ ball. (a)
corresponds to a degenerate situation while (b) to a non-degenerate one.

any minimizer x?(p) of E(·, p) is localized as follows

Mx?(p̊) 6Mx?(p) 6 JR∗(M∗u?(p̊)) where u?(p̊)
def.
= −∇F (x?(p̊), p̊). (3.2)

Proof. Le (pk)k∈N ⊂ Π be a sequence of parameters converging to p̊. By assump-
tion on F and R, E(·, p) is proper for any p. Since it is also lsc and is level-bounded
in x uniformly in p locally around p̊ by conditions (ii) and (v). It follows from [51,
Theorem 1.17(a)] that ArgminE(·, pk) is non-empty and compact, and, in turn, any
sequence (x?k)k∈N of minimizers is bounded. We consider a subsequence, which for
simplicity, we denote again x?k → x̄. We then have

E(x̄, p̊) 6
condition (ii)

lim inf
k

E(x?k, pk)

6
Optimality

lim inf
k

E(x?(p̊), pk)

=
condition (iii)

lim
k
E(x?(p̊), pk) = E(x?(p̊), p̊).

By the uniqueness condition (i), we conclude that x̄ = x?(p̊). Let u?k
def.
= −∇F (x?k, pk).

Since ∇F is continuous at (̊x, p̊) by assumption (iv), one has u?k → ů. The first-order
optimality condition of problem (P(p)) reads u?k ∈ ∂R(x?k). Hence we are now in
position to invoke Theorem 1 to conclude.

Remark 7 (Single manifold identification). In the special case where we have
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the non-degeneracy condition

u?(p̊) = −∇F (x?(p̊), p̊) ∈ ri(∂R(x?(p̊))), (3.3)

our result simplifies and we recover the known exact identification result. To see this,
we note that (3.3) also reads u?(p̊) ∈ JR({x?(p̊)}), and thus M∗u?(p̊) = JR({x?(p̊)}).

In this case, (3.2) becomes Mx?(p) = Mx̊ for all p close to p̊. Such a result was also
established in [35, 40] under condition (3.3), when F (·, p̊) is also locally C2 around
x?(p̊) and R is partly smooth at x?(p̊) relative to a C2-smooth manifold Mx?(p̊). An
example of this non-degenerate scenario is shown in Figure 3.1(b). Our result covers
the more delicate degenerate situation where u?(p̊) might be on the relative boundary
of the subdifferential, but requires the stronger mirror-stratifiability structure on the
non-smooth part. However, the active set at x?(p) is in general not unique for all p
close to p̊, hence the terminology enlarged activity.

Example 4. The result of Theorem 2 is illustrated in Figure 3.1, for the projec-
tion problem on a `∞ ball, in both the degenerate and the non-degenerate situations.
More precisely, we take E(x, p) = 1

2 ||x−p||
2+ιB`∞

(x), so that u?(p) = p−x?(p), where
x?(p) = PB`∞

(p). Figure 3.1(a) illustrates the degenerate case where u?(p̊) belongs to
the relative boundary of the normal cone of B`∞ at x?(p̊). Taking a perturbation p
around p̊ entails that x?(p) belongs either to M1 = Mx?(p̊) or to the enlarged stratum
M2 = JR∗(M∗u?(p̊)) = JR∗(M∗2 ). In the non-degenerate case of Figure 3.1(b) presented

in Remark 7, the optimal solution x?(p) is always on M1 for small perturbations.
Remark 8 (Quadratic growth). We can also establish the Lipschitz continuity

of x?(p) under the conditions of Theorem 2, under an additional second-order growth
condition, just as in classical sensitivity analysis (see [7, Section 4.2.1]). Let us
assume that there exists a neighbourhood V of x?(p̊) and κ > 0 such that

E(x, p̊) > E(x?(p̊), p̊) + κ||x− x?(p̊)||2 ∀x ∈ V. (3.4)

Since x?k → x?(p̊) for pk → p̊ (see the proof of Theorem 2), we have x?k ∈ V for k
large enough. If, moreover, ∇F (x, ·) is Lipschitz-continuous in a neighbourhood of p̊
with Lipschitz constant ν independent of x ∈ V, we get

κ||x?k − x?(p̊)||2 6 E(x?k, p̊)− E(x?(p̊), p̊)

=
(
(E(x?(p̊), pk)− E(x?k, pk))− (E(x?(p̊), p̊)− E(x?k, p̊))

)
−
(
E(x?(p̊), pk)− E(x?k, pk)

)
(x

?
k minimizes E(·, pk)) 6 (E(x?(p̊), pk)− E(x?k, pk))− (E(x?(p̊), p̊)− E(x?k, p̊)

(By (P(p))) = (F (x?(p̊), pk)− F (x?k, pk))− (F (x?(p̊), p̊)− F (x?k, p̊))

(Mean-Value Theorem) 6
(

sup
x∈V
||∇F (x, pk)−∇F (x, p̊)||

)
||x?k − x?(p̊)||

6 ν||pk − p̊||||x?k − x?(p̊)||.

whence we conclude that

d(x?(p̊),ArgminE(·, pk)) 6 ν/κ||pk − p̊||.

4. Regularized Inverse Problems. A typical context where our framework of
mirror-stratifiability is of usefulness is that of studying stability to noise of regularized
linear inverse problems. We come back to the situation presented in introduction:
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studying stability issues to perturbed observations of the form y = ẙ + w amounts
to analyzing sensitivity of the minimizers and the optimal value function in (P(λ, y))
when the parameter p = (λ, y) evolves around the reference point p̊ = (0, ẙ). Unlike
the usual sensitivity analysis theory setting recalled in the previous section (e.g. [7]),
here the objective E may not even be continuous at p̊.

We provide hereafter some pointers to the relevant literature, then we develop
our sensitivity results for mirror-stratifiable functions. These results involve primal
and dual solutions to the noiseless problem

min
x∈RN

E(x, (0, y))
def.
= R(x) s.t. Φx = y, (P(0, y))

4.1. Existing sensitivity results for regularized Inverse Problems.
Lipschitz stability. Assume there exists a dual multiplier η ∈ RP (sometimes

referred to as a “dual certificate”) for the noiseless constrained problem (P(0, y))
taken at y = ẙ such that Φ∗η ∈ ∂R(̊x). The latter condition is equivalent to x̊ being
a minimizer of (P(0, y)). This condition goes by the name of the “source” or “range”
condition in the inverse problems literature. It has been widely used to derive stability
results in terms of ||Φx?(λ, y)−Φx̊|| or R(x?(λ, y))−R(̊x)−〈Φ∗η, x?(λ, y)− x̊〉; see [52]
and references therein. To afford stability in terms of ||x?(λ, y)− x̊|| directly, the range
condition has to be strengthened to its non-degenerate version Φ∗η ∈ ri(∂R(̊x)). It
has been shown that this condition implies that the set-valued map (λ, y) 7→ x?(λ, y)
is Lipschitz-continuous at (0, ẙ); see [32] and [58].

Active set stability. In the case where R is partly smooth, one can approach
an even more complete sensitivity theory by studying stability of the partly smooth
manifold of R at x̊. In particular, it can be shown from that if an appropriate non-
degeneracy assumption holds, see [59], then problems (P(0, y)) and (P(λ, y)) have
unique minimizers (respectively x̊ and x?(λ, y)), and x?(λ, y) lies on the partly smooth
manifold of R at x̊. Observe that compared to Lipschitz stability, active set stability
is more demanding as the non-degeneracy condition has to hold for a specific dual
multiplier, which is obviously more stringent. This type of results has appeared many
times in the literature for special cases, e.g. for the `1 norm [30, 61], the nuclear
norm [1]. The work in [57, 59] has unified all these results.

Non-degeneracy in practice for deconvolution and compressed sensing. The above
results require that some abstract non-degeneracy condition holds, which imposes
strict limitations on practical situations. In particular, when Φ is a convolution oper-
ator and x̊ is sparse, [10] studies Lipschitz stability and [25] support stability. In this
setting, the non-degeneracy condition holds whenever the non-zero entries are sepa-
rated enough, which is not often verified. Another setting where this stability theory
has been applied in when Φ is drawn from a random matrix ensemble, i.e. compressed
sensing. For a variety of partly smooth regularizers (including the `1, nuclear and `1,2
norms), the non-degeneracy condition holds with high probability if, roughly speak-
ing, the sample size P is sufficiently larger than the “dimension” of the active set at
x̊ (see e.g. [12, 22]). Again this is a clear limitation as illustrated in Section 1.2.

4.2. Primal and dual problems. Suppose we have observations of the form
(1.1), and we want to recover x̊ (or a provably good approximation of it). As advocated
in Section 1.1, a popular approach is to adopt a regularization framework which can
be cast as the optimization problem (P(λ, y)) (for λ > 0) and (P(0, y)) (when λ = 0).
In the sequel, we assume that

R∞(z) > 0, ∀z ∈ ker(Φ) \ {0}, (4.1)
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where R∞ is the asymptotic (or recession) function of R, defined as

R∞(z)
def.
= lim

t→+∞

R(x+ tz)−R(x)

t
, ∀x ∈ dom(R).

Condition (4.1) is a necessary and sufficient condition for the set of minimizers of
(P(λ, y)) and (P(0, y)) to be non-empty and compact [56, Lemma 5.1]. It is satisfied
for example when R is coercive.

Remark 9 (Discontinuity of F ). Letting p
def.
= (λ, y) ∈ Π

def.
= R+ × RP , we see

that (P(λ, y)) and (P(0, y)) are instances of (P(p)), by setting

F (x, p)
def.
=

{
1

2λ ||y − Φx||2 if λ > 0,

ιHy
(x) if λ = 0,

where Hy
def.
=
{
x ∈ RN : Φx = y

}
. (4.2)

The corresponding function F considered does not obey the assumptions of Theorem 2.
Indeed, the parameter set Π is not open, with p̊ = (0, ẙ) that lives on the boundary of
Π, and F is only lsc at such p̊ (because of the affine constraint Φx = y). The main
consequence will be that one can no longer allow p to vary freely nearby p̊.

In order to study the sensitivity of solutions, we look at the Fenchel-Rockafellar
dual problem, which reads (for all λ > 0)

max
q∈RP

〈q, y〉 − λ

2
||q||2 −R∗(Φ∗q). (D(λ, y))

We denote D(λ, y) the set of solutions of (D(λ, y)). Note that for λ > 0, thanks to
strong concavity, there is a unique dual solution q?(λ, y), i.e. D(λ, y) = {q?(λ, y)}. We
also have from the primal-dual extremality relationship that for any primal solution
x?(λ, y) of (P(λ, y)),

q?(p) =
y − Φx?(p)

λ
and Φ∗q?(p) ∈ ∂R(x?(p)). (4.3)

While (D(0, y)) is the dual of (P(0, y)), it is important to realize that it is not the limit
of (D(λ, y)) in the sense that its set of dual solutions is in general not a singleton.
Lemma 3 hereafter singles out a specific dual optimal solution (sometimes called
“minimum norm certificate”) defined by

q̊(0, y) = argmin
q∈RP

{||q|| : Φ∗q ∈ ∂R(x?(0, y))} = argmin
q∈RP

{||q|| : q ∈ D(0, y)} . (4.4)

The following two important lemmas ensure the convergence of the solutions to the
primal and dual problems as λ→ 0 and as ||y − ẙ|| → 0.

Lemma 2 (Primal solution convergence). Assume that x̊ is the unique solution
to (P(0, ẙ)). For any sequence of parameters pk = (λk, yk) with λk > 0 such that(

||yk − ẙ||2

λk
, λk

)
−→ (0, 0),

and any solution x?(pk) of (P(pk)), we have x?(pk)→ x̊.

Proof. Denote x?k
def.
= x?(pk). Since (x?k)k∈N is a bounded sequence by (4.1), one

can extract a converging subsequence, which for simplicity, we denote again x?k → x̄.
Optimality of x?k implies that

R(x?k) 6
1

2λk
||yk − Φx?k||2 +R(x?k) 6

1

2λk
||yk − ẙ||2 +R(̊x). (4.5)
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Passing to the limit and using the hypothesis that 1
λk
||yk − ẙ||2 → 0, we get

lim sup
k

R(x?k) 6 R(̊x).

On the other hand, lower semi-continuity of R entails lim infk R(x?k) > R(x̄). Com-
bining these two inequalities, we deduce that R(x̄) 6 R(̊x). Since R is proper and lsc,
it is bounded from below on bounded sets [51, Corollary 1.10]. Let r = infk R(x?k)
which then satisfies −∞ < r < +∞. Substracting r from (4.5) and multiplying by
λk, one obtains

1

2
||yk − Φx?k||2 6

1

2
||yk − Φx?k||2 + λk(R(x?k)− r) 6 1

2
||yk − ẙ||2 + λk(R(̊x)− r). (4.6)

Consequently, passing to the limit in (4.6) shows that ||̊y − Φx̄|| = 0, i.e. x̄ is a
feasible point of (P(0, ẙ)). Altogether, this shows that x̄ is a solution of (P(0, ẙ)),
and by uniqueness of the minimizer, x̄ = x̊.

Lemma 3 (Dual solution convergence). For any sequence of parameters pk =
(λk, yk) such that (

||yk − ẙ||
λk

, λk

)
−→ (0, 0),

we have q?(pk)→ q̊(0, ẙ).
Proof. By the triangle inequality, we have

||q?(λk, yk)− q̊(0, ẙ)|| 6 ||q?(λk, yk)− q?(λk, ẙ)||+ ||q?(λk, ẙ)− q̊(0, ẙ)||.

For the first term, we notice that q?(λ, y) = proxR∗◦Φ∗/λ(y/λ) for λ > 0. Thus,
Lipschitz continuity of the proximal mapping entails that

||q?(λk, yk)− q?(λk, ẙ)|| 6 ||yk − ẙ||
λk

,

which in turn shows that q?(λk, yk)→ q?(λk, ẙ). Let us now turn to the second term.

Using the respective optimality of q?k = q?(λk, ẙ) and q̊
def.
= q̊(0, ẙ) ∈ D(0, ẙ), one

obtains

−〈q?k, ẙ〉+
λk
2
||q?k||2 +R∗(Φ∗q?k) 6 −〈q̊, ẙ〉+

λk
2
||̊q||2 +R∗(Φ∗q̊)

6 −〈q?k, ẙ〉+
λk
2
||̊q||2 +R∗(Φ∗q?k),

(4.7)

whence we get ||q?k|| 6 ||̊q||, which shows in particular that (q?k)k∈N is a bounded se-
quence. We can thus extract any converging subsequence, which for simplicity, we
denote again q?k → q̄. Passing to the limit in (4.7), using the fact that R∗ is lsc, one
obtains

−〈q̄, ẙ〉+R∗(Φ∗q̄) 6 −〈q̄, ẙ〉+ lim inf
k

R∗(Φ∗q?k) 6 −〈q̊, ẙ〉+R∗(Φ∗q̊),

which shows that q̄ ∈ D(0, ẙ). This together with the fact that ||q?k|| 6 ||̊q|| as we
already saw, shows that q̄ = q̊ by uniqueness of q̊ in (4.4).
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4.3. Sensitivity. We are now in position to state the main result of this section,
which tracks the strata of x?(p) in the regime where the perturbation ||w|| = ||y − ẙ||
is sufficiently small.

Theorem 3. Suppose that x̊ is the unique solution to (P(0, ẙ)). Assume fur-
thermore that R is mirror-stratifiable with respect to the primal-dual stratifications
(M,M∗). If there are constants (C0, C1) depending only on x̊ such that for all p in

{p = (λ, y) : C0||y − ẙ|| 6 λ 6 C1} , (4.8)

then there exists a minimizer x?(p) of E(·, p) localized as follows

Mx̊ 6Mx?(p) 6 JR∗(M∗ů) where ů
def.
= Φ∗q̊(0, ẙ). (4.9)

Proof. Under (4.8) with for instance C1 small enough, one can easly check
that there exists k large enough such that the regime required for (yk, λk) to ap-
ply Lemma 2 and 3 is attained. In turn, we have a converging primal-dual pair
(x?(pk),Φ∗q?(pk))→ (̊x, ů). One can then apply Theorem 1 to conclude.

5. Activity Localization with Proximal Splitting Algorithms. Proximal
splitting methods are algorithms designed to solve large-scale structured optimization
and monotone inclusion problems, by evaluating various first-order quantities such as
gradients, proximity operators, linear operators, all separately at various points in the
course of an iteration. Though they can show slow convergence each iteration has a
cheap cost. We refer to e.g. [3, 5, 17, 49] for a comprehensive treatment and review.

Capitalizing on our enlarged activity identification result for mirror-stratifiable
functions, we now instantiate its consequences on finite activity localization of prox-
imal splitting algorithms. While existing results on finite identification (of a sin-
gle active set) strongly rely on partial smoothness around a non-degenerate cluster
point [34, 42, 43, 41], we examine here intricate situations where neither of these
assumptions holds.

5.1. Forward-Backward algorithm. The Forward–Backward (FB) splitting
method [44] is probably the most well-known proximal splitting algorithm. In our
context, it can be used to solve optimization problems with the additive “smooth +
non-smooth” structure of the form

min
x∈RN

f(x) +R(x), (5.1)

where f ∈ C1(RN ) is convex with L-Lipschitz gradient, and R is a proper lsc and
convex function. We assume that Argmin(f + R) 6= ∅. The FB iteration in relaxed
form reads [16]

xk+1 = (1− τk)xk + τk proxγkR(xk − γk∇f(xk)), (5.2)

with γk ∈]0, 2/L[ and τk ∈]0, 1], where proxγR, γ > 0, is the proximal mapping of R,

proxγR(x)
def.
= argmin

z∈RN

1

2
||z − x||2 + γR(z). (5.3)

Different variants of FB method were studied, and a popular trend is the inertial
schemes which aim at speeding up the convergence (see [48, 4], and the sequence-
convergence version as proved recently in [14]).
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Under the non-degeneracy assumption −∇f(x?) ∈ ri(∂R(x?)), it was shown in
[42] that FB and its inertial variants correctly identify the active manifold in finitely
many iterations, and then enter a local linear convergence regime. These results
encompass many special cases such as those studied in [33, 8, 54]. Beyond this non-
degenerate case, we establish now the general localization of active strata.

Theorem 4. Consider the FB iteration (5.2) to solve (5.1) with 0 < infk γk 6
supk γk < 2/L and infk τk > 0. Then xk converges to x? ∈ Argmin(f + R). Assume
that R is also mirror-stratifiable with respect to (M,M∗), then for k large enough,

Mx? 6Mxk
6 JR∗(M∗u?) where u?

def.
= −∇f(x?).

Proof. Convergence of the sequence (xk)k∈N to x? is obtained from [16, Corol-
lary 6.5]. Moreover, since the proximal mapping is the resolvent of the subdifferential,
(5.2) is equivalent to the monotone inclusion

uk+1
def.
=

xk − vk+1

γk
−∇f(xk) ∈ ∂R(vk+1),

where vk+1
def.
= xk+1−xk

τk
+xk. In turn, with the conditions infk τk > 0 and infk γk > 0,

and continuity of ∇f , we have vk → x? and thus uk → −∇f(x?) ∈ ∂R(x?). It then
remains to apply Theorem 1 to (vk, uk) and R to conclude.

It can be easily shown that Theorem 4 holds for several extensions of the iterate-
convergent version of FISTA [14]. We omit the details here for the sake of brevity.

We rather take a closer look to the case when the FB scheme (5.2) to solve (P(λ, y))
(see also (4.2)) for λ > 0. Putting together Theorem 3 and 4, we obtain the following
localization result depending only on the data to estimate x̊ assuming that the noise
level ||y − ẙ|| is small enough.

Proposition 4. Under the assumptions of Theorem 3, consider the FB iteration
(5.2) to solve (P(λ, y)) with 0 < infk γk 6 supk γk < 2λ/||Φ||2 and infk τk > 0. Then,
for k large enough, the iterates xk satisfy

Mx̊ 6Mxk
6 JR∗(M∗ů) where ů

def.
= Φ∗q(0, ẙ),

with q(0, ẙ) from (4.4).
Proof. To lighten notation, denote p = (λ, y). As in Theorem 4, we have xk →

x?(p) a minimizer of (P(λ, y)). Thus we get

Mx̊ 6Mx?(p) 6Mxk
,

where the first inequality comes from Theorem 3 and the second one from Theorem 4.
This gives the first inequality in the localization result.

Moreover, in the special case at hand ∂R(x?(p)) 3 −∇f(x?(p)) = Φ∗q?(p) → ů
as p → (0, ẙ), where we invoked (4.3). It then follows from (2.7) and the fact that
JR∗ is decreasing for the relation 6, that

M∗ů 6M∗−∇f(x?(p)) ⇐⇒ JR∗(M∗−∇f(x?(p))) 6 JR∗(M
∗
ů).

Using once again Theorem 4, we get

Mxk
6 JR∗(M∗−∇f(x?(p))) 6 JR∗(M

∗
ů),
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which yields the second desired inequality.
Though the iterates xk of FB do not converge to x̊, this proposition tells us that

the iterates identify an enlarged stratum associated to x̊. This is an appealing feature
from a practical perspective, since one can often make some prior assumption on the
sought after vector x̊, such as for instance sparsity or low-rank properties, as we have
illustrated in the numerical experiments of Section 6.

5.2. Douglas-Rachford Splitting Algorithm. The Douglas-Rachford (DR)
method [44] is another popular splitting method designed to minimize convex objec-
tives having the additive “non-smooth + non-smooth” structure of the form

min
x∈RN

f(x) + g(x). (5.4)

with f and g be proper lsc and convex functions such that ri(dom(f))∩ri(dom(g)) 6= ∅
and Argmin(f + g) 6= ∅. The DR scheme reads

vk+1 = proxγf (2xk − zk) ,

zk+1 = zk + τk (vk+1 − xk) ,

xk+1 = proxγg(zk+1),

(5.5)

where γ > 0, τk ∈]0, 2[ is a relaxation parameter. By definition, the DR method is
not symmetric with respect to the order of the functions f and/or g. Nevertheless,
all of our statements throughout hold true, with obvious adaptations, when the order
of f and g is reversed in (5.5).

It has been shown in [43] that under appropriate non-degeneracy assumptions,
the DR identifies the active manifolds in finite time, and then shows a local linear
regime. These results unify all those that were established in the literature for special
problems, see e.g. [20] for linearly constrained `1-minimization, [6] for quadratic or
linear programs, [2] for feasibility with two subspaces. Under mirror-stratifiability of
f or g, we get the following enlarged activity identification result.

Theorem 5. Consider the DR iteration (5.5) to solve (5.4) with τk ∈]0, 2[
such that

∑
k∈N τk (2− τk) = +∞. Then zk converges to a fixed point z? with

x? = proxγg(z
?) ∈ Argmin(f + g), and xk and vk both converge to x?. Introduc-

ing u? = z?−x?

γ , we have furthermore:

(i) If g is mirror-stratifiable with respect to the primal-dual stratifications (Mg,Mg∗),
then for k large enough

Mg
x? 6Mg

xk
6 Jg∗(Mg∗

u? ).

(ii) If f is mirror-stratifiable with respect to the primal-dual stratifications (Mf ,Mf∗),
then for k large enough

Mf
x? 6Mf

vk
6 Jf∗(Mf∗

−u?).

Proof. Under the prescribed choice of τk, convergence of zk is ensured by virtue
of [16, Corollary 5.2]. By non-expansiveness of the proximal mapping, and as we are
in finite dimension, we also obtain convergence of xk and vk to x?. To prove (i), note
that the update of xk in (5.5) is equivalent to the monotone inclusion

uk
def.
=

zk − xk
γ

∈ ∂g(xk). (5.6)

19



Since (xk, uk) → (x?, u?), we conclude about (i) by invoking Theorem 1. Similarly,
we note that the update of vk in (5.5) is equivalent to

wk
def.
=

2xk − zk − vk+1

γ
∈ ∂f(vk+1). (5.7)

Using that (vk, wk)→ (x?,−u?) and applying Theorem 1 we get (ii).
In the same vein as for FB in the previous section, we now turn to applying

the DR scheme (5.5) to solve (P(λ, y)) by setting in (5.4) f(x) = 1
2λ ||y − Φx||2 and

g(x) = R(x). Putting Theorem 3 and 5-(i) together, we obtain the following analogue
to Proposition 4.

Proposition 5. Under the assumptions of Theorem 3, consider the DR iteration
(5.5) to solve (P(λ, y)) with γ > 0 and τk ∈]0, 2[ such that

∑
k∈N τk (2− τk) = +∞.

Then, for k large enough, the DR iterates satisfy

Mx̊ 6Mxk
6 JR∗(M∗ů) where ů

def.
= Φ∗q(0, ẙ).

Proof. The proof follows the same reasoning as that of Proposition 4 by addition-
ally observing (recall the notation in the proof of Theorem 5) that from (5.6)-(5.7),
we have u?(p) = −∇f(x?(p)) = Φ∗q?(p) ∈ ∂R(x?(p)).

6. Numerical Illustrations. In this section, we numerically illustrate our the-
oretical results on sensitivity and enlarged activity identification in the context of
regularized inverse problems. We adopt the same two “compressed sensing” scenarios
described in Section 1.2. The dimension dim(Mx̊) = R0(̊x) of the strata associated
to x̊ is measured as R0 = || · ||0 (resp. R0 = rank) for the `1 (resp. nuclear) norm
regularization.

Strata sensitivity. We first illustrate the relevance of the strata sensitivity result in
Theorem 3 by studying the dimension of the largest possible active stratum JR∗(M∗ů)
(in fact its closure). The dual ů = Φ∗q̊(0, ẙ) is computed from x̊ by solving the convex
optimization problem (4.4) (using CVX to get a high precision). Thus we know the
maximum complexity index excess predicted by Theorem 3, i.e.

δ?(̊x)
def.
= dim(JR∗(M∗ů))− dim(Mx̊).

For each given δ and R0(̊x), and among the 1000 randomly generated replications of
(̊x,Φ), we compute the proportion ρ(R0(̊x), δ) of x̊ such that it is the unique solution
of (P(0, ẙ)) and δ?(̊x) 6 δ. The proportions ρ(R0(̊x), δ) are displayed in Figure 6.1 as
a function of the input complexity index R0(̊x) = dim(Mx̊). The colors from blue to
red correspond to increasing δ.

The proportion ρ(R0(̊x), δ) is an increasing function of δ and a decreasing function
of R0(̊x). Indeed, as anticipated from standard compressed sensing results [58], active
strata Mx̊ of vectors x̊ whose dimension is small enough compared to the number of
measurements P can be provably and stably recovered with overwhelming probability
(on the sampling of (̊x,Φ, w)). As R0(̊x) increases, the number of measurements P
becomes insufficient to ensure non-degeneracy with high probability, hence preventing
stable recovery of Mx̊. However, Theorem 3 predicts that the active stratum of
x?(λ, y) for y nearby ẙ is localized between Mx̊ and JR∗(M∗ů).

The blue curve in each plot of Figure 6.1 corresponds to δ = 0, which is the
proportion ρ(R0(̊x), 0) of vectors x̊ whose active stratum Mx̊ can be recovered stably
under small noise perturbation by solving (P(λ, y)) for λ chosen according to (4.8).
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Fig. 6.1. Proportion of x̊ such that δ? (̊x) 6 δ as a function of R0 (̊x) (increasing value of δ
from 0 to its maximal value is depicted by a color evolving from blue to red).

R = || · ||1 R = || · ||∗

Fig. 6.2. Plots of R0(xk) for the 2000 first iterates generated by the Forward-Backward
algorithm. Plots in blue correspond to the cases when δ? (̊x) = 0, and the red ones for δ? (̊x) = δ.

This proportion shows a phase transition phenomenon between stable recovery and
unstable recovery. The location of the phase transition for δ = 0 can be predicted
accurately; see for instance [59].

The red curves in Figure 6.1 correspond to the extreme case where δ takes its
largest achievable value, i.e. where we can guarantee recovery of the largest stratum
JR∗(M∗ů) with high probability. The phase transition occurs for higher dimension
R0(̊x). The intermediate curves, i.e. from blue to red, correspond to the recovered
strata that are localized between Mx̊ and JR∗(M∗ů) (i.e. increasing δ). The phase
transition progressively increases with δ. These curves illustrate and quantify the
typical tradeoff observed in practice: one can allow for more complex input vectors x̊
(i.e. those with larger R0(̊x)) at the expense of recovering active strata larger than Mx̊.

Forward-Backward finite activity localization. We now numerically illustrate the
finite enlarged activity identification of the FB splitting scheme as predicted by The-
orem 4 and Proposition 4. We remain under the same compressed sensing setting
as before. The randomly generated replications of x̊ are such that R0(̊x) = 10 for
R = || · ||1 and to 4 for R = || · ||∗.

The evolution of the complexity index R0(xk) of the FB iterate xk is shown in
Figure 6.2. The blue lines correspond to several trajectories (the bold one is the
average trajectory), each for a randomly generated instance of x̊ such that δ?(̊x) =
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0, i.e. those vectors whose active strata Mx̊ can be exactly recovered under small
perturbations. Thus, the iterates identify Mx̊ in finite time. The red lines (the bold
one is the average trajectory) are those for which δ?(̊x) = δ > 0. As anticipated by
our theoretical results, the iterates identify a stratum strictly larger that Mx̊.
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Appendix A. Proofs of the results in Section 2.
Proof of Proposition 1. Let us first prove the first equivalence. Observe that

Definition 2 can be read as follows: M is active at x if and only if d(x, cl(M)) = 0.
Since there is a finite number of strata in the stratification, let us consider δ the
minimum of the nonzero distances d(x, cl(M ′)) for M ′ not active. For all x′ in the
open ball of radius δ and of center x, we have

d(x, cl(Mx′)) 6 ||x− x′|| < δ ⇐⇒ d(x, cl(Mx′)) = 0.

This shows that the set of these strata Mx′ indeed coincides the set of active strata,
whence we get the first equivalence.

Let us turn to the second equivalence. Let M be an active strata at x, that
is, x ∈ cl(M). Since x ∈ Mx, the intersection cl(M) ∩Mx contains x and thus is
nonempty. We deduce from (2.1) that M > Mx. Conversely, if M > Mx, then
x ∈Mx ⊂ cl(M) and therefore M is active at x.

Proof of Proposition 2. From classical convex analysis calculus rules, we get for
all x ∈ domR

∂R(x) = conv {ai : i ∈ Imax(x)}+ cone
{
ai : i ∈ I feas(x)

}
.

By definition of MI , the relative interior of ∂R(x) is constant over a stratum: for all
x ∈MI (with MI 6= ∅)

ri(∂R(x)) = ri
(

conv {ai : i ∈ Imax(x)}+ cone
{
ai : i ∈ I feas(x)

} )
= ri(conv {ai : i ∈ Imax(x)}) + ri(cone

{
ai : i ∈ I feas(x)

}
)

= ri(conv {ai : i ∈ Imax}) + ri(cone
{
ai : i ∈ I feas

}
).

This yields JR(MI) = M∗I . Conversely we have ∂R∗(u) = {x : u ∈ ∂R(x)}, which
entails for all u ∈M∗I

∂R∗(u) =
{
x : Imax(x) ∩ I feas(x) ⊃ I

}
,

and therefore ri(∂R∗(u)) = MI . This gives JR∗(M∗I ) = MI , which proves item (i) of
Definition 4.

To show (ii) of Definition 4, we make the following observation:

MI 6MI′ ⇐⇒ any x ∈MI lies in cl(MI′)

⇐⇒ Imax = Imax(x) ⊃ (I ′)
max

and I feas = I feas(x) ⊃ (I ′)
feas

⇐⇒ I ⊃ I ′.

On the other hand we have

cl(JR(MI)) ⊃ cl(ri(conv {ai : i ∈ Imax})) + cl(ri cone
{
ai : i ∈ I feas

}
))

= conv {ai : i ∈ Imax}+ cone
{
ai : i ∈ I feas

}
.
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Note that the first ⊃ is in fact = because conv {ai : i ∈ Imax} is compact. Using
unique decomposition of a polyhedron, we can write,

JR(MI) > JR(MI′)⇐⇒ cl(JR(MI)) ⊃ JR(MI′)⇐⇒ I ⊃ I ′,

which ends the proof.
Proof of Proposition 3. The proof builds upon a key result stated in [19]. Theo-

rem 4.6(i) in [19] asserts that the collection
{
σ−1(M sym) : M ∈M

}
forms a smooth

stratification of dom(R) with the desired properties. The fact that spectral func-
tions are mirror-stratifiable follows from the polyhedral case with the help of Theo-
rem 4.6(iv) in [19], which states that

JR(σ−1(M sym)) = σ−1
(
JRsym(M sym)

)
together with continuity of the singular value mapping σ.
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[26] V. Duval and G. Peyré. Sparse spikes deconvolution on thin grids. Preprint 01135200, HAL,
2015.

[27] C. Ekanadham, D. Tranchina, and E. P. Simoncelli. A unified framework and method for
automatic neural spike identification. Journal of Neuroscience Methods, 222:47 – 55, 2014.

[28] M. Fazel. Matrix Rank Minimization with Applications. PhD thesis, Stanford University, 2002.
[29] A. V. Fiacco and G. P. McCormick. Nonlinear Programming: Sequential Unconstrained Min-

imization Techniques. Wiley, New York, 1968. reprinted, SIAM, Philadelphia, 1990.
[30] J.-J. Fuchs. On sparse representations in arbitrary redundant bases. Information Theory, IEEE

Transactions on, 50(6):1341–1344, 2004.
[31] Michael Grant and Stephen Boyd. CVX: Matlab software for disciplined convex programming,

version 2.1. http://cvxr.com/cvx, March 2014.
[32] M. Grasmair, O. Scherzer, and M. Haltmeier. Necessary and sufficient conditions for lin-

ear convergence of l1-regularization. Communications on Pure and Applied Mathematics,
64(2):161–182, 2011.

[33] E. Hale, W. Yin, and Y. Zhang. Fixed-point continuation for `1-minimization: methodology
and convergence. SIAM J. Optim., 19(3):1107–1130, 2008.

[34] W. L. Hare. Identifying active manifolds in regularization problems. In H. H. Bauschke,
R. S., Burachik, P. L. Combettes, V. Elser, D. R. Luke, and H. Wolkowicz, editors, Fixed-
Point Algorithms for Inverse Problems in Science and Engineering, volume 49 of Springer
Optimization and Its Applications, chapter 13. Springer, 2011.

[35] W. L. Hare and A. S. Lewis. Identifying active constraints via partial smoothness and prox-
regularity. J. Convex Anal., 11(2):251–266, 2004.

[36] J.-B. Hiriart-Urruty and H. Y. Le. Convexifying the set of matrices of bounded rank: appli-
cations to the quasiconvexification and convexification of the rank function. Optimization
Letters, 6(5):841–849, 2012.

[37] Hai Yen Le. Confexifying the Counting Function on Rp for Convexifying the Rank Function
on Mm,n(R). Journal of Convex Analysis, 19(2):519–524, 2012.
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[59] S. Vaiter, G. Peyré, and J. Fadili. Model consistency of partly smooth regularizers. IEEE
Trans. Inf. Theory, 64(3):1725 – 1737, 2018.

[60] M. Yuan and Y. Lin. Model selection and estimation in regression with grouped variables.
Journal of the Royal Statistical Society: Series B, 68(1):49–67, 2005.

[61] P. Zhao and B. Yu. On model selection consistency of Lasso. The Journal of Machine Learning
Research, 7:2541–2563, 2006.

25


