2,501 research outputs found

    A semi-exact degree condition for Hamilton cycles in digraphs

    Full text link
    The paper is concerned with directed versions of Posa's theorem and Chvatal's theorem on Hamilton cycles in graphs. We show that for each a>0, every digraph G of sufficiently large order n whose outdegree and indegree sequences d_1^+ \leq ... \leq d_n^+ and d_1^- \leq >... \leq d_n^- satisfy d_i^+, d_i^- \geq min{i + a n, n/2} is Hamiltonian. In fact, we can weaken these assumptions to (i) d_i^+ \geq min{i + a n, n/2} or d^-_{n - i - a n} \geq n-i; (ii) d_i^- \geq min{i + a n, n/2} or d^+_{n - i - a n} \geq n-i; and still deduce that G is Hamiltonian. This provides an approximate version of a conjecture of Nash-Williams from 1975 and improves a previous result of K\"uhn, Osthus and Treglown

    Minimum degree conditions for monochromatic cycle partitioning

    Get PDF
    A classical result of Erd\H{o}s, Gy\'arf\'as and Pyber states that any rr-edge-coloured complete graph has a partition into O(r2log⁡r)O(r^2 \log r) monochromatic cycles. Here we determine the minimum degree threshold for this property. More precisely, we show that there exists a constant cc such that any rr-edge-coloured graph on nn vertices with minimum degree at least n/2+c⋅rlog⁡nn/2 + c \cdot r \log n has a partition into O(r2)O(r^2) monochromatic cycles. We also provide constructions showing that the minimum degree condition and the number of cycles are essentially tight.Comment: 22 pages (26 including appendix

    A theory of spectral partitions of metric graphs

    Get PDF
    We introduce an abstract framework for the study of clustering in metric graphs: after suitably metrising the space of graph partitions, we restrict Laplacians to the clusters thus arising and use their spectral gaps to define several notions of partition energies; this is the graph counterpart of the well-known theory of spectral minimal partitions on planar domains and includes the setting in [Band \textit{et al}, Comm.\ Math.\ Phys.\ \textbf{311} (2012), 815--838] as a special case. We focus on the existence of optimisers for a large class of functionals defined on such partitions, but also study their qualitative properties, including stability, regularity, and parameter dependence. We also discuss in detail their interplay with the theory of nodal partitions. Unlike in the case of domains, the one-dimensional setting of metric graphs allows for explicit computation and analytic -- rather than numerical -- results. Not only do we recover the main assertions in the theory of spectral minimal partitions on domains, as studied in [Conti \textit{et al}, Calc.\ Var.\ \textbf{22} (2005), 45--72; Helffer \textit{et al}, Ann.\ Inst.\ Henri Poincar\'e Anal.\ Non Lin\'eaire \textbf{26} (2009), 101--138], but we can also generalise some of them and answer (the graph counterparts of) a few open questions

    Resolution of the Oberwolfach problem

    Get PDF
    The Oberwolfach problem, posed by Ringel in 1967, asks for a decomposition of K2n+1K_{2n+1} into edge-disjoint copies of a given 22-factor. We show that this can be achieved for all large nn. We actually prove a significantly more general result, which allows for decompositions into more general types of factors. In particular, this also resolves the Hamilton-Waterloo problem for large nn.Comment: 28 page

    Partitioning 3-colored complete graphs into three monochromatic cycles

    Get PDF
    We show in this paper that in every 3-coloring of the edges of Kn all but o(n) of its vertices can be partitioned into three monochromatic cycles. From this, using our earlier results, actually it follows that we can partition all the vertices into at most 17 monochromatic cycles, improving the best known bounds. If the colors of the three monochromatic cycles must be different then one can cover ( 3 4 − o(1))n vertices and this is close to best possible
    • …
    corecore