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Abstract
We introduce an abstract framework for the study of clustering in metric graphs: after suit-
ably metrising the space of graph partitions, we restrict Laplacians to the clusters thus arising
and use their spectral gaps to define several notions of partition energies; this is the graph
counterpart of the well-known theory of spectral minimal partitions on planar domains and
includes the setting in Band et al. (Commun Math Phys 311:815–838, 2012) as a special
case. We focus on the existence of optimisers for a large class of functionals defined on
such partitions, but also study their qualitative properties, including stability, regularity, and
parameter dependence.We also discuss in detail their interplay with the theory of nodal parti-
tions. Unlike in the case of domains, the one-dimensional setting of metric graphs allows for
explicit computation and analytic—rather than numerical—results. Not only do we recover
the main assertions in the theory of spectral minimal partitions on domains, as studied in
Conti et al. (Calc Var 22:45–72, 2005), Helffer et al. (Ann Inst Henri Poincaré Anal Non
Linéaire 26:101–138, 2009), but we can also generalise some of them and answer (the graph
counterparts of) a few open questions.
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1 Introduction

How to cut a connected object—be it a manifold, a domain, or a graph—into k mutually
disjoint, connected parts? Partitioning of objects is a natural topic in geometry and has
important consequences in applied sciences, like data analysis or image segmentation. The
goal of this article is to study partitions ofmetric graphs in connectionwith spectral properties
of Laplacians on metric graphs. We will, in particular,

• develop a rigorous definition of graph partitions and identify several natural types of
partitions;

• establish the existence of optimal partitions for large classes of partitions and functionals,
including spectral functionals (functionals built on Laplacian eigenvalues);

• study the dependence of the optimisers for specific spectral functionals on both the
functions and some relevant parameters, as well as the topology of the graph;

• discuss relations between Dirichlet-type spectral partitions and nodal domains of the
Laplacian eigenfunctions of the whole graph.

What is the natural way of thinking of spectral partitioning on (metric) graphs? In this
paper, by partition we will always mean a finite collection of pairwise disjoint subsets of the
object to be partitioned; this is the customary approach taken since [17] in the broad literature
devoted to spectral minimal partitions (SMPs). What is distinct about metric graphs, as
opposed to other partitionable object such as domains, smooth manifolds, or even discrete
graphs, is that a metric graph may be regarded as a (smooth) one-dimensional manifold
without a natural notion of boundary but with singularities—its vertices. This means that
the focus will necessarily shift to how to cut through such singularities when choosing the
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subsets, here subgraphs, which we will always call clusters. There are of course different
possibilities and therefore, as we will see, diverse, arguably natural regularity classes for
metric graph partitions. Our first main contribution will be to introduce a framework to study
these classes.

The next natural problem is the construction of these partitions to reflect structural prop-
erties of the graph in a “good” way. Since graphs are essentially one dimensional, inspired
by Sturm’s Oscillation Theorem one might consider the eigenfunctions associated with the
k-th eigenvalue of a Sturm–Liouville-type operator, most naturally the Laplacian with suit-
able (say, natural a.k.a. standard) vertex conditions. If the graph is connected and compact
(as we shall always assume), then this works well when k = 2: any second eigenfunction
of the standard Laplacian splits the graph into two subsets (clusters). These are its nodal
domains, and work in a similar way to the classical Cheeger approach as discussed by several
authors including [19,29,37]. However, if k ≥ 3, then one cannot in general expect the nodal
domains of the eigenfunctions associated with the k-th eigenvalue to deliver a k-partition.
Indeed, accurate estimates on the number νk of nodal domains of a k-th eigenfunction involve
the topology of the metric graph (via its first Betti number) and have been proved in [3,6,21],
see [8, § 5.2] for an overview.

This is an example of how Laplacians on metric graphs, despite being given by ordinary
differential expressions on the edges, often behave in ways more similar to partial differential
operators. Our primary point of departure is thus the theory of SMPs of domains as initiated
in [17] and since studied intensively by many authors, whereby one is interested in partitions
of the domain which minimise some combination of (usually Laplacian) eigenvalues of the
partition elements. It is natural to draw on ideas developed to study Laplacians on domains
in R

2 to deal with partitions of metric graphs; perhaps the most canonical example is as
follows. Given any partition of a graph G into k clusters G1, . . . ,Gk , on each cluster, which
is a subgraph of G, we may take the lowest eigenvalue λ1(Gi ) of the Laplacian with Dirichlet
conditions at every point where Gi meets its complement and natural conditions elsewhere
and seek to minimise a certain function—most commonly the maximum—of the vector
(λ1(Gi ))1≤i≤k . On domains, the attention devoted to such SMPs was greatly boosted when
a connection to nodal domains à la Courant was established in [24]. Such a connection also
suggests a second source of inspiration for us here, namely studies of nodal domains for
discrete graph Laplacians: we mention in particular [18], whose results have been recently
extended to the case of general quadratic forms generating positive semigroups in [27]. In yet
another direction, related to Cheeger partitions and free discontinuity problems, the authors
of [14] proved existence and some regularity for minimal partitions associated with the Robin
Laplacian.

However, on metric graphs we see two new features: firstly, there is no reason to consider
onlyDirichlet eigenvalues;wemay instead consider the smallest nontrivial eigenvalueμ2(Gi )
of the Laplacian with natural conditions in their place—or indeed any number of other
energy functionals which on domains would not be well defined: an advantage of the one-
dimensional setting. But secondly, the interaction of these eigenvalues—especially those
other than Dirichlet—with the vertices can become delicate. Precisely for this reason, in past
studies of nodal domains one would usually assume that the eigenfunctions do not vanish at
the vertices—a condition which is generically satisfied but cannot be assumed when studying
optimisation problems, since this condition is not stable under taking limits (cf. [5]). This
conditionwas also assumed in possibly the only previouswork on spectral partitions ofmetric
graphs to date [4], which focused on the rather different question of optimality properties of
partitions induced by such nodal domains under this assumption.
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Our second main contribution, after introducing our various natural classes of partitions,
will thus be to prove existence of partitions of minimal energy, upon minimising in several
such regularity classes; and to observe that certain, new, classes arise most naturally, as the
classes which always contain their minima. All this requires a whole new theory, which we
illustrate in Sect. 2: after a brief reminder onmetric graphs and associated function spaces and
Laplacians, we introduce the aforementioned classes of partitions, the two most important
of which we call connected and rigid. We then illustrate such classes with the help of a
few elementary examples, the most ubiquitous of which is a lasso graph, demonstrating that
connected and rigid partitions may be considered natural objects.

Given a compact metric graph G, we introduce in Sect. 3 a Polish metric space C(G) of
its partitions, study general lower semi-continuous functionals with respect to the induced
topology, and discuss qualitative properties of their minima. Our abstract approach pays off:
among other things, connected and rigid partitions are indeed natural simply because—unlike
many other, ostensibly natural, classes—they define closed subsets of the metric space C(G)

and are hence particularly suitable for minimisation purposes.
This theoretical toolbox is then applied in Sect. 4 to several classes of optimal partition

problems, including those appearing in earlier studies on nodal domains and partitions, in
particular [4]. By checking that the relevant energy functionals actually satisfy the (rather
mild) sufficient conditions introduced in Sect. 3.3, we can finally prove existence of optimal
partitions for Laplacians with either Dirichlet or natural vertex conditions. (Needless to
say, minimising among rigid or connected partitions will generally yield different optima,
an issue we will touch upon in Sect. 7.1.) Our investigations show that both optimisation
problems are well-motivated. Dirichlet conditions at the cut points—the classical choice in
the earlier literature, both on domains and metric graphs—are naturally related to the issue
of nodal domains, a connection that led to the very birth of this field in [17]. Imposing
natural conditions at the cut points, on the other hand, will be shown to lead to well-posed
spectral problemswhoseminimising partitions consist of clusters that are connected in amore
straightforward, apparent sense. These results can be further generalised considering graph
counterparts of the energy functionals first introduced in [17]—essentially, the mean value
of p-th powers of spectral gaps of a suitable Laplacian, defined clusterwise; this amounts to
studyingminima of functionals�D

p and�N
p , p ∈ (0,∞], defined on the partition spaceC(G).

Similar ideas may also be developed if more general conditions—say, δ-couplings—should
imposed at the cut points, analogously to what was done in [14] for the case of domains,
although we will not develop such ideas here. Neumann domains, a Neumann-type analogue
of nodal domains, have been studied recently on quantum graphs [1,2], and it is natural to
ask whether there is a similar link between these and Neumann-type partitions as there is
between Dirichlet partitions and nodal domains. We also leave this question to future work.
Also, one could in principle study other spectral quantities, for example by considering higher
eigenvalues. We leave these as open problems to be discussed in later investigations.

To show the flexibility of our approach, analogous spectral partitions that maximise two
different energy functionals �D

p and �N
p are discussed in Sect. 5 by showing that they also

satisfy our basic topological assumptions.
In Sect. 6 we turn to the issue of the dependence of minimisers of �D

p and �N
p on p,

and also on the edge lengths of the underlying metric graph G, for a fixed topology; here the
simplicity of the 1-dimensional setting of metric graphs is highly advantageous. We study in
detail spectralminimal partitions of certain 3-stars: if the star is equilateral, thenwe show how
the optimal 2-partition depends monotonically on p (see Example 6.2 and Proposition 6.3);
for certain not quite equilateral stars we show that the partition may be independent of p but
the optimal energy itself is not (see Example 6.7 and Proposition 6.8). Together these results

123



A theory of spectral partitions of metric graphs Page 5 of 63 61

are among the main contributions of the present article: for planar domains the corresponding
behaviour in the former case is conjectured but has to date been only numerically observed
[11], while in the former case to the best of our knowledge this behaviour has not previously
been observed, and provides an interesting counterpoint to existing results on p-dependence
(such as those in [12, Sec. 10.5].

In Sect. 7 we then present examples comparing the different optimisation problems (for
�D

p , �N
p , �D

p and �N
p ) and the corresponding optimal energies on a fixed graph: these

different problems tend, naturally, to split the graph in different ways. Here we present a
couple of heuristic conjectures based on our examples; in future work we intend to return to
the question of how these different problems behave in a more rigorous and complete way.
There is, a priori, also no reason to restrict to exhaustive partitions, that is, partitions whose
clusters cover the whole of the graph, and indeed permitting non-exhaustive partitions may
fundamentally change the nature of the optimal partitions. In this section we also give one
or two examples illustrating this and related issues.

The final section, Sect. 8, is devoted to a more “classical” topic from the study of Dirichlet
spectral minimal partitions, namely the relationship between these and nodal partitions, that
is, partitions arising from the nodal sets of (say) standard Laplacian eigenfunctions. Some
important aspects of this relationship were already examined in detail by Band et al [4], albeit
only under the assumption that the eigenfunctions in question do not vanish at any vertices,
and without considering the question of existence of minimisers. Here, in some cases we
can drop this structural assumption; in others we can give different proofs (see in particular
Theorem 8.9 on the question of when a Dirichlet partition is associated with a Laplacian
eigenvalue and Theorem 8.12 on so-called Courant-sharp eigenfunctions). In this context
we also obtain other results, some of which are only known for domains (see Propositions 8.4
and 8.5 on the relationship between Laplace eigenvalues and optimal Dirichlet energies), as
well as an example of a phenomenonwhich cannot occur on domains: a nodal partition which
minimises the Dirichlet energy among k-partitions may correspond to a different eigenvalue
of the standard Laplacian than the k-th (see Sect. 8.4). We briefly summarise similarities
and differences between the qualitative properties of spectral minimal partitions on planar
domains and metric graphs in Sect. 8.6.

To enhance the readability of the article and for ease of reference, the following table
collects a number of new notions and symbols used throughout the paper.
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Symbol Description/name See

G, H, G′ Metric graph, ur-graph Section 2.1, Definition 2.3
Canonical representative Definition 2.3

G Underlying discrete (ur-)graph Definitions 2.1, 2.3
λ1(G), λ1(G;VD) First Dirichlet eigenvalue Equation (2.4)
μ2(G) First nontrivial natural eigenvalue Equation (2.5)

Cut of a graph Definition 2.6
(Nontrivial) cut through a vertex Definition 2.7

P = {G1, . . . ,Gk } (k-)partition Definition 2.8
Gi Cluster of a partition Definition 2.8
�i Cluster support corresponding to Gi Definition 2.9
� Partition support Definition 2.9
C(P) Cut set (cut points) of P Definition 2.10
VD(Gi ) Set of cut points in Gi Definition 2.10
∂P Separation set (points) of P Definition 2.10

Neighbour, neighbouring cluster Definition 2.11
Connected, rigid, faithful, internally

connected, proper partition Definition 2.12
C, Ck Set of exhaustive connected (k-)partitions Equation (2.10)
R, Rk Set of exhaustive rigid (k-)partitions Equation (2.10)
ρ�i Set of possible rigid clusters for �i Equation (2.11)
C Cut pattern, similar partition Definition 3.1
T, TC Configuration class (associated with cut pattern C) Definition 3.3

G set of ur-graphs for G Section 3.2
d
G (G,H) Distance between metric graphs

with same discrete ur-graph Section 3.2
[v] Equivalence class of vertices converging to v Section 3.2

(Strongly) lower semi-continuous Definition 3.12

�D
p (P), �N

p (P) Dirichlet, natural partition energy Equations (4.1), (4.2)

LD,r
k,p (G), LN ,r

k,p (G) Rigid Dirichlet, natural minimal energy Equation (4.3)

LD,c
k,p (G), LN ,c

k,p (G) connected Dirichlet, natural minimal energy Equation (4.3)

LD
k,p(G) Dirichlet minimal energy Equation (4.4)

�D(P), �N (P) Min. Dirichlet, natural partition energy Equations (5.2), (5.1)

MD
k (G), MN

k (G) Dirichlet, natural max-min energy Equation (5.3)

Dirichlet, natural (k-)equipartition Definition 6.4

Nodal, generalised nodal, bipartite partition Definitions 8.1, 8.2, 8.7

ν, ν(ψ) Number of nodal domains (of ψ) Proposition 8.6

2 Graphs and partitions

2.1 Basic definitions

We start with the metric graphs we shall be considering; it will be necessary to consider the
formalism we will be using in some detail, which mirrors the one used in [34]. By a metric
graph G = (V, E) we understand a pair consisting of a vertex set V = V(G) = {v1, . . . , vN }
and an edge set E = E(G) = {e1, . . . , eM }; throughout the paper we will always assume
these to be finite sets.
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Each edge em = em(G), m = 1, . . . , M , is identified with a compact interval
[x2m−1, x2m] ⊂ R of length |em | = x2m − x2m−1 belonging to a separate copy of R. Each
edge should connect two vertices: formally, we introduce an equivalence relation on the set
of endpoints {x j }2Mj=1, thus partitioning it into nonempty, mutually disjoint sets

{x j }2Mj=1 = V1 ∪ · · · ∪ VN . (2.1)

The vertex vn ∈ V(G) is identified with the set Vn = Vn(G).
If x2m−1, x2m ∈ Vm1 ∪ Vm2 for some m, then we write em ≡ vm1vm2 and in this case we

say that em is incident with the vertices vm1 , vm2 . We refer to the cardinality of Vn as the
degree of vn , written deg vn .

Vertices of degree two are allowed, but are called dummy vertices; these can be introduced
and removed at will without altering any of the properties of the graph (in particular the
spectral quantities) in which we will be interested, as we shall discuss below. Loops, that is,
edges incident with only one vertex, and multiple edges, that is, distinct edges incident with
the same pair of vertices, are also allowed.

Any metric graph G = (V, E) will be identified with a set of equivalence classes of points
by extending the equivalence relation (2.1) to all points in the interior of each edge (interval);
this will be done by associating with any x ∈ int em = (x2m−1, x2m) equivalence class
{x} formed by one element. With this in mind, in future we will take points x ∈ G, and in
particular regard the vertices vn as points in the set, without further comment. However, for
some purposes it is important to remember that vn and Vn are different objects; indeed, our
theory relies essentially upon the possibility to cut through a vertex vn by subdividing Vn
into two or more nonempty, mutually disjoint subsets.

We will write |G| = ∑
e∈E |e| = ∑M

m=1 |em | for the finite total length of the graph, the
sum of the lengths of the edges. We refer to the monographs [8,36] for more information on
metric graphs in general.

A metric graph has both an underlying discrete structure and a notion of distance defined
on it, and both will be important to us.

Definition 2.1 Given a metric graph G = (V, E) the underlying discrete graph (or associated
discrete graph) is the discrete graph G = (V, E) for which there are bijections � : V → V
and 
 : E → E such that for all e ∈ E and all e ∈ E , 
(e) = e implies the vertices incident
with e in G are mapped by � to the vertices incident with e in G. If 
(e) = e, then we say
that e and e correspond to each other.

We next recall how a canonical distance is introduced on metric graphs. Given x, y ∈ G,
we take dist(x, y) to be the minimal length among all paths connecting x with y, see [36,
Def. 3.14] for details. If the graph is not connected then we set the distance between points
belonging to different connected components to be infinity. Throughout this paper we always
consider on G the topology induced by this distance: in particular, given a subset � of G we
can consider its interior

int� := {x ∈ � : {y ∈ G : dist(x, y) < ε} ⊂ � for some ε > 0} ,

and its boundary
∂� := � \ int�. (2.2)

(Regarding terminology, we consider ∂� to consist of those points that separate � from
G \ �.) Equipped with the distance function, each metric graph is a metric space.

Summarising, we shall assume throughout that:
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Assumption 2.2 The metric graph G is finite, compact and connected, i.e. the vertex set
is finite, the edge set is finite, each edge has finite length and there is a continuous path
connecting any two points on the graph.

The only assumption we will occasionally have cause to drop is of connectedness, but in
such cases we will always state this explicitly.

Isometric isomorphisms, i.e., bijective mappings between metric graphs (even those with
different edge sets!) that preserve distances, define an equivalence relation ≈ on the class of
all metric graphs which satisfy Assumption 2.2. See also [34, Definition 5] and the discussion
around it. We will need to make the following definition for technical purposes, which will
be necessary for the constructions in the coming sections up to and including Sect. 3.

Definition 2.3 (1) We call any equivalence class of metric graphs satisfying Assumption 2.2
with respect to ≈, an ur-graph.

(2) If G is an ur-graph, then its canonical representative is the metric graph representative of
G which has no vertices of degree two (or, if G is a loop, then its canonical representative
is any representative with exactly one vertex of degree two).

(3) We will call the underlying discrete graph of the canonical representative of an ur-graph
G the underlying discrete ur-graph of G (or discrete ur-graph associated with G).

In practice, we will not distinguish between different representatives of the same ur-graph;
indeed, for spectral analysis different representatives of an ur-graph are indistinguishable (see
Remark 2.4). We will tacitly tend to identify an ur-graph G with any of its representatives as
convenient, most commonly (but not always) its canonical representative. We will thus also
speak of ur-graphs as being compact metric spaces, and as satisfying Assumption 2.2, etc.

There is a canonical notion of (scalar-valued) continuous functions over G with respect to
the distance defined above, and we stress that this notion is invariant under taking different
representatives of the same ur-graph. Similarly, the Lebesgue measure, defined edgewise,
induces in a canonical way a measure on G.

We can thus define the following function spaces on G:

L2(G) :=
⊕

e∈E
L2(e) �

M⊕

m=1

L2([x2m−1, x2m]),

C(G) :=
{

f ∈
⊕

e∈E
C(e) : f (x j ) = f (xk) =: f (vn) if x j , xk ∈ vn for some vn ∈ V

}

.

In order to define Laplacian-type operators we will require the Sobolev spaces

H1(G) := { f ∈ C(G) ∩
⊕

e∈E
H1(e)}

and, for a given distinguished set VD ⊂ V of vertices,

H1
0 (G) ≡ H1

0 (G;VD) := { f ∈ H1(G) : f (vn) = 0 for all vn ∈ VD}.
Given the sesquilinear form

a( f , g) =
∫

G
f ′ · ḡ′ dx �

M∑

m=1

∫ x2m

x2m−1

f ′ · ḡ′ dx, f , g ∈ H1(G), (2.3)

the associated self-adjoint operator on L2(G) is the Laplacian −� = − d2

dx2
defined on the

domain of functions from
⊕

e∈E H2(e) satisfying continuity and Kirchhoff conditions (sum
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of inward-pointing derivatives is zero) at every vertex. Such vertex conditions, which we will
call natural, are also known as standard, free, or sometimes Neumann–Kirchhoff conditions.
The Laplacian with Dirichlet conditions on a subset VD and natural conditions at all other
vertices is the operator on L2(G)which is associated with the form a restricted to H1

0 (G;VD).
Due to the positivity of a and the compact embedding of H1(G) in L2(G), the Laplacian on

the connected, compact graphGwith natural vertex conditions has a sequence of non-negative
eigenvalues, which we will denote by

0 = μ1(G) < μ2(G) ≤ μ3(G) ≤ . . . → ∞,

repeating them according to their (finite) multiplicities; the eigenfunction corresponding to
μ1 = μ1(G) is just the constant function.

We shall do likewise for the eigenvalues of the Laplacian on G with some Dirichlet
conditions:

0 < λ1(G;VD) < λ2(G;VD) ≤ . . . → ∞.

In practice we will abbreviate these to λk(G) or even just λk , k ≥ 1, if the vertex set and the
graph are clear from the context. These eigenvalues admit the usual minimax and maximin
characterisations; in particular, we have

λ1(G) = λ1(G;VD) = inf

{
a( f , f )

‖ f ‖2
L2(G)

: 0 �≡ f ∈ H1
0 (G;VD)

}

, (2.4)

while

μ2(G) = inf

{
a( f , f )

‖ f ‖2
L2(G)

: 0 �≡ f ∈ H1(G),

∫

G
f dx = 0

}

. (2.5)

In both (2.4) and (2.5), the infima are achieved only by the respective eigenfunctions, which
are sign-changing and may be multiple in (2.5), but are unique up to scalar multiples and
non-zero everywhere in (2.4).

Remark 2.4 Suppose G and H are isometrically isomorphic to each other in the sense
described above. Then the respective spaces L2,C and H1 on the two graphs are also isometri-
cally isomorphic to each other. It follows in particular that the corresponding Laplacians with
natural vertex conditions are unitarily equivalent to each other, and the respective eigenvalues
are equal: μk(G) = μk(H) for all k ≥ 1. Likewise, if we fix a set VD(G) ⊂ V(G) of vertices
of G, and choose H in such a way that the image of each point in VD(G) under the isomor-
phism is also a vertex ofH, so that we may write VD(G) � VD(H), then H1

0 (G;VD(G)) and
H1
0 (H;VD(H)) are also isometrically isomorphic. Thus the corresponding Dirichlet Lapla-

cians are likewise unitarily equivalent, and λk(G;VD(G)) = λk(H;VD(H)) for all k ≥ 1. In
other words, the eigenvalues and eigenfunctions may be associated with the corresponding
ur-graph; and for our purposes, within an ur-graph, i.e., an equivalence class of isometrically
isomorphic graphs, we may at any time pick any representative, as convenient.

Finally, we mention in passing fundamental inequalities for the eigenvalues λ1(G) and
μ2(G) originally due to Nicaise [37], which we will require on several occasions throughout
the paper.

Theorem 2.5 (Nicaise’ inequalities). Let G be any finite, compact connected (ur-) graph.
Then

λ1(G) ≥ π2

4|G|2 and μ2(G) ≥ π2

|G|2 , (2.6)
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Fig. 1 The lasso G
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Fig. 2 Two proper 2-partitions of the lasso G: with separating points at the dummy vertices ṽ and ṽ1, ṽ2,
respectively

where in the first case G is equipped with at least one Dirichlet vertex. Equality in either
inequality implies that G is a path graph (interval) of length |G|, with a Dirichlet vertex at
exactly one endpoint and a natural (Neumann) condition at the other in the first case, and
natural conditions at both endpoints in the second case.

Proof The inequalities may be found in [37, Théorème 3.1]. For the characterisation of
equality, see e.g. [20] (or also [33, Theorem 3] in the case of natural conditions). ��

We refer to [8,31,36] for more background details on the properties of metric graphs and
Laplacian-type differential operators on them; we also refer to [9] and the references therein
for more details on the eigenvalues λk(G), μk(G) and their dependence on properties of the
graph G.

2.2 Amotivating example

Our goal is to study cutting metric graphs into pieces forming a partition; we shall call these
pieces clusters. We shall require later on that partitions have certain “good” properties, but
we need to discuss first what kinds of splittings are possible at all.

This subject is not new. Both Cheeger-like splittings as introduced in [37] and the inves-
tigations in [4] restrict to the case of cuts performed in the interior of edges. These kinds of
partitions are referred to as proper in [4], where their interplay with nodal domains (studied
e.g. in [6,21]) is discussed.

Here we wish to consider further natural possibilities for making cuts, in particular when
cuts are made at vertices of degree at least 3, using a concrete example to motivate what we
will introduce subsequently. More precisely, we will consider the lasso graph G depicted in
Fig. 1, formed by three edges e1, e2, e3, as shown.

As done in [4], we will refer to any partitions where the cuts are made only at interior
points of edges as proper. Figure 2 illustrates two different ways to split G into two clusters,
i.e., to create a proper 2-partition.

Note that using our convention to consider ur-graphs, any cut at an interior point of an
edge can be considered as a vertex cut: every such point on the original graph can be seen
as a dummy degree two vertex, before cutting one should choose a representative (from the
equivalence class) with degree two vertex at the point one wish to cut through.

At any rate, we will refer to the points at which cuts are made as separating points; these
will be introduced more formally in Sect. 2.3.

Proper partitions are relatively easy to deal with, but are rather restrictive. Any sort of
functional we define on partitions should depend continuously on the points at which we
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Fig. 3 A faithful 2-partition of
the lasso G; the only separating
point is v

v
vw

z

Fig. 4 A rigid 2-partition of the
lasso G; again, the only
separating point is v

G

w v

v

v

z

e1

e2

e3

are cutting, therefore we necessarily have to consider the limits that may arise when the
cut reaches a vertex of degree ≥ 3 in the original graph. The authors of [5] faced a similar
problem in a somewhat different context and considered supremisers and minimisers; since
we wish to obtain existence results we shall consider vertex cuts in full generality.

Let us study what happens to partitions as the cutting points approach the degree three
vertex in the lasso graph above. Our intuition tells us:

• starting with the partition on the left of Fig. 2 and letting the separating point ṽ tend
towards v, the limit partition should be the one depicted in Fig. 3.

• starting with the partition on the right Fig. 2 and letting ṽ1, ṽ2 tend towards v the limit
partition should coincide with the one depicted in Fig. 4.

The edge setswithin each cluster are the same in both partitions; theway endpoints of these
edges are organised into vertices is different. These partitions can be obtained by cutting the
lasso graph through vertex v in two different ways: separating the corresponding equivalence
class of end points into two and three subclasses respectively.

Partitions of the first type (corresponding to Fig. 3) inherit all possible connections from
the original graph and reflect its topology as closely as possible; for this reason we will refer
to them as faithful.

We will call any other partition where we are still only altering the connectivity of our
clusters at separating points rigid; this is, in particular, the case of the partition in Fig. 4
(though it is also true of the faithful partition from Fig. 3.

Rigid partitions may appear less natural than faithful ones. As charming the notion of
faithful partition may look at a first glance, it turns out that it is of little use: we will elaborate
on this in Sect. 3. Indeed, the point of departure of this article involves introducing a suitable,
arguably natural metric on the space of graph partitions with respect to which neither the set
of proper partitions, nor the set of faithful ones, is closed; however, the set of rigid partitions
is. This decisive topological feature is the main reason why we believe it is appropriate to
consider them.

We conclude by considering a further relaxation, which also explains the use of the term
rigid: namely, we may allow cuts not only at the points separating clusters but also at interior
points of clusters (note that these points are not necessarily interior points on some edges:
these points could be vertices lying inside clusters), as long as each cluster stays connected.
We shall refer to partitions which may involve cuts in interior points as connected.

For mathematical reasons, we take “connected” to mean “possibly but not necessarily
rigid”, since then connected partitions also define a closed set of partitions with respect to
the natural metric we are going to introduce in Sect. 3.

At least when it comes to clustering, partitions consisting of non-connected subgraphs
seem less natural: in the present paper we shall only define energies of partitions consisting
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Fig. 5 A connected 2-partition of
the lasso G; in this case, the only
separating point is v but we are
additionally cutting through z w v

v

z

ze1

e2

e3

Fig. 6 A 2-partition of the lasso
G; cutting through both v and z
has led to a disconnected cluster.
We will not treat partitions of this
nature here; however, this
partition may also be treated as a
faithful 3-partition
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Fig. 7 A non-exhaustive but rigid
2-partition of the lasso G, which
recalls the exhaustive but
connected partition of Fig. 5.
Here we have inserted dummy
vertices at z1 and z2, and
suppressed the dummy vertex at
z. The dotted edge is excluded
from the partition

w v
v

z2

z1

z2

z1

of connected clusters, but leave open the possibility of developing more general theories in
the future.

Finally, in all the above examples we were implicitly assuming that our partitions were
exhaustive, that is, that the clusters covered G. This is the most common assumption in
the literature, be it for graphs or domains, and here as well we will mostly restrict to such
exhaustive partitions. However, in principle all the classes of partitions just considered can
equally be defined for non-exhaustive (i.e. not necessarily exhaustive) partitions, and in some
cases this may change the nature of the class, see Fig. 7. We discuss this in more detail in
Sect. 7.2.

2.3 Graph partitions

After informally sketching the ideas that motivate our classification, let us now introduce
more precisely the notions of metric graph partition we are actually going to discuss. At
its most general, any finite partition of unity of a given object may be regarded as a (rather
relaxed) splitting: this theoretically interesting approach was suggested in [38] while dealing
with combinatorial graphs, but may be too general for our purposes. In this article, we are
going to adopt a more traditional viewpoint and regard graph partitions as collections of
subgraphs satisfying suitable regularity properties. To this aim, we first need to recall an
operation transforming a graph into another one by joining or cutting through its vertices (cf.,
e.g., [9, Definitions 3.1 and 3.2]). We phrase this slightly differently, using the formalism
introduced in Sect. 2.1 and especially Definition 2.3.

Definition 2.6 LetG,G′ be ur-graphs. ThenG′ is called a cut ofG if there exist a representative
Ĝ of G and a representative Ĝ′ of G′ with vertex sets V(Ĝ) = {v1, . . . , vN } and V(Ĝ′) =
{v′

1, . . . , v
′
N ′ } and edge sets E(Ĝ) and E(Ĝ′), respectively, such that

(a) E(Ĝ) = E(Ĝ′),
(b) N ′ ≥ N , and

123



A theory of spectral partitions of metric graphs Page 13 of 63 61

(c) for all n′ = 1, . . . , N ′, in the notation and identification of Sect. 2.1, we have

V ′
n′(Ĝ′) ⊂ Vn(Ĝ)

for some n = 1, . . . , N .

In words, the graph G′ is formed from G by first picking a collection of vertices, in general
including dummy vertices in the interior of edges, of G (this is the choice Ĝ), and then cutting
through each such vertex vn of Ĝ by removing adjacency relations to create new vertices
v′
n′ out of vn . In practice, however, we will tend to suppress the primes ′ from the vertices
and indices wherever feasible. Also, as stated earlier, with the exception of the following
definition we will tend not to distinguish between the ur-graph G and its representative Ĝ; in
particular, in a slight abuse of notation, we will regard the vertices v1, . . . , vN of Ĝ as being
vertices of G. We also stress that we do not require cutting through vertices to produce a
connected metric graph G′.

Let us make this clearer by considering what happens if we only cut G at a single vertex.

Definition 2.7 Given two ur-graphs G,G′, keep the setup and notation of Definition 2.6.

(1) Suppose there exist a representative Ĝ of G, a representative Ĝ′ of G′, and

(a) vertices vn0 ∈ V(Ĝ) and v′
n′
1
, . . . , v′

n′
k

∈ V(Ĝ′) such that Vn0 = V ′
n′
1
∪ · · · ∪ V ′

n′
k
, and

(b) there is equality V ′
n′(Ĝ′) = Vn(Ĝ) in condition (c) of Definition 2.6 for all n′ except

n′
1, . . . , n

′
k .

Then we say that G′ has been obtained from G by cutting through the vertex vn0 (to obtain
the vertices v′

n′
1
, . . . , v′

n′
k
). We call the vertices v′

n′
1
, . . . , v′

n′
k
the image of the vertex vn0

under the cut.
(2) We also say that the vertex vn0 in G corresponds to the vertices v′

n′
1
, . . . , v′

n′
k
in G′, and

that G is obtained from G′ by gluing the vertices v′
n′
1
, . . . , v′

n′
k
to form vn0 .

(3) We say that the vertex vn0(G) has been cut nontrivially if k ≥ 2 in (1).

Definition 2.7 may be generalised (or applied inductively) to the situation described in
Definition 2.6; in particular, we will use the language of cutting through (possibly multiple)
vertices and nontrivial cuts in the context of Definition 2.6.

We are finally in a position to define the central notions of this paper.

Definition 2.8 (Partitions of a graph). Let k ≥ 1 and let G be an ur-graph.

(1) We call any set of k metric graphs

P := {G1, . . . ,Gk}
a k-partition of G if there is a cut G′ = ⊔k0

j=1 Gi j of G, k0 ≥ k, such that for all
j = 1, . . . , k there exists some i j such that Gi j = G j , with i j1 �= i j2 for j1 �= j2. In this
case, we refer to the components G1, . . . ,Gk as the clusters of the partition P (arising
from the cut G′).

(2) If in (1) there exists a cut G′ of G such that G′ = ⊔k
i=1 Gi , then we say the partition

P = {G1, . . . ,Gk} is exhaustive.1

1 Note that in the case of domains, some sources, such as [24], refer to exhaustive partitions as strong.
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With this definition, the k clusters are themselves compact (but, in line with the standard
notion of partitions of planar domains, not necessarily connected) metric graphs, which may
be identified with subsets of G. It will however often be useful to consider explicitly the
subsets of G which correspond to the clusters; to this end we make the following definition.

Definition 2.9 (Cluster supports). Let G be an ur-graph and let P = {G1, . . . ,Gk} be a k-
partition of G, arising from the cut G′ = ⊔k0

i=1 Gi , k0 ≥ k, of G. We identify G and G′ with
any respective representatives satisfying the conditions of Definition 2.6, that is, in such a
way that E(G) = E(G′).
(1) For each i = 1, . . . , k, we denote by �i the unique closed subset of G such that

{e ∈ E(G′) : e ⊂ Gi } = {e ∈ E(G) : e ⊂ �i }
and call the set �i the cluster support (associated with the cluster Gi ), or just support
for short.

(2) We call the set

� :=
k⋃

i=1

�i (2.7)

the support of the partition P .

With this definition, the cluster supports �1, . . . , �k are really a partition of G in the
“classical” sense; let us elaborate on this point. Indeed, we may think of the�i as the subsets
of G out of which we form new graphs, the clusters Gi , by cutting through vertices as desired.
Thus, by construction, the�i are closed subsets of G, and their interiors int�i , i = 1, . . . , k,
are pairwise disjoint. Moreover, P is exhaustive if and only if the set � ⊂ G actually equals
G. For various practical reasons we are taking the cluster supports to be closed, not open,
subsets of G.

Finally, with the right choice of representative of G, we may suppose that, for each i =
1, . . . , k, we have�i = ei1 ∪ . . .∪eiMi

for some edges ei1 , . . . , eiMi
∈ E(G). This means that

∂�i ⊂ V(G) for all i = 1, . . . , k; and for each e ∈ E(G) there exists at most one i = 1, . . . , k
such that e ⊂ �i , exactly one if P is exhaustive. (We emphasise that ∂�i is always the
topological boundary of the closed set �i in the compact metric space G.)

From now on, whenever P = {G1, . . . ,Gk} is a k-partition of G, we will always use the
notation �1, . . . , �k to denote the corresponding cluster supports, and � for the support of
P (if distinct from G), without further comment.

Observe that if P is exhaustive and x ∈ ∂�i for some i , then there must be at least one
j �= i such that x ∈ ∂�i ∩ ∂� j .

Definition 2.10 Let G be an ur-graph and letP = {G1, . . . ,Gk} be a k-partition of G for some
k ≥ 1.

(1) We call a vertex v ∈ V(G) ∩ � a cut point (of P) if there is no vertex

v′ ∈
k⋃

i=1

V(Gi )

such that, in the formalism of Sect. 2.1, V = V ′. In words, v is a cut point if it is
nontrivially cut when constructing the partition. We refer to the set

C = C(P) ⊂ �

of all cut points of P as the cut set of the partition P .
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(2) We will denote by
VD(Gi ) ⊂ Gi (2.8)

the set of all vertices in Gi which are obtained by nontrivially cutting through vertices of
G; in a slight abuse of terminology, we will also refer to its elements as cut points.

(3) We call the separation set (of P) the set

∂P :=
k⋃

i=1

∂�i ⊂ �. (2.9)

We refer to its elements as separating points.

It follows from our definition of partitions that every separating point is a cut point,
although the converse need not be true (cf. Fig. 5); we also reiterate that we are assuming
without loss of generality (by taking the right representative of the ur-graph) that each cut
point, and in particular each separating point, is a vertex. Both the cut and the separation sets
are clearly always finite.

Definition 2.11 Let P = {G1, . . . ,Gk} be a k-partition of G, and denote by �1, . . . , �k the
respective cluster supports. We say that �i ,� j , i, j = 1, . . . , k, i �= j , are neighbours if
∂�i ∩ ∂� j �= ∅. In this case, we will also loosely refer to the corresponding clusters Gi and
G j as neighbours. Similarly, given a cut point v ∈ ∂P , we will refer to each �i such that
v ∈ ∂�i as a neighbouring support of v.

It turns out that there are several different, reasonably natural possibilities for defining
classes of partitions of a metric graphs, as we intimated in Sect. 2.2. From now on, we will
only be interested in partitions whose clusters are connected, as we will wish to consider
functionals, in particular functionals of eigenvalues, defined on them. We stress, however,
that exhaustivity of a partition, in the sense of Definition 2.8(2), is not related to the following
classification: exhaustivity does not imply, nor is it implied by, any of the following properties.

Definition 2.12 (Classification of partitions). Let G be an ur-graph.

(1) Any partition P = {G1, . . . ,Gk} of G satisfying Definition 2.8 will be called connected,
if in addition each cluster G1, . . . ,Gk is connected.

(2) A connected partition P of G will be called rigid if its cut and separation sets agree, that
is, we only cut vertices on the boundary of �i to create the graph Gi .

(3) A partition P of G will be called faithful if it is rigid and additionally whenever a
separating point v lies in the cluster support �i , then in the corresponding cluster Gi the
image of v under the cut G′ is incident with all edges e that were incident with v in G,
such that e also lies in Gi .

(4) A partition P of G will be called internally connected if it is rigid and int�i = �i \ ∂�i

is connected, equivalently, if Gi \ VD(Gi ) is connected, for all i = 1, . . . , k.
(5) A partition P of G will be called proper if it is rigid and all separating points are vertices

of degree two in G.
By definition, the cut and separation sets are allowed to be different only in a connected

partition. It is clear from the definitions that every proper partition is faithful and internally
connected, every faithful and every internally connected partition is rigid, and every rigid
partition is connected, but the converse statements do not hold. For example, if G is a graph
divided into cluster supports�1, . . . , �k , then any choice of spanningmetric treesG1, . . . ,Gk
of these cluster supports determines a further connected partition.2

2 A spanning metric tree of a metric graph G is, by definition, a tree G′ which is a cut of G.
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Example 2.13 In the case of the lasso graph discussed in Sect. 2.2, we may choose to split G
into the cluster supports �1 = e1 (interval) and �2 = e2 ∪ e3 (loop), so that ∂P = ∂�1 =
∂�2 = {v}. Suppose we wish P to be exhaustive: in order to determine it, we need to specify
the clusters G1 and G2: while a cluster G1 is uniquely determined by �1, namely, it is the
edge e1, for the cluster G2 there are two possible choices, depicted in Figs. 3 and 4, which
lead to a faithful and a non-faithful but rigid 2-partition, respectively; both are internally
connected. The third choice, of Fig. 5, where to produce G2 we also cut through z, gives rise
to a connected 2-partition.

If we allow P to be non-exhaustive and, say, take P = {G1}, then P is faithful and
internally connected (but still not proper). In this case, what happens to the set �2 under any
cut giving rise to P is irrelevant for the classification of P .

Example 2.14 In the case of metric trees, our classification of partitions from Definition 2.12
boils down to three cases.

Cutting through a vertex of degree two creates by definition a proper 2-partition.
Cutting through a single vertex v of degree deg v > 2 may produce k connected compo-

nents for any 2 ≤ k ≤ deg v; the associated k-partitionP that arises in this way is necessarily
exhaustive. More interestingly, if k = deg v, then P is both internally connected and faithful.
If on the other hand k < deg v, then P is not internally connected (for there is some cluster
such that at least two different edges lie “on different sides” of the separating point v); it is
faithful though, because by definition each cluster must be a connected metric graph in its
own right, hence no further cut can be made through v in any of the clusters.

In particular, all connected partitions of metric trees are necessarily faithful, but there are
rigid partitions that are not internally connected.

We will be primarily interested in the classes of connected and rigid partitions, and in
exhaustive partitions. For a fixed ur-graph G and k ≥ 1, we denote the class of all exhaustive
connected k-partitions of G by Ck(G), or simply by Ck if the graph G is clear from the context,
the set of all exhaustive rigid k-partitions of G by Rk(G) or Rk , and

C = C(G) :=
∞⋃

k=1

Ck, R = R(G) :=
∞⋃

k=1

Rk, (2.10)

the set of all connected exhaustive, and all rigid exhaustive, partitions of G, respectively.
Finally, if �1, . . . , �k ⊂ G are closed subsets of G with pairwise disjoint interiors, then

for each i = 1, . . . , k, we set
ρ�i (2.11)

to be the finite set of all possible clusters Gi that have�i as a cluster support and such that the
partition P = {G1, . . . ,Gk} is rigid. Note that ρ�i �= ∅; indeed, ρ�i always contains exactly
one cluster corresponding to a faithful partition ofP .Wemay also loosely refer to the clusters
of such a partition as rigid clusters; we will do likewise for connected, faithful, internally
connected and proper clusters. Observe that as long as proper partitions are considered, there
is no such ambiguity: each cluster support uniquely determines a cluster; in particular, the
set ρ�i always contains a single element.

Example 2.15 Returning again to the lasso graph discussed in Sect. 2.2, given the cluster
supports �1 = e1 (interval) and �2 = e2 ∪ e3 (loop), we have that ρ�1 consists of a single
element, the graph given by the edge e1, while the set ρ�2 contains two graphs: an interval
and a loop, see Figs. 3 and 4.
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3 Topological issues of graph partitions

Here we wish to construct a suitable topology on spaces of partitions, which will allow us
to give existence results for minimisers of suitable functionals. Throughout this section, we
will only work with exhaustive partitions, as these are more suited to topologisation and they
will be of primary interest in the sequel.

3.1 Configuration classes

Definition 3.1 Let G be an ur-graph and let P1 = {G(1)
1 , . . . ,G(1)

k } and P2 = {G(2)
1 , . . . ,G(2)

k }
be two exhaustive, connected k-partitions of G. Then we say that P1 and P2 are similar,
or share a common cut pattern (of G), if, up to the correct choice of representative of the
ur-graph G and numbering of the clusters, for each i = 1, . . . , k the clusters G(1)

i and G(2)
i

have the same underlying discrete graph (see Definition 2.1), and there is a bijection between
the cut sets C(P1), C(P2) (see Definition 2.10).

Proposition 3.2 Suppose G is a fixed ur-graph and let k ≥ 1.

(1) Similarity between k-partitions of G, as in Definition 3.1, is an equivalence relation. It
divides Ck(G) into a finite number of cells.

(2) If two exhaustive, connected k-partitions P1,P2 of G are similar, then after renumbering
the clusters if necessary, for each i = 1, . . . , k, G(2)

i can be obtained from G(1)
i by

lengthening or shortening edges of G(1)
i .

(3) If two exhaustive, connected k-partitions P1,P2 of G are similar and P1 is rigid (respec-
tively, faithful, internally connected or proper), then so too is P2.

Proof (1) is immediate, since all properties of similarity may be characterised in terms of
bijections.

(2) It suffices to prove that the same is true of any two metric graphs G1 and G2 which have
the same underlying discrete graph G. But this, in turn, is an immediate consequence of
the definition (Definition 2.1): the edges e(1)

1 , . . . , e(1)
M of G1 and e(2)

1 , . . . , e(2)
M of G2 are

in a canonical bijection to each other, both being in bijective correspondence with the
edges e1, . . . , eM of G; moreover, this bijective correspondence preserves all adjacency
and incidence relations. Hence, if for each i = 1, . . . , k we replace the edge e(1)

i with an

edge of length |e(2)
i |, then the resulting graph is isometrically isomorphic to G2.

(3) follows since cut patterns completely describe the connectivity of the resulting clusters
in the neighbourhood of any cut point.

��
Definition 3.3 We call the equivalence classes with respect to the above equivalence relation
configuration classes, and say that two partitions have the same configuration if they belong
to the same configuration class. We will denote the configuration class associated with the
cut pattern C by

T = TC ⊂ Ck .

3.2 Partition convergence

The equivalence discussed in the previous subsection gives rise to a notion of convergence of
partitions within each configuration class, whichwe nowwish to introduce. To beginwith, we
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need the notion of convergence of a sequence of graphs having the same underlying discrete
topology, similar to what was considered in [5, § 1].

Given a finite discrete graphG = (V, E), let
G be the set of all ur-graphswhose underlying
discrete graph is G, in the sense of Definition 2.1. We assume here and throughout that the
indexing of the edges and vertices is consistent, in the sense that if E = {e1, . . . , eM } and
G(1),G(2) ∈ 
G, then up to the correct choice of representatives of the ur-graphs we have
E(G(n)) = {e(n)

1 , . . . , e(n)
M } and the bijection
i : E → E maps ei to e

(n)
i for all i = 1, . . . , M ,

with corresponding statements for the vertices, n = 1, 2. Observe that each G ∈ 
G is
uniquely determined by its vector (|e|)e∈E of edge lengths, hence we can define

d
G(G(1),G(2)) := dRM

(
(|e(1)|)e(1)∈E(G(1)), (|e(2)|)e(2)∈E(G(2))

)
, (3.1)

G(1),G(2) ∈ 
G, where dRM is the Euclidean distance on R
M .

Proposition 3.4 Given a discrete graph G, (
G, d
G) is a separable metric space with respect
to the Euclidean distance in R

M.

This metric structure induces the same topology as the one discussed in [4, § 2] and the
one used in [5].

We can now consider Cauchy sequences G(n) in 
G; however, they need not converge in

G, since one or more edge lengths may tend to 0. We can however consider the canonical
completion
G of
G: it consists of equivalence classes of Cauchy sequences of metric graphs
in 
G with respect to the equivalence relation of having distance d
G(G(n),H(n)) vanishing
as n → ∞. One can identify 
G with the simplex of all vectors in the positive orthant of R

M

whose size agrees with the total length of some G ∈ 
G, which is in fact easily seen to be
the entire positive orthant,


G �
{
(x1, . . . , xM ) ∈ R

M : xi ≥ 0 for all i = 1, . . . , M
}

.

The limit of a converging sequence (G(n))n∈N ⊂ 
G may hence be identified with an ur-
graph G(∞) whose edge lengths are the (possibly vanishing) limits of the edge lengths of the
approximating graphs G(n); accordingly G(∞) may well have a different underlying discrete
graph with a lower number of vertices and edges; and it may contain loops and parallel edges
even if the approximating graphs do not. We may group the vertices of G(n) according to the
rule

v(n), w(n) ∈ V(G(n)) are equivalent if and only if distG(n) (v(n), w(n))
n→∞−→ 0.

Thus with each vertex v(∞) of G(∞) is associated a unique equivalence class of vertices of
G(n) of this form, which we will denote by [v(∞)].

Let us explicitly formulate the following useful observations.

Lemma 3.5 Let (G(n))n∈N converge to G(∞) in 
G. Then

(1) the total length |G(n)| tends to |G(∞)|;
(2) G(∞) is connected provided the G(n) are.

We also note for future reference that the Laplacian eigenvalues we are considering,
introduced in Sect. 2.1, behave well with respect to this notion of convergence. Here the cor-
respondence between vertices is necessary to identify the correct limiting vertex conditions.
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Lemma 3.6 Let (G(n))n∈N converge to G(∞) �= ∅ in 
G. Then

(1) μ2(G(n)) → μ2(G(∞));
(2) if a vertex set VD in the underlying discrete graph G is chosen and Dirichlet conditions

are applied at all vertices in G(n) corresponding to VD, and if Dirichlet conditions are
applied at exactly those vertices v of G(∞) such that at least one vertex in [v] corresponds
to a vertex in VD, then λ1(G(n)) → λ1(G(∞)).

If G(n) → ∅, then μ2(G(n)) → ∞ as n → ∞. If in addition VD(G(n)) �= ∅, then also
λ1(G(n)) → ∞.

Proof (1) follows from the method described in [5, Appendix A] (which can also be easily
adapted to (2)); alternatively, see [10] for a more detailed treatment of both. The case where
no edge lengths converge to zero is already covered in [8, § 3.1]. In the degenerate case
where all edge lengths converge to zero, Nicaise’ inequalities (Theorem 2.5) imply that
μ2(G(n)) ≥ π2/|G(n)|2 → ∞ and λ1(G(n)) ≥ π2/4|G(n)|2 → ∞ (in the latter case as long
as at least one Dirichlet vertex is present). ��

With this background, we can now return to partitions and in particular define the notion
of convergence of a sequence of partitions. For the rest of the section, we assume that G is
a fixed ur-graph satisfying (up to the correct choice of representative) Assumption 2.2, and
fix a configuration class T of k-partitions of G; we suppose that the clusters of each partition
P = {G1, . . . ,Gk} have the respective underlying discrete graphs G1, . . . ,Gk (for a fixed
order). Then, as above, setting Ei := |E(Gi )| to be the number of edges of Gi , each G1 may
be uniquely identified with a vector in R

Ei+ ; this means that each P = (G1, . . . ,Gk) may be

identified with a vector in R
E1+ × · · · × R

Ek+ � R
E+ with (strictly) positive entries. Since P

was assumed to be exhaustive, these entries must sum to the total length |G| of the graph G,
that is, we have the identification

T � �T :=
{
x = (x1, . . . , xE ) ∈ R

E : x j > 0 for all j and ‖x‖1 = |G|
}

, (3.2)

where E = ∑k
i=1 Ei = ∑k

i=1 |E(Gi )| and ‖x‖1 is the 1-norm of the vector x . Now if two
partitions P1 = {G1, . . . ,Gk} and P2 = {H1, . . . ,Hk} are similar, P1,P2 ∈ T = TC (and in
particular consist of clusters that have the same underlying discrete graphs, say G1, . . . ,Gk),
then we can introduce

d(P1,P2) :=
k∑

i=1

d
Gi
(Gi ,Hi ), (3.3)

where d
Gi
is the distance introduced in Eq. 3.1. This distance induces an equivalent topology

to the one induced by the Euclidean distance between the points in the set �T corresponding
to the respective partitions P1 and P2. The following result is immediate.

Lemma 3.7 Let C be a cut pattern of G. Then T = TC is a metric space with respect to the
distance introduced in (3.3).

In order to check the plausibility of this metrisation of the partition space, let us explicitly
record the following observation.

Proposition 3.8 Suppose T is any configuration class and (Pn)n∈N ⊂ T is a sequence of k-
partitions which is Cauchy with respect to the metric (3.3). Then the limit partition P∞ ∈ T

is also exhaustive.
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However, this metric space is non-complete, since given a Cauchy sequence (Pn)n∈N ⊂ T

it cannot be excluded that one or more clusters vanish in the limit, i.e., |G(n)
i | → 0, leading

to an m-partition of G with m < k as a limit object; these correspond to the limit points in
the Euclidean set �T from (3.2) with one or more entries equal to zero.

The spectral energies we will consider in the sequel will turn out to be continuous with
respect to this metric, cf. Lemmata 4.5 and 5.3. This is an immediate corollary of Lemma 3.6.
However, if thePn are k-partitions andPn → P∞ for somem-partitionP∞ withm < k, then
we do not in general expect spectral continuity, since the corresponding partition energies
will diverge to ∞ (cf. the proof of Lemma 4.6).

Nevertheless, as above, it is natural to consider the canonical completionT, which consists
of equivalence classes of Cauchy sequences of partitions with respect to the equivalence
relation of having vanishing distance d(Pn,P ′

n) in the limit, which corresponds to�T ⊂ R
E .

Lemma 3.9 Let C be a cut pattern of G. Then TC is compact.

Proof This is immediate since TC may be identified with the closed and bounded subset �T

of E-dimensional Euclidean space. ��
More generally, if A ⊂ Ck is any set of k-partitions, then A is the union of the sets A ∩ T

over all configuration classes T. Obviously, it is possible that a givenm-partition P ∈ Amay
lie in the closure of more than one configuration class. Moreover, the sets Ck and Rk are
themselves not closed, although, as we will see shortly,

⋃
i≤k Ck and

⋃
i≤k Rk are.

It is also natural to ask which types of partition from our classification, Definition 2.12,
are closed in the metric (3.3).

Example 3.10 Let us review the proper 2-partitions of the lasso graph of Sect. 2.2. As the
separating point ṽ wanders towards v in Fig. 2, the corresponding partitionP converges, with
respect to the metric introduced in (3.3), towards the faithful (but non-proper) 2-partition in
Fig. 3. On the other hand, as the ṽ1, ṽ2 approach v in Fig. 2, the corresponding proper (and
hence faithful) partition P converges towards the rigid, non-faithful 2-partition in Fig. 4.
Observe that the cut pattern and hence the underlying discrete graphs of these two limiting
partitions are different.

Hence, neither the class of proper, nor faithful partitions is closed; nor is the class of inter-
nally connected partitions, as can be shown using Example 2.14. In particular, connectivity
of the clusters, even if it holds for a sequence of partitions, can be destroyed in the limit. On
the other hand, if (Pn)n∈N ⊂ T is a sequence of connected partitions of a given configuration
class, then the limit object is clearly still a well-defined m-partition for some 1 ≤ m ≤ k; in
particular, it is connected, and thus

⋃
i≤k Ck is closed. The following proposition establishes

that a corresponding statement holds for rigid partitions; and it is for this reason that we will
tend to favour these two partition classes over the respective classes of proper, faithful and
internally connected ones.

Proposition 3.11 Suppose T is any configuration class and (Pn)n∈N ⊂ T is a sequence of
rigid k-partitions which is Cauchy with respect to the metric (3.3). Then the limit partition
P∞ ∈ T is a rigid m-partition for some m, 1 ≤ m ≤ k. In particular,

⋃
i≤k Rk is closed.

Proof Fix i = 1, . . . , k. Now since obviously G(n)
i → G(∞)

i with respect to the metric of

Eq. (3.1), by Lemma 3.5 we have that G(∞)
i is connected; in particular, P∞ cannot have

more than k clusters. To check the rigidity condition, we also need to show that any vertex
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v ∈ int�(∞)
i is not cut through in G(∞)

i . So let v ∈ int�(∞)
i be arbitrary, then we first

observe that v ∈ int�(n)
i for all sufficiently large n. Since Pn was assumed rigid, any edge of

G incident with v remains incident with v in G(n)
i , and none of these edges in G(n)

i has length
converging to zero. In particular, the incidence relations at v are preserved in the limit graph
G(∞)
i . We conclude that P∞ is rigid. ��

3.3 Existence results for energy functionals

In this section we prove a general existence result for extremisers of functionals � : P �→ R

defined on certain sets of partitions.
Since each configuration class is itself a metric space by Lemma 3.7, as is the disjoint

union of all configuration classes (up to allowing the distance function to attain the value
+∞), all usual topological notions are well-defined: lower semicontinuity will play a key
role in what follows.

Definition 3.12 Let A ⊂ C(G) be a set of exhaustive partitions. We say the functional J :
A → R is

(1) lower semi-continuous (lsc) if, wheneverT is a configuration class and (Pn)n∈N ⊂ A∩T

converges to some P ∈ A ∩ T, we have that J (P) ≤ lim infn→∞ J (Pn);
(2) strongly lower semi-continuous (slsc) if, wheneverT is a configuration class and (Pn)n∈N

⊂ A ∩ T converges to some P ∈ A ∩ T, we have that J (P) ∈ R is well defined and
J (P) ≤ lim infn→∞ J (Pn).

(Strong) upper semi-continuity and (strong) continuity may be defined analogously. Note,
however, that continuity of J is not assumed on the closure of its domain A; in particular, even
if J is continuous on the whole of C or R, it need not be bounded from above or below, not
even on the set of all k-partitions, since we do not rule out discontinuities, or even divergence,
J (Pn) → ±∞, if one or more clusters of Pn disappear in the limit. (This will, for example,
be the case for the continuous functionals �D

p and �N
p , see Lemmata 4.5 and 4.6.)

Theorem 3.13 Let k ≥ 1 and let A ⊂ C = C(G)with A∩Ck �= ∅. Suppose that the functional
J : A → R is strongly lower semi-continuous on A. Suppose in addition that at least one of
the following conditions holds:

(1) J (Pn) → ∞ whenever there exist clusters Gn in Pn ∈ A such that |Gn | → 0 as n → ∞;
or

(2) for every �-partition P(�) ∈ A, � = 1, . . . , k − 1, there exists an (� + 1)-partition
P(�+1) ∈ A such that J (P(�+1)) ≤ J (P(�)).

Then there is at least one exhaustive k-partition P∗ ∈ A ∩ Ck realising

J (P∗) = inf{J (P) : P ∈ A ∩ Ck}. (3.4)

If A ⊂ R, that is, if we restrict to rigid partitions, then there is at least one exhaustive rigid
k-partition P∗ satisfying (3.4).

If we assume A to be contained in the set of proper, or faithful, or internally connected
partitions, then in general the minimiser P∗ is merely rigid, since the former sets are not
closed. We will give concrete examples of this elsewhere; see for example Example 4.10 and
also Sect. 7.2, and cf. also Example 3.10. We emphasise that lower semi-continuity by itself
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is not enough to guarantee the existence of a minimiser in A, since the lower semi-continuity
condition does not require J (Pn) → J (P∞) if A is open and A � Pn → P∞ ∈ ∂A, even if
J (P∞) is actually well defined. We likewise need (1) or (2) to prevent the only limits of any
minimising sequences from being m-partitions for some m < k.

While the monotonicity-like condition in (2) may seem a little unusual, it will be directly
applicable to the partitions of max-min type considered in Sect. 5.

Proof of Theorem 3.13 Let (Pn)n≥1 be a sequence of k-partitions in A∩Ck such that J (Pn) →
inf A∩Ck J (P) as n → ∞. Since there are only finitely many configuration classes of k-
partitions, there must exist a subsequence, which we shall still denote by (Pn), such that the
Pn all have the same configuration, Pn ∈ T for some configuration class T. We will write
Pn := {G(n)

1 , . . . ,G(n)
k }.

By Lemma 3.9 there exists an m-partition P∞ ∈ A ∩ T, m ≤ k, such that up to a
subsequence Pn → P∞. If A ⊂ R, that is, if all partitions under consideration are rigid,
then since R is closed by Proposition 3.11, also P∞ ∈ R.

To finish the proof, it suffices to show that P∞ is actually a k-partition, since the strong
lower semi-continuity of J already implies that

J (P∞) ≤ lim inf
n→∞ J (Pn). (3.5)

Assume condition (1). Then since the sequence (J (Pn)) is bounded from above, |�(n)
i | cannot

converge to zero for any i , and hence, by Lemma 3.5, also |G(∞)
i | > 0 as required. We can

thus take P∗ = P∞.
Instead assume condition (2). Suppose that the minimising partition P∞ found above is

an m-partition for some 1 ≤ m ≤ k. In this case, (2) still gives us (3.5), and then, upon
sufficiently many applications of the second part of (2) to P∞ we obtain a k-partition P ′
with

J (P ′) ≤ J (P∞) = inf
P∈A∩Ck

J (P),

meaning we have found a minimal k-partition P ′ = P∗. If A ⊂ R, then P ′ ⊂ A ⊂ R by
assumption. ��

4 Existence of spectral minimal partitions

We can now introduce the first major types of spectral energy functionals wewish to consider.
From now on, we will no longer need to distinguish between metric and ur-graphs, so we will
always suppress this technicality and assume thatG is a fixedmetric graph—say, the canonical
representative of an ur-graph. We also fix k ≥ 1 and suppose that P = {G1, . . . ,Gk} ∈ Ck =
Ck(G) is a k-partition of G. On each of the graphs Gi , i = 1, . . . , k, we consider either:

(1) the smallest nontrivial eigenvalueμ2(Gi ) of the Laplacian with natural vertex conditions,
given by (2.5); we have μ2(Gi ) > 0 since Gi is connected by definition; or

(2) the smallest eigenvalue λ1(Gi ) = λ1(Gi ;VD(Gi )) > 0 of the Laplacian with Dirichlet
conditions at the vertex set VD(Gi ), cf. (2.4) and (2.8).

In either case, we associate a spectral energy with the graph Gi , and thus, collating these
over all i , with the partition P of G. There are multiple possible ways to do so; the particular
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problems we shall consider in this section are as follows: for any given p ∈ (0,∞], we
consider the energies

�N
p (P) =

⎧
⎪⎪⎨

⎪⎪⎩

(
1
k

k∑

i=1
μ2(Gi )p

)1/p

if p ∈ (0,∞),

max
i=1,...,k

μ2(Gi ) if p = ∞,

(4.1)

and

�D
p (P) =

⎧
⎪⎪⎨

⎪⎪⎩

(
1
k

k∑

i=1
λ1(Gi )p

)1/p

if p ∈ (0,∞),

max
i=1,...,k

λ1(Gi ) if p = ∞,

(4.2)

in each case for a given k-partition P = {G1, . . . ,Gk} ∈ Ck of a graph G. Here we have
written, and we will always understand,

λ1(Gi ) = λ1(Gi ;VD(Gi )),

where we will always take the set of Dirichlet vertices of Gi to be the set VD(Gi ) of cut points
in Gi , as defined in Definition 2.10 (indeed, this motivates the notation VD); likewise, we
will write H1

0 (Gi ) in place of H1
0 (Gi ;VD(Gi )). The problem is then to minimise the energies

(4.1) and (4.2), respectively, that is, to solve for

inf
P∈A∩Ck

�N
p (P) and inf

P∈A∩Ck

�D
p (P)

for a suitable set or class of partitions A. There are multiple reasonably natural possible
choices for the set A over which we can seek the infimum, in particular, we may consider any
of the classes listed in Definition 2.12. In keeping with the usual convention when dealing
with domains we will be mostly interested in exhaustive partitions, although the problems
we consider would also be well posed without this restriction.

For example, we recall that in [4] the authors were interested in proper (and exhaustive)
partitions, and in particular thoroughly studied the local minima of �D∞ and their geometric
properties (see especially [4, Theorems 2.7 and 2.10]); however, the actual question of exis-
tence of minimisers was not discussed (whether within the class of proper partitions or in
general). We also recall that the internally connected partitions are exactly those rigid parti-
tions for which Gi remains connected after removing the sets VD(Gi ) � ∂�i , making them
an a priori natural class of partitions on which to consider Dirichlet problems. However, as
noted in Sect. 3, these classes are not closed in the natural partition topology; hence we can-
not expect to find a minimiser within the respective classes (see Example 4.10 below)—even
though the energies (4.1) and (4.2) are continuous, as we will show shortly. Based on the fact
that the classes of rigid and connected partitions are closed, they will be of primary interest
for us, that is, for p ∈ (0,∞] we will principally consider the four problems of finding

LN ,r
k,p = LN ,r

k,p (G) := inf
P∈Rk

�N
p (P),

LD,r
k,p = LD,r

k,p (G) := inf
P∈Rk

�D
p (P),

LN ,c
k,p = LN ,c

k,p (G) := inf
P∈Ck

�N
p (P),

LD,c
k,p = LD,c

k,p (G) := inf
P∈Ck

�D
p (P), (4.3)
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Fig. 8 A minimal Neumann
2-partition of a pumpkin on 3
edges

Fig. 9 A sequence of exhaustive
2-partitions of the unit square:
one partition element is white,
the other grey. The thin joining
passages are of width ε > 0; it
can be shown that as ε → 0, the
corresponding Neumann partition
energy also converges to 0

ε

ε

where we recall that Ck andRk are the sets of all connected and rigid exhaustive k-partitions
of G, respectively. We will refer to these partition problems as Neumann (or natural) and
Dirichlet problems.

Example 4.1 Let G be an equilateral pumpkin graph on 3 edges of, say, length 1. Then it is

easy to check (cf. Lemma 7.1 or Example 7.3) that LN
2,p = 4π2

9 for all p ∈ (0,∞]: this value
is attained by the partition P in Fig. 8, which is also unique up to isomorphism. (This rigid
partition is also minimal among the connected ones, i.e., �N

p (P) = LN ,r
2,p = LN ,c

2,p for all
p ∈ (0,∞].)

The principal goal of this section is to show that such minimal partitions always exist, and
indeed for all four problems listed above.

Remark 4.2 In the case of domains, only the Dirichlet, not the Neumann problem, has been
studied, since unlike on metric graphs, on domains the latter minimisation problem is not
well defined. Let us expand on this point a little. Suppose for simplicity that � ⊂ R

2 is a
smooth domain and consider k-partitions P = {�1, . . . , �k} of � for some fixed k ≥ 1. In
the easier case of non-exhaustive partitions, we take ωε to be a dumbbell consisting of two
disks of radius d = d(k,�) > 0 small but fixed and handle of fixed length and thickness
ε > 0, where the parameters are chosen in such a way that � constains at least k disjoint
copies of ωε , for any ε > 0 sufficiently small. If Pε is then the partition consisting of k such
copies ofωε, then sinceμ2(ωε) → 0 as ε → 0 in accordance with [16, Section 2, pp. 16–19],
we have that, for any p ∈ (0,∞],

0 ≤ inf
P

�N
p (P) ≤ lim

ε→0
�N

p (Pε) = 0,

meaning that the minimisation problem is not well defined. If we restrict to exhaustive
partitions, then the same principle and conclusion apply, but the construction is harder to
describe in general. Instead, we illustrate the idea with a figure (Fig. 9) sketching such a
construction for 2-partitions of the square.

Let us next give a few basic properties of the problems (4.3). It is immediate that LN ,r
k,p ≥

LN ,c
k,p and LD,r

k,p ≥ LD,c
k,p , sinceRk ⊂ Ck . Actually, before proceeding let us note that the only

quantity of interest in the Dirichlet case is LD,r
k,p :

Lemma 4.3 For any graph G, any k ≥ 1 and any p ∈ (0,∞], we have LD,r
k,p = LD,c

k,p .
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For this reason, we will in the remainder of this paper use the notation

LD
k,p := LD,r

k,p = LD,c
k,p . (4.4)

Proof We only have to prove “≤”. Let P ′ = (G′
1, . . . ,G′

k) ∈ Ck ; we will construct a partition
P ∈ Rk which has the same cluster supports and whose every cluster has an eigenvalue
which is no larger than the eigenvalue of the corresponding cluster of P ′. In fact, if G′

i has
support �i and Gi ∈ ρ�i is any rigid cluster with the same cluster support, then H1

0 (G′
i )

may be identified with a subspace of H1
0 (Gi ) since the zero condition can only be imposed

at more points of G′
i than of Gi . It follows from the variational characterisation (2.4) that

λ1(G′
i ) ≥ λ1(Gi ) for all i . The claim now follows. ��

Remark 4.4 Let us explicitly stress that if P = {G1, . . . ,Gk} ∈ Rk is a rigid partition (hence,
cut points and separation points agree) and we are interested in �D

p (P), then λ1(Gi ) is
independent of the choice of the graph Gi ∈ ρ�i associated with �i , i = 1, . . . , k, as long
as this is made in accordance with Definition 2.8. In other words, λ1(Gi ) is independent
of Gi ∈ ρ�i . This is because a Dirichlet condition is imposed at all cut/separation points
anyway; thus, it does not matter whether (or how) these vertices are joined in Gi . Hence, in
these cases, one may ignore the distinction between the cluster supports �i and the clusters
Gi (in particular, minimising over the class of faithful partitions is the same as minising
over rigid partitions for the Dirichlet problem). In practice, we will always do this, that is,
when considering (only) Dirichlet partition problems (among all rigid partitions) we will not
distinguish between clusters and their supports.

We next establish that both our spectral energy functionals (4.1) and (4.2) are indeed
continuous with respect to the notion of partition convergence introduced in Sect. 3.2.

Lemma 4.5 Suppose Pn and P∞ are exhaustive connected k-partitions of a graph G such
that the Pn are similar, and Pn → P∞ with respect to the metric of (3.3). Then, for any
given p ∈ (0,∞],

�N
p (Pn) → �N

p (P∞) and �D
p (Pn) → �D

p (P∞)

as n → ∞.

Proof This follows immediately from the definitions of �N
p and �D

p and Lemma 3.6. ��
Actually, we can say more.

Lemma 4.6 The functionals �N
p and �D

p are strongly lower semi-continuous on Ck(G) (see
Definition 3.12(2)), for any given p ∈ (0,∞].
Proof If Pn ∈ Ck are k-partitions of a graph G and Pn → P∞ for some m-partition P∞
with m < k, then there exists at least one sequence of clusters, say G(n)

i , whose total length

|G(n)
i | → 0. Nicaise’ inequalities (Theorem 2.5) yield

μ2(G(n)
i ) ≥ π2

|G(n)
i |2

= π2

|�(n)
i |2

and λ1(G(n)
i ) ≥ π2

4|G(n)
i |2

= π2

4|�(n)
i |2

(4.5)

for all i = 1, . . . , k and all n ≥ 1, whence �N
p (Pn),�

D
p (Pn) → ∞ as n → ∞, for any

p ∈ (0,∞]. The strong lower semi-continuity follows since�N
p (P∞),�D

p (P∞) < ∞, when
combined with the result of Lemma 4.5. ��
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Given a graph G, we can now prove the existence of k-partitions achieving the infimal
values LN ,r

k,p (G) and LD
k,p(G), as well as LN ,c

k,p (G).

Theorem 4.7 Fix k ≥ 1 and p ∈ (0,∞] and let A ⊂ Ck be any set of k-partitions. Then
there exist k-partitions PN ,PD ∈ A ∩ Ck of G such that

�N
p (PN ) = inf

A⊂Ck
�N

p (P) and �D
p (PD) = inf

A⊂Ck
�D

p (P).

In particular: if A ⊂ Rk is a set of rigid k-partitions, then PN and PD are also rigid
k-partitions, respectively.

We will see in Sect. 6.1 that for fixed k ≥ 1 the minimal partitions may depend on p.

Proof It suffices to show that the functionals �N
p and �D

p , which are both defined on C ⊃ A,
satisfy the conditions of Theorem 3.13(1). Strong lower semi-continuity was established in
Lemma 4.6, while condition (1) follows immediately from (4.5). ��
Corollary 4.8 Fix k ≥ 1 and p ∈ (0,∞]. Then there exist a connected k-partition P̃N ∈ Ck

and rigid k-partitions PN ,PD ∈ Rk such that

�N
p (P̃N ) = LN ,c

k,p (G), �N
p (PN ) = LN ,r

k,p (G), and �D
p (PD) = LD

k,p(G).

Remark 4.9 If, for any k ≥ 1 and p ∈ (0,∞], P̃N = {G1, . . . ,Gk} is a connected k-partition
achieving the minimum for LN ,r

k,p (G), then we may always assume without loss of generality
that the clusters G1, . . . ,Gk are all trees. This is because cutting through any vertices in Gi can
only decrease μ2(Gi ) (see, e.g., [9, Theorem 3.10(1)]). We will see this principle in action in
Example 7.4 below.

We next give a simple example to show that the minimal partition realisingLD
k,p(G)within

the class of all internally connected exhaustive partitions need not be internally connected
and exhaustive, even if it can be approximated by such partitions.

Example 4.10 Let G be a star graph consisting of three edges e1, e2, e3, each of length one,
attached at a common vertex v0. Then there is an optimal internally connected but non-
exhaustive 2-partition, for both LD

k,∞ and LN ,r
k,∞, given by, say, P∗ = {G1,G2}, with G1 = e1,

G2 = e2.
If, however, we search for rigid and exhaustive minimal partitions, then up to permutation

of the edges, their cluster supports must all have the form �1 = e1 and �2 = e2 ∪ e3, see
Example 2.14. In the Dirichlet case, since ∂P∗ = {v0} and removing v0 disconnects �2,
any rigid minimiser is not internally connected. A similar principle holds if we search for an
optimal k-partition of a star on n equal rays e1, . . . , en , with n > k.

We observe in passing that in all these cases the non-exhaustive partition achieving
LD
k,∞(G) is nodal, while the exhaustive partitions are generalised nodal, see Definitions 8.1

and 8.2 below.

Proposition 4.11 For any graph G and any given p ∈ (0,∞] and 1 ≤ k1 ≤ k2, we have the
monotonicity statements

LD
k1,p(G) ≤ LD

k2,p(G) (4.6)

and
LN ,c
k1,p

(G) ≤ LN ,c
k2,p

(G). (4.7)
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Proof The argument is the same in both cases, so we restrict ourselves to the Dirichlet case:
we suppose P = {G1, . . . ,Gk2} is an exhaustive rigid k2-partition realising LD

k2,p
(G), and for

simplicity we take k := k2 and k1 = k2 − 1 = k − 1. Suppose without loss of generality that
Gk−1 and Gk are neighbours (see Definition 2.11), and that λ1(Gk) = maxi=1,...,k λ1(Gi ). We
glue these two clusters together: more precisely, we defineHk−1 to be the rigid cluster, unique
in the sense of Remark 4.4, whose support is exactly �k−1 ∪�k ; we also setHi := Gi for all
i = 1, . . . , k − 1. Then it is easy to check that P∗ := {H1, . . . ,Hk−1} is an exhaustive rigid
k − 1-partition of G. Moreover, by eigenvalue monotonicity with respect to graph inclusion,
λ1(Hk−1) ≤ min{λ1(Gk−1), λ1(Gk)} = λ1(Gk−1), and maxi=1,...,k−1 λ1(Hi ) ≤ λ1(Gk).
Hence, for any p ∈ (0,∞),

1

k

k∑

i=1

λ1(Gi )p ≥ 1

k

k−1∑

i=1

λ1(Hi )
p + 1

k
max

i=1,...,k−1
λ1(Hi )

p

= 1

k − 1

k−1∑

i=1

λ1(Hi )
p − 1

k(k − 1)

k−1∑

i=1

λ1(Hi )
p + 1

k
max

i=1,...,k−1
λ1(Hi )

p

≥ 1

k − 1

k−1∑

i=1

λ1(Hi )
p − k − 1

k(k − 1)
max

i=1,...,k−1
λ1(Hi )

p + 1

k
max

i=1,...,k−1
λ1(Hi )

p

= 1

k − 1

k−1∑

i=1

λ1(Hi )
p = �D

p (P∗)p.

Since the inequality �D∞(P) ≥ �D∞(P∗) is immediate, we obtain �D
p (P) ≥ �D

p (P∗) for all
p ∈ (0,∞]. This yields (4.6). For LN ,c we use Remark 4.9 to guarantee that without loss of
generality the clusters are all trees; now [9, Theorem 3.10(1)] gives the monotonicity when
gluing Gk−1 and Gk together, which may be done at a single vertex. ��
Remark 4.12 Note that the inequalities in Proposition 4.11 need not always be strict: for
p = ∞, if G is the equilateral star graph from Example 4.10 (see also Examples 2.14
and 6.2), then

LD
2,∞(G) = LD

3,∞(G) = π2

4
,

where in the notation of Example 4.10 the optimal 3-partition is given by �i = ei for
i = 1, 2, 3. Inequality need not be strict even if the corresponding minimal partitions are
internally connected; an example is the graph considered in Proposition 8.16 below: we will
show there that for this graph we even have LD

4,∞ = LD
5,∞ despite there being internally

connected partitions realising both minima.

However, although for each k there is a rigid k-partition achievingLN ,r
k,p (G), it is not actually

clear whether the monotonicity property analogous to (4.6) holds: a necessary condition is
the following seemingly obvious conjecture, which will also play a role in Sect. 5.

Conjecture 4.13 Suppose G is a finite, compact, connected metric graph. Then there exists
an exhaustive rigid 2-partition P2 = {G1,G2} of G such that

μ2(G) ≤ min{μ2(G1), μ2(G2)}.
In fact, if Conjecture 4.13 is not true, then there is a graph G such thatμ2(G) = LN ,r

1,p (G) >

�N
p (P) for every exhaustive rigid 2-partition P of G and any p ∈ (0,∞], and hence
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LN ,r
1,p (G) > LN ,r

2,p (G). However, the conjecture is true for a large class of graphs, as the
following observation shows. This will also be used in the proof of Theorem 5.4 below.

Lemma 4.14 Conjecture 4.13 is true whenever G has a bridge, that is, an edge or a vertex
whose removal disconnects G. In particular, it is true for trees.

Proof Suppose that removing v ∈ G disconnects G into two subsets �1 and �2 whose inter-
section is only {v}, and let G1 ∈ ρ�1 and G2 ∈ ρ�2 be the clusters of maximal connectivity,
for which no further cuts are made at v, i.e., such that every other graph in ρ�i is a cut of
Gi , i = 1, 2 (in other words, the corresponding partition is faithful). It follows immediately
(see, e.g., [32, Section 5] or [9, Theorem 3.4]) that

μ2(G) ≤ μ2(G1),

since G may be formed by attaching G2 as a pendant to G1 at the single vertex v ∈ G2.
Interchanging the roles of G1 and G2 yields μ2(G) ≤ μ2(G2) as well. ��

Moreover, using similar ideas, we can show that for sufficiently large k,LN ,r
k,∞(G) is mono-

tonically increasing in k. The naïve intuition behind this is that merging clusters should
produce a partition with lower energy, but [9, Rem. 3.13] shows that things are not that sim-
ple. Even the case of p ∈ (0,∞) requires a relatively fine control of the behaviour of the
optimal partitions, and will be deferred to a later work [25].

Proposition 4.15 There exists k0 ∈ N such that for any k2 ≥ k1 ≥ k0,

LN ,r
k2,∞(G) ≥ LN ,r

k1,∞(G). (4.8)

If G is a tree, then we may take k0 = 1.

Proof Let us first give the proof for trees. Fix k ≥ 2 arbitrary, and supposePk = {G1, . . . ,Gk}
is an optimal exhaustive k-partition for LN ,r

k,∞(G), which we know exists by Corollary 4.8.

We will construct a (test) (k − 1)-partition from Pk whose energy is no larger than LN ,r
k,∞(G),

from which we may conclude that LN ,r
k,∞(G) ≥ LN ,r

k−1,∞(G); the claim of the proposition for
trees then follows immediately. Suppose without loss of generality that �k−1 and �k are
neighbours (see Definition 2.11). Since G is a tree, they can only meet at a single point,
without loss of generality a vertex v. Moreover, since Gk−1 and Gk are connected and G was
a tree, the image of v in Gi is a single vertex, i = k, k − 1 (cf. Example 2.14). In particular,
if we create a new graph G′

k−1 by attaching Gk to Gk−1 at v, then Gk is a pendant of G′
k−1 at

v and vice versa, and so, as above,

μ2(G′
k−1) ≤ min{μ2(Gk−1), μ2(Gk)}. (4.9)

Moreover, if we set �′
k−1 := �k−1 ∪ �k ⊂ G, then G′

k−1 ∈ ρ�′
k−1

and the new partition

P ′ := {G1, . . . ,Gk−2,G′
k−1} is a rigid k−1-partition ofG. Combining (4.9)with the definition

of �N∞ as a maximum and the fact that no other cluster was affected, we immediately have

�N∞(P ′) ≤ �N∞(Pk). (4.10)

This proves the proposition for trees.
The proof for general G is based on the idea above together with the principle that for

sufficiently large k, we can always find neighbouring clusters whose supports meet at a single
vertex like �k−1 and �k did above. For simplicity, we take k0 := 4M , where as usual M is
the number of edges of G, although this k0 will in general be far from optimal. Fix k ≥ k0 +1
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and as above denote by Pk = {G1, . . . ,Gk} an optimal k-partition for LN ,r
k,∞(G). Now by the

pigeonhole principle, there exists at least one edge of G with non-empty intersection with at
least four cluster supports. It follows that there exist two neighbouring cluster supports, call
them �k−1 and �k , which are contained in the interior of this edge. Since their intersection
must consist of a single point, we may apply verbatim the above argument for trees to the
corresponding clusters Gk−1 and Gk to generate a test k − 1-partition P ′ with lower energy
�N∞. This completes the proof. ��
Remark 4.16 As in the Dirichlet case (see Remark 4.12), it is easy to construct examples such
as stars for which there is equality in (4.8).

5 Existence of spectral maximal partitions

It turns out that for some classes of partitions the problem of maximising spectral quantities
is also well defined: we define the energies

�N (P) := min
i=1,...,k

μ2(Gi ) (5.1)

and
�D(P) := min

i=1,...,k
λ1(Gi ) (5.2)

for any exhaustive connected k-partitionP ∈ Rk , and thus the maximal natural and Dirichlet
energies, respectively:

MN ,r
k = MN ,r

k (G) := sup
P∈Rk

�N (P),

MD,r
k = MD,r

k (G) := sup
P∈Rk

�D(P),

MN ,c
k = MN ,c

k (G) := sup
P∈Ck

�N (P),

MD,c
k = MD,c

k (G) := sup
P∈Ck

�D(P). (5.3)

Here it is important to restrict to exhaustive partitions, see Remark 5.1. In the sequel we will
prove similar properties of these to LN ,r

k,p and LD
k,p , in particular the existence of maximisers.

In Sect. 6 we will give examples comparing both the behaviour of the optimal partitions
with respect to p, and comparing these notions of spectral extremal partitionwith theminimal
partitions introduced in Sect. 4; it should be profitable to have a more systematic understand-
ing of the relations between them. In this section we treat the existence of partitions having
the optimal energies for the max-min problems MN

k and MD
k .

Remark 5.1 The more general max-min problems

sup
P∈A

�N (P), sup
P∈A

�D(P),

unlike their min-max counterparts in Sect. 4, are only well posed for rather particular
choices of sets A of partitions. For example, if we seek the optimum among non-exhaustive
k-partitions, even among rigid partitions, then both suprema are clearly infinite: any
sequence of partitions Pn each of whose clusters has total length at most 1/n, say, satis-
fies �N (Pn),�

D(Pn) → ∞ (just use Nicaise’ inequalities).
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There is an analogue of Lemma 4.3, but this time for the natural problem.

Lemma 5.2 For any graph G and any k ≥ 1, we have

sup
P∈Rk

�N (P) = sup
P∈Ck

�N (P).

For this reason, also in this context we adopt in the following the notation

MN
k := MN ,r

k = MN ,c
k . (5.4)

Proof The proof is, to an extent, analogous to the proof of Lemma 4.3, but here we have
to prove “≥”, since the latter supremum is over a larger set. It suffices to prove that for an
arbitrary exhaustive P ′ = {G′

1, . . . ,G′
k} ∈ Ck , for each i there exists some Gi ∈ ρ�′

i
(where

�′
i ⊂ G is the cluster support of G′

i ) such that μ2(Gi ) ≥ μ2(G′
i ), since then the exhaustive

rigid partition P := {G1, . . . ,Gk} ∈ Rk satisfies �N (P) ≥ �N (P ′). To this end, we simply
take Gi to be the unique faithful cluster in ρ�′

i
; then by construction G′

i may be obtained as a
cut of Gi . Standard surgery results (e.g., [9, Theorem 3.4]) now imply that μ2(Gi ) ≥ μ2(G′

i ),
as required. ��

On the other hand, the conclusion of Remark 4.4 also holds for �D(P): for the Dirichlet
problem, there is no difference between different rigid clusters associated with the same
supports: in particular, maximising over all rigid partitions is equivalent to maximising over
all faithful ones.

Before turning to the existence of maximising partitions, we first observe that �N and
�D are continuous with respect to partition convergence, even in the degenerate cases.

Lemma 5.3 Suppose Pn ∈ Rk are rigid k-partitions of G, all similar to each other, and
Pn → P∞ as n → ∞ in the sense of (3.3). Then also

�N (Pn) → �N (P∞) and �D(Pn) → �D(P∞).

Proof IfP∞ is itself a k-partition, then this follows immediately fromLemma3.6. So suppose
it is not; then at least one cluster has total length converging to zero, and thus eigenvalues
diverging to ∞, see again Lemma 3.6. Consider the Dirichlet problem (the natural case is
entirely analogous). Suppose without loss of generality that the clusters G(∞)

1 , . . . ,G(∞)
j ,

1 ≤ j < n, give the minimum in �D(P∞):

λ1(G(∞)
1 ) = · · · = λ1(G(∞)

j ) = �D(P∞);
note that this energy is finite since at least one cluster of P∞ has positive total length and
thus a finite eigenvalue. But now each corresponding cluster G(n)

i of Pn converges to G(∞)
i ;

in particular, λ1(G(n)
i ) → λ1(G(∞)

i ) for all i = 1, . . . , j , while lim infn→∞ λ1(G(n)
i ) >

�D(P∞) for all i = j + 1, . . . , k. It now follows from the definition of �D as a minimum
that indeed �D(Pn) → �D(P∞). ��
Theorem 5.4 Fix k ≥ 1. Then there exist exhaustive rigid k-partitions PN ,PD of G such
that

�N (PN ) = MN
k and �D(PD) = MD,r

k

and such that there exist k-partitions PN
n ,PD

n ∈ Rk with PN
n → PN and PD

n → PD.
For all k ≥ 1, PD may be taken as a k-partition itself; moreover, there exists a constant
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k0 ≥ 1 possibly depending on G such that PN may be taken as a k-partition for all k ≥ k0.
In particular, MN

k and MD
k are monotonically increasing functions of k for all k ≥ 1 and

k ≥ k0, respectively.

Here the idea is to apply Theorem 3.13 to the functionals � = −�N ,−�D via condition
(2). In the case of natural conditions, however, there is an additional difficulty with this
condition; namely, it holds for all 1 ≤ � ≤ k if and only if Conjecture 4.13 is true. If it is,
then as we shall see we may choose k0 = 1 in Theorem 5.4.

Proof of Theorem 5.4. The strong lower semi-continuity condition of Theorem 3.13 follows
from the (strong) continuity property established in Lemma 5.3. Hence, if PN

n and PD
n are

maximising sequences of exhaustive rigid k-partitions for �N and �D , respectively, in both
cases we obtain the existence of exhaustive rigid limit partitions PN and PD . Although PN

and PD may not be k-partitions, Lemma 5.3 ensures that their energies are equal toMN
k and

MD
k , respectively.
In the Dirichlet case, we verify (2) of Theorem 3.13 to establish that either PD is already

a k-partition, or it may be replaced with a rigid k-partition whose energy is no smaller. In
fact, suppose P = {G1, . . . ,G�} is any �-partition, � ≥ 1, and suppose the minimum in
mini=1,...,k λ1(Gi ) is achieved by G1. We now modify �1, creating an (� + 1)-st cluster
support in such a way that λ1(G1) is not decreased. Take any vertex v ∈ ∂�1.

If �1 \ {v} is disconnected, then define ��+1 to be any one of (the closures of) these
connected components and �′

1 to be (the closure of) �1 \ ��+1. The corresponding graphs
G′
1, G�+1 may be taken to be any graphs in the non-empty sets ρ�′

1
and ρ��+1 , respectively.

If the removal of v does not disconnect �1, define ��+1 to consist of exactly one edge
of �1 adjacent to v and �′

1 to be the rest of �1, unless �1 consists of just one edge, in
which case take ��+1 to consist of the half of this edge adjacent to v. The graphs are defined
accordingly. In any case, themonotonicity of theDirichlet eigenvalueswith respect to domain
inclusion implies λ1(G′

1), λ1(G�+1) ≥ λ1(G1). This establishes (2) and completes the proof
of the theorem in the Dirichlet case.

In the natural case, it remains to establish the existence of some k0 ≥ 1 with the claimed
properties. Here the proof is somewhat different from the corresponding proof of Proposi-
tion 4.15: we will show that for k sufficiently large, if a partition realises MN

k then none of
its cluster supports can wholly contain any cycle in G, and thus each cluster is a tree. We may
then apply Lemma 4.14 to subdivide these if necessary, without decreasing the energy. To
this end, we will need the following function. By way of analogy with (2.11), for any closed
subset � ⊂ G we define ρ� to be the set of all possible rigid clusters associated with �. We
then define a function b : [0,∞) → [0, |G|] by

b(λ) := sup

{

|�| : � ⊂ G closed and connected and max
H∈ρ�

μ2(H) ≥ λ

}

. (5.5)

Now set �max to be the length of the longest edge of G and cmin to be the length of its shortest
cycle, and choose an integer m ≥ 1 such that

b

(
π2m2

�2max

)

< cmin.

This is possible because, by Lemma 5.5 below, b(·) → 0 as m → ∞. We next choose k0 to
satisfy m = �k0/M�, where we recall M is the number of edges of G.

Now fix k ≥ k0. We take any (rigid) k-partition P of G in which each edge is partitioned
equally into at least m clusters; there exists such a partition since m ≤ �k/M�. Then each
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cluster support �i of P is identifiable with an interval; and thus the same is true of Gi . The
longest of these has length no greater than �max/m, and so

MN
k ≥ min

i=1,...,k
μ2(Gi ) ≥ π2m2

�2max
.

Now let PN = {G1, . . . ,G jk }, jk ≤ k, be an optimal partition for MN
k . Then we must have

μ2(Gi ) ≥ π2m2/�2max for all i = 1, . . . , jk . Hence, by choice of m and definition of b, we
have |Gi | < cmin for all i : in particular, every cluster (and every cluster support) of PN is a
tree. If PN has fewer than k of them, then we may use Lemma 4.14 to subdivide as many
of the clusters of PN as necessary to create a k-partition whose energy is at least as large as
�N (PN ). ��

We finish by proving the properties of the function b claimed in the above proof.

Lemma 5.5 The function b : [0,∞) → [0, |G|] defined by (5.5) is well defined and mono-
tonically decreasing, with b(λ) → 0 as λ → ∞.

Proof The function is well defined on [0,∞) since for any λ ≥ 0 the corresponding set
is non-empty; that it is monotonically decreasing follows directly from the definition. Now
suppose there exists a sequence of subsets �(n) ⊂ G, with associated graphs G(n) ∈ ρ�(n)

satisfying μ2(G(n)) → ∞ but |G(n)| = |�(n)| ≥ c > 0 for all n ≥ 1. Since �(n) and G(n) are
connected, the number of edges M(G(n)) of the latter is certainly not greater than 2M (where
M is the number of edges of the fixed graph G), and hence, by [28, Theorem 4.2],3

μ2(G(n)) ≤ 4π2M(G(n))2

|G(n)|2 ≤ 16π2M2

|G|2
for all n ≥ 1, a contradiction to μ2(G(n)) → ∞. ��

Observe that it is easy to find a sequence of graphs G(n) for which μ2(G(n)) → ∞, even
as |G(n)| remains bounded from below, if the G(n) are not embedded in a larger finite graph
G.

Remark 5.6 Further spectral maximal partitioning problems are conceivable, in analogy to
the ones we investigated in Sect. 4. In particular, we may look for connected maximisers of
the functional �D(P): we strongly expect that this problem always admits a solution, since
each partition is only defined by a finite number of cuts.

Also, wemaywell introduce further functionals based on the p-means ofμ2(Gi )−1, rather
than on their maximum. Again, we are confident these generalisations can be handled by the
theory developed here, but do not go into details.

6 Dependence of the optimal partitions on the parameters

In this and the next section, we will collect a number of miscellaneous properties of, and
illustrative examples for, the minimisation and maximisation problems from the previous
sections. In this section we will consider the dependence of the two quantitiesLN ,r

k,p andLD
k,p ,

which we consider to be the most natural, and the partitions realising them, on p (for fixed
k), and also on the edge lengths of the graph G being partitioned for a fixed topology.

3 Note that the eigenvalue numbering convention in [28] is different. Also, as observed in [5, § 2.4], there
is an error in part of [28, Theorem 4.2]: the uniqueness statement in the case M = 2 is not correct, as any
2-flower (among certain other graphs called symmetric necklaces in [5]) is a maximiser in this case.
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Fig. 10 The equilateral 3-star G.
The white circle denotes the cut
set {v0} of the two-partition
P = {G1,G2}; the corresponding
edge is divided into pieces of
length a in G1 and 1 − a in G2 v0 a

G1

G2

6.1 Dependence on p

Let us remark that the quantities LN ,r
k,p and LD

k,p are, for fixed G and k ≥ 1, continuous and
monotonically increasing in p ∈ [1,∞]. This is a general result that follows in exactly the
same way as on domains, cf. [12, Proposition 10.53]. We include the short proof for the sake
of completeness. Note that here and throughout this section, in keeping with the convention
on domains we will restrict ourselves to considering p ∈ [1,∞].
Proposition 6.1 Fix k ≥ 1. For all 1 ≤ q ≤ p ≤ ∞, we have

LN ,r
k,q (G) ≤ LN ,r

k,p (G) ≤ k
1
q − 1

p LN ,r
k,q (G)

and LD
k,q(G) ≤ LD

k,p(G) ≤ k
1
q − 1

p LD
k,q(G)

(where 1/p = 0 if p = ∞). Consequently, the mappings p �→ LN ,r
k,p (G) and p �→ LD

k,p(G)

are continuous and monotonically increasing in p ∈ [1,∞].
Proof We give the proof for LN ,r

k,p ; the proof for L
D
k,p is identical. In fact, it suffices to show

that
�N

q (P) ≤ �N
p (P) ≤ k

1
q − 1

p �N
q (P) (6.1)

for any rigid k-partition P , since then the same is true for the corresponding infima over all
such partitions. But (6.1) is a direct consequence of the Hölder inequality, using the definition
(4.1) of �N

p (P). ��
We continue discussing the dependence of optimal partitions and energies on p. To begin

with, let us present a concrete example illustrating how the optimal partition, say in the sim-
plest case for LD

2,p , can depend nontrivially on p. On domains, relatively little seems to be
known, and most of the work to date seems to have been of (largely) numerical nature; see
in particular [11]. Our example, in addition to establishing that LD

2,p and the corresponding
optimal partitions can, in fact, depend on p, should also demonstrate how in the case ofmetric
graphs it seems possible to prove more properties (such as monotonicity of the deformation
in p) analytically. On the other hand, since LD

k,∞ need not be realised by an equipartition, in
the sense of Definition 6.4 below, it follows that known criteria for establishing the inequality
LD
k,1 < LD

k,∞ (see [12, Proposition 10.54] or [22]) have no direct equivalent; see Proposi-
tion 6.9 and the discussion around it. Moreover, strict inequality here is possible even if the
optimal partition is independent of p; see Example 6.7.

Example 6.2 We return to the equilateral star graph G on three edges of length 1 each, consid-
ered in Example 4.10, and ask for the partitions achievingLD

2,p for p ∈ [1,∞) (we recall that
when p = ∞, up to isometry there is one optimal partition, whose cut set consists of (only)
the central vertex of degree 3). Any 2-partition P = {G1,G2} of G may, up to symmetries, be
identified uniquely by the location of its cut set v0 along a given, fixed edge (see Fig. 10).
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Since the edge has length 1, the partition may uniquely be described by a single parameter
a ∈ [0, 1), with a = 0 corresponding to a cut in the central vertex and thus the partition
realising LD

2,∞, and a = 1 formally giving G1 = G and G2 = {v0}. The following proposition
describes how the optimal cut point depends on p. We will give its proof below.

Proposition 6.3 For the equilateral 3-star G, in the notation and setup of Example 6.2, for
each p ∈ [1,∞], there is a unique value of a ∈ [0, 1) whose corresponding partition
achieves LD

2,p(G), which we denote by ap. Then ap is a smooth function of p, with ap > 0

and d
dp ap < 0 for all p ∈ [1,∞), and lim p→∞ ap = 0.

Definition 6.4 Wesay that a k-partitionP = {G1, . . . ,Gk}ofG is aDirichlet (k-)equipartition
if λ1(G1) = · · · = λ1(Gk) and a natural (k-)equipartition if μ2(G1) = · · · = μ2(Gk); or
simply an equipartition whenever the spectral problem being considered is clear from the
context.

If P = {G1, . . . ,Gk} is a Dirichlet equipartition, then its energy �D
p (P) is independent

of p, being identically equal to λ1(G1); in this case, we will refer to λ1(G1) as the Dirichlet
energy of the partition, or just energy if the Dirichlet condition is clear from the context.
Likewise, if P is a natural equipartition, then μ2(G1) is its natural energy (or just energy).4

In particular, the optimal partition of an equilateral 3-star is never an equipartition except
for p = ∞ (which we recall corresponds to a∞ = 0), and the cut point v0, as a function of
p, moves smoothly and monotonically from its location at p = 1 towards the central vertex
as p → ∞. This mirrors very much the numerically observed behaviour of the (conjectured)
optimal partitions on domains in [11].

Remark 6.5 As an immediate consequence of Proposition 6.3, we obtain the inequalities

μ2(G) = LD
2,∞(G) > LD

2,p(G)

for all p ∈ [1,∞), for the example where G is an equilateral 3-star. In particular, there is no
generalisation of Proposition 8.4 below to p �= ∞.

The above example suggests that the optimal partition for LD
k,p(G) should depend on p

whenever there is an optimal partition for p = ∞which is not internally connected. It would
take us too far afield to consider this question here, so we formulate it as an open problem.

Conjecture 6.6 Let G be given and let k ≥ 1.

(1) Suppose there exists an exhaustive rigid k-partition P achieving LD
k,∞(G) which is not

internally connected. ThenP does not achieveLD
k,p(G) for any p < ∞, that is,�D

p (P) >

LD
k,p(G) for all p < ∞.

(2) Whenever there exists a rigid k-partition P achieving LD
k,∞(G) but which, for some

p < ∞, does not achieve LD
k,p(G), then we have that LD

k,p(G) is a strictly monotonic
function of p.

Proof of Proposition 6.3 First we compute the energy as a function of a ∈ [0, 1):
�D

p (a) := �D
p ({G1(a),G2(a)})

4 Here, in referring to these quantities as energies, we are following the standard nomenclature from the theory
of spectral minimal partitions on domains, see, e.g., [12, Definition 10.2]. This term is not to be confused with
the sum of all discrete Laplacian eigenvalues of a graph from algebraic graph theory.
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We clearly have λ1(G2(a)) = π2/4(1 − a)2. Noting that the eigenfunction is identical on the
two identical edges, we can obtain that λ1(G1) =: ω(a)2, with ω(a)2 the smallest positive
solution of the secular equation

2 tan(aω) = cot(ω). (6.2)

We note that ω(a) < π/2 for a ∈ (0, 1) and, by implicit differentiation,

dω

da
= − ω

a + cos2(aω)

2 sin2(ω)

. (6.3)

Let us now show that, for all a ∈ (0, 1),

d2ω

da2
(a) > 0. (6.4)

Differentiating equation (6.3), we find

d2ω

da2
(a) = ω

(
a + cos2(aω)

2 sin2(ω)

)2 + ω
(
a + cos2(aω)

2 sin2(ω)

)2

(

1 + cos(aω)

sin(ω)

d

da

(
cos(aω)

sin(ω)

))

.

Using equation (6.3) again, we obtain

d

da

(
cos(aω)

sin(ω)

)

= 1

sin2(ω)

(

−
(

ω + a
dω

da

)

sin(aω) sin(ω) − dω

da
cos(aω) cos(ω)

)

= ω

sin2(ω)
(
a + cos2(aω)

2 sin2(ω)

)

(

a sin(aω) sin(ω) + cos(aω) cos(ω)

−
(

a + cos2(aω)

2 sin2(ω)

)

sin(aω) sin(ω)

)

= ω cos(aω)

2 sin3(ω)
(
a + cos2(aω)

2 sin2(ω)

) (2 cos(ω) sin(ω) − cos(aω) sin(aω)) .

We have, using the secular equation (6.2),

2 cos(ω) sin(ω) − cos(aω) sin(aω) = 2 cot(ω) sin2(ω) − tan(aω) cos2(aω)

= (4 sin2(ω) − cos2(aω)) tan(aω).

Using again the secular equation, we find successively

4 tan2(aω) = cot2(ω);
4

(
1

cos2(aω)
− 1

)

= 1

sin2(ω)
− 1;

4

cos2(aω)
− 1

sin2(ω)
= 3.

It follows that 4 sin2(ω)−cos2(aω), and therefore also d
da

(
cos(aω)
sin(ω)

)
and d2ω

da2
(a), are positive.

For convenience, we define the function

F(a, p) := 2�D
p (a)p =

(
π

2(1 − a)

)2p

+ ω(a)2p.
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We have immediately

∂F

∂a
(a, p) = 2p

((π

2

)2p 1

(1 − a)2p+1 + ω2p−1 dω

da

)

. (6.5)

We have ω(0) = π
2 and so, using equation (6.3),

∂F

∂a
(0, p) = 2p

((π

2

)2p − 2
(π

2

)2p
)

= −2p
(π

2

)2p
< 0,

so that a = 0 is not even a local minimum of a �→ F(a, p); while, as a → 1,
(π

2

)2p 2p

(1 − a)2p+1 −→ +∞

and the term

ω2p−1 dω

da
= − 2pω2p

a + cos2(aω)

2 sin2(ω)

is bounded. We conclude ∂
∂a F(a, p) → +∞ as a → 1. On the other hand,

∂2F

∂a2
(a, p) = 2p

(
(π

2

)2p 2p + 1

(1 − a)2p+2 + (2p − 1)ω2p−2
(
dω

da

)2

+ ω2p−1 d
2ω

da2

)

,

which is clearly positive as a consequence of inequality (6.4). The function a �→ ∂
∂a F(a, p)

is therefore increasing, and has a unique zero in [0, 1), which is positive, and corresponds to
a global minimum of a �→ F(a, p). We have proved the first part of Proposition 6.3.

Since ∂2

∂a2
F(ap, p) > 0, it follows from the Implicit Function Theorem that p �→ ap is

continuously differentiable (indeed, even real analytic) and that

dap
dp

(p) = −
∂2

∂ p∂a F(ap, p)

∂2

∂a2
F(ap, p)

.

Differentiating equation (6.5) with respect to p, we find

∂F

∂ p∂a
(a, p) = 1

p

∂F

∂a
(a, p) + 2p

(

2 log

(
π

2(1 − a)

)(π

2

)2p 1

(1 − a)2p+1 + 2 log(ω)ω2p−1 dω

da

)

.

Using ∂
∂a F(ap, p) = 0 and equation (6.5), we obtain in particular

∂2F

∂ p∂a
(ap, p) = 8p

(π

2

)2p 1

(1 − ap)2p+1 log

(
π

2(1 − ap)ω(ap)

)

.

Since ap ∈ (0, 1) and ω(ap) ∈ (0, π/2), the above derivative is positive and p �→ ap
decreasing.

As a positive and decreasing function defined on [1,∞), p �→ ap has a non-negative limit
at ∞, which we denote by a∗. Let us assume by contradiction that a∗ > 0. Using equations
(6.3) and (6.5), the condition ∂

∂a F(ap, p) = 0 can be written

(π

2

)2p 1

(1 − ap)2p+1 = ω(ap)2p

ap + cos2(apω(ap))
2 sin2(ω(ap))

.
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It follows that

π

2(1 − ap)
(1 − ap)

− 1
2p = ω(ap)

(

ap + cos2(apω(ap))

2 sin2(ω(ap))

)− 1
2p

.

Passing to the limit p → ∞, we obtain

π

2(1 − a∗)
= ω(a∗),

in contradiction to ω(a∗) < π/2. We conclude that a∗ = 0 = a∞. ��
We now return to the meaning of the inequality LD

k,1(G) < LD
k,∞(G) for a metric graph G.

Example 6.7 We give an example of a simple graph where the optimal partition for LD
k,p(G)

is independent of p ∈ [1,∞] but the optimal energy LD
k,p(G) itself is not; this is a direct

consequence of the existence of certain minimal partitions which are not equipartitions.
Indeed, take G to be a not quite equilateral star on three edges, say of length |e1| = 1 + ε,
|e2| = |e3| = 1. We denote by v the central vertex of G and by v1, v2 and v3 the pendant
vertices of e1, e2 and e3 respectively. Let us denote by P0

3 the 3-partition of G whose cut set
is v. Then

�D
p (P0

3 ) =
(
1

3

(
π2p

(2 + 2ε)2p
+ 2 · π2p

22p

))1/p

.

This energy clearly depends on p. The following proposition establishes that our example
has the desired properties.

Proposition 6.8 There exists ε0 > 0 such that, for all ε ∈ [0, ε0] and all p ∈ [1,∞], P0
3 is

the unique 3-partition realising LD
3,p(G).

Proof Let us first prove the proposition for p ∈ [1,∞), by a straightforward discussion of
the possible topological cases. Let us consider an exhaustive 3-partition

P = {G1,G2,G3}
different from P0

3 . Its cut set {w1, w2} consists of two points, each distinct from the central
vertex. This leaves us with four essentially distinct cases (all the other cases reduce to these
four by relabelling of the edges and cut points):

(i) the two points belong to e2;
(ii) the two points belong to e1;
(iii) w1 belongs to e2 and w2 to e3;
(iv) w1 belongs to e1 and w2 to e2.

In all cases, we denote by ai the distance of wi from v, i = 1, 2. To simplify notation, we
define

F0(p) := 3 · 22p
π2p �D

p (P0
3 )p = 1

(1 + ε)2p
+ 2.

In Case (i), up to relabelling, we can assume that a1 < a2. We can also assume that G1
is the 3-star with edges e1, e3 and [v,w1], with a boundary condition at each pendant vertex
respectively Neumann, Neumann andDirichlet.We recall that here and in the rest of the proof
we have a natural boundary condition at the central vertex v. We can finally assume that G2 is
the segment [w1, w2] with Dirichlet boundary conditions and G3 the segment [w2, v2] with
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a Dirichlet boundary condition at w2 and a Neumann boundary condition at v2. We have,
recalling that p ≥ 1,

3 · 22p
π2p �D

p (P)p =
(

4

π2 λ1(G1)
)p

+
(

4

π2 λ1(G2)
)p

+
(

4

π2 λ1(G2)
)p

=
(

4

π2 λ1(G1)
)p

+ 22p

(a2 − a1)2p
+ 1

(1 − a2)2p
> 22p

+ 1 ≥ 5 > 3 > F0(p).

In Case (ii), we assume, without loss of generality, that a1 < a2, G1 is the three star
with edges e2, e3 and [v,w1], with a boundary condition at each pendant vertex respectively
Neumann, Neumann and Dirichlet, G2 is the segment [w1, w2] with Dirichlet boundary
conditions and G3 the segment [w2, v1] with a Dirichlet boundary condition at w2 and a
Neumann boundary condition at v1. We have

3 · 22p
π2p �D

p (P)p =
(

4

π2 λ1(G1)
)p

+ 22p

(a2 − a1)2p
+ 1

(1 + ε − a2)2p

>
22p

(a2 − a1)2p
>

22p

(1 + ε)2p
.

If we assume ε ≤ 2/
√
3 − 1 < 1, it follows, since p ≥ 1,

3 · 22p
π2p �D

p (P)p >
22p

(1 + ε)2p
≥ 22

(1 + ε)2
≥ 3 > F0(p).

In Case (iii), we assume, without loss of generality, that G1 is the 3-star with edges e1,
[v,w1] and [v,w2], with boundary conditions respectively Neumann, Dirichlet and Dirich-
let at the pendant vertices. We also assume that G2 and G3 are respectively the segments
[w1, v2] and [w2, v3] with Dirichlet-Neumann boundary conditions. To simplify notation,
we introduce

F(a1, a2) := 3 · 22p
π2p �D

p (P)p =
(
2

π
ω(a1, a2)

)2p

+ 1

(1 − a1)2p
+ 1

(1 − a2)2p
,

where ω(a1, a1) is the smallest positive solution of the equation

cotan(a1ω) + cotan(a2ω) = tan(ω), (6.6)

so that λ1(G1) = ω(a1, a2)2. To simplify notation, we write ω := ω(a1, a2). We now show
that ∂

∂a2
F(a1, a2) is positive for all (a1, a2) ∈ (0, 1). This claim implies that F(a1, a2) >

lima→0 F(a1, a). Noticing that

lim
a→0

F(a1, a) = 1

(1 + ε)2p
+ 1

(1 − a1)2p
+ 1 >

1

(1 + ε)2p
+ 2 = F0(p),

we conclude that the claim implies �D
p (P) > �D

p (P0
3 ). Let us now prove the claim. By

inspection of Equation (6.6), it is clear that ω ∈ (0, π/2), since tan as a pole at π/2, so that
a1ω and a2ω also belong to (0, π/2). After differentiating Equation (6.6) with respect to a2
and simplifying, we find

∂ω

∂a2
= − ω

a2 +
(
sin a2ω
cosω

)2 +
(
sin a2ω
sin a1ω

)2 . (6.7)
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To go further, let us note that since ω, a1ω and a2ω belong to (0, π/2), all the terms in
Equation (6.6) are positive, so that 0 < cotan(a2ω) < tan(ω). Taking the square, we find

1

(sin a2ω)2
= cotan(a2ω)2 < tan(ω)2 = 1

(cosω)2
,

that is to say
(sin a2ω)2

(cosω)2
> 1.

It follows that ∣
∣
∣
∣
∂ω

∂a2

∣
∣
∣
∣ < ω <

π

2
. (6.8)

Using Inequality (6.8), we now find

∂F

∂a2
(a1, a2) = 2p

((
2

π

)2p
∂ω

∂a2
ω2p−1 + 1

(1 − a2)2p+1

)

≥ 2p

(
1

(1 − a2)2p+1 −
(
2

π

)2p ∣∣
∣
∣
∂ω

∂a2

∣
∣
∣
∣ω

2p−1

)

> 0,

proving the claim. Let us note that the derivative of F(a1, a2) with respect to a1 is also
positive, by symmetry.

Let us finally study Case (iv). We assume, without loss of generality, that G1 is the 3-star
with edges e3, [v,w1] and [v,w2], with boundary conditions respectivelyNeumann,Dirichlet
and Dirichlet at the pendant vertices and that G2 and G3 are respectively the segments [w1, v1]
and [w2, v2] with Dirichlet-Neumann boundary conditions. Assuming that a1 ≤ 1, we can
repeat the computation of Case (iii) and show that ∂

∂a2
F(a1, a2) is positive, and therefore

3 · 22p
π2p �D

p (P)p = F(a1, a2) > lim
a→0

F(a1, a) > F0(p).

If a1 > 1 and ε ≤ 1/
√
2, we have

3 · 22p
π2p �D

p (P)p >

(
4

π2 λ1(G2)
)p

+
(

4

π2 λ1(G2)
)p

= 1

(1 + ε − a1)2p
+ 1

(1 − a2)2p
>

1

ε2p
+ 1 ≥ 3 > F0(p).

Altogether, assuming that ε ≤ ε0 := min
(
2/

√
3 − 1, 1/

√
2
)

= 2/
√
3 − 1, �D

p (P) >

�D
p (P0

3 ) in all cases. By a limiting argument, we could show immediately that P0
3 is a

minimal partition realising LD
3,∞. This would however not prove uniqueness. It is better to

give a direct proof. We first note that �D∞(P0
3 ) = π2/4. On the other hand, let us again

consider P , an exhaustive 3-partition distinct from P0
3 . In Cases (i), (iii) and (iv), P has a

domain strictly contained in an edge of length 1. In case (iii), assuming ε ≤ 1, the edge
e1 contains a segment with Dirichlet-Neumann conditions and one with Dirichlet-Dirichlet
conditions, one of which has length less than 1. It follows that, in all cases, �D∞(P) > π2/4.
��

The value ε0 = 2/
√
3− 1 arrived at during the proof is probably not the largest for which

Proposition 6.8 holds and we have not tried to optimise it. Let us however note that ε cannot
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be chosen too large. More explicitly, if ε > ε1 := 2
√
3 − 1, and if we choose for P a

partition of type (iii) (see the proof of Proposition 6.8) such that a2 − a1 > 2(1+ ε1)/3 and
1 + ε − a2 > (1 + ε1)/3, we have �D

p (P) < �D
p (P0

3 ) for all p ∈ [1,∞].
A “balancing formula” which can be found in [12, Proposition 10.54] gives a sufficient

condition under which the inequality LD
k,1 < LD

k,∞ holds for domains � ⊂ R
2. For a k-

partition P = {�1, . . . , �k} of �, minimal for LD
k,∞, if �i and � j are neighbours and �i j

is the interior of the closure of �i ∪ � j , then

λ1(�i ) = λ1(� j ) = λ2(�i j ) = LD
k,∞(�); (6.9)

if ψi and ψ j are the respective eigenfunctions on �i and � j , extended by zero to the rest of
�, scaled in such a way that ψi +ψ j is an eigenfunction for �i j ; then the formula states that
LD
k,1(�) < LD

k,∞(�) if, under this normalisation,

‖ψi‖L2(�i )
�= ‖ψ j‖L2(� j )

. (6.10)

This may fail on graphs, as Example 6.7 shows. However, we still have the following positive
result, based on a slightly different normalisation.

Here we assume for fixed k that P = {G1, . . . ,Gk} is a k-partition that achieves LD
k,∞(G),

and we suppose Gi and G j to be any two neighbours (in the sense of Definition 2.11), with
respective eigenfunctions ψi and ψ j . We treat ψi and ψ j as elements of H1(G), extending
them by zero outside �i and � j , respectively.

Proposition 6.9 Under the conditions described above, if v ∈ ∂�i ∩ ∂� j is a vertex of
degree two in G and ψi and ψ j are normalised in such a way that ψi + ψ j is continuously
differentiable at v, then condition (6.10) implies that LD

k,1(G) < LD
k,∞(G).

The idea of the proof, based on a formula of Hadamard type for domain perturbation
(see, for example, [9, Remark 3.14] for the metric graph version), is essentially identical on
graphs, and we omit it.

6.2 Dependence on the edge lengths

Herewe give an example which shows thatLN ,r
2,∞, while still continuous, need not be a smooth

function of the edge lengths of the underlying graph. This is caused by the existence of an
isolated value of the length of a given edge forwhich there is non-uniqueness of theminimiser,
and a transition from one type of minimiser to another at this point: one family of partitions
“leapfrogs” the other. It would be interesting to know whether a similar phenomenon is
possible if, instead of varying p, we vary the edge lengths.

Example 6.10 We consider the lasso graph of Fig. 1; we will denote by Ga the particular lasso
graph for which |e2| = |e3| = 1 but |e1| = a ∈ [2,∞). We distinguish four cases:

(1) a = 2. Here the optimal partition for LN ,r
2,∞(G2) = π2/4 corresponds to the partition

depicted in Fig. 4, as follows from Lemma 7.1. It is clear that this partition is the unique
minimiser.

(2) a ∈ (2, 3). We claim that the unique minimiser realising LN ,r
2,∞(Ga) is still the partition

from Fig. 4, meaning in particular that LN ,r
2,∞(Ga) = π2/4 for all a ∈ [2, 3), and that the

optimal partition is not an equipartition for a ∈ (2, 3). These claims follow immediately
from Lemma 6.11 below, applied to any b ∈ (0, 1).
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π2/9 π2/4 π2/4 π2/4

e1

e2

e3

2 1 1

1

Fig. 11 Two different partitions realising LN ,r
2,∞(G3), together with the respective eigenvalues of the parti-

tion clusters. On the left the original edges of G3 are labelled; while on the right the edge lengths for the
corresponding partition clusters are displayed

(3) a = 3. Here we have two minimisers, depicted in Fig. 11, and LN ,r
2,∞(G3) = π2/4 still.

To see that these are minimisers, observe that any optimal partition must involve cutting
through e1, as otherwise the right-hand cluster would have an eigenvalue larger than
π2/4. But the strict dependence of the eigenvalue of an interval on the length of the
intercal, plus the strict monotonicity statement of Lemma 6.11, guarantees that any other
partition of G3 which cuts through e1 will have a higher energy than π2/4.

(4) a ∈ (3,∞). Here there must be a unique minimal partition, which is a smooth evolution
of the one depicted on the right of Fig. 11 as a > 3 becomes larger. The clusters must
always be chosen in such a way that their eigenvalues are equal. In this case, the total
length of each cluster should grow monotonically in a, with the common value of the
eigenvalue a monotonically decreasing function of a. This follows, firstly, from the
necessity of the partition being an equipartition, and the strictly negative derivative of
the eigenvalues with respect to the edge lengths (use [9, Remark 3.14]).

The optimal partition energy LN ,r
2,∞(Ga) is thus a continuous and (weakly!) monotonically

decreasing, but not C1, function of a ∈ [2,∞).

Lemma 6.11 The lasso graphGb of Fig. 1, with side lengths |e2| = |e3| = 1 and |e1| = b > 0,
has the following properties:

(1) μ2(Gb) is simple and a smooth, strictly monotonically decreasing function of b > 0;
(2) μ2(G1) = π2/4.

In particular, μ2(Gb) > π2/4 whenever b < 1.

Proof (1) is an immediate consequence of [9, Lemma 5.5 and Corollary 3.12(1)], together
with the well-known analyticity of the eigenvalues in dependence on the edge lengths (see,
e.g., [7] or [8, §3.1]). For (2), we compare G1 with the equilateral 3-star G whose edges are
each of length one. Now G can be realised from G1 by cutting through the vertex z; moreover,
since there exists an eigenfunction forμ2(G)which takes on the same value at the two degree
one vertices of G which can be glued together to obtain G1, we haveμ2(G1) = μ2(G) = π2/4
by [9, Corollary 3.6]. ��

7 Comparison of different partition problems

In this section wewill compare different types of partitions problems and their corresponding
optimal partitions on a fixed graph, mostly via illustrative examples. We will mostly restrict
ourselves to the case of rigid partitions and in particular to the four quantities LN ,r

k,p , L
D
k,p ,

MN
k andMD

k . We will, however, also look briefly at properties of non-exhaustive partitions
and in particular consider their relationship to non-rigid partitions.
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7.1 Comparison ofLN,r
k,p,LD

k,p,MN
k andMD

k

Here we give a few prototypical examples illustrating how these four problems give rise to
different optimal partitions, and compare the actual optimal energies. In terms of the form
of the optimal partitions, the examples provide at least preliminary evidence to suggest that
(very roughly speaking) LN ,r

k,p tends to seek out the longest possible paths within the graph;

LD
k,p (and possibly alsoM

N
k ) tends to divide the graph into k roughly equal pieces, preserving

highly connected parts of the graph; while the optimal partition forMD
k tends to cut through

the highly connected parts. It would be worthwhile to investigate this systematically and try
to provide a rigorous basis for these heuristic claims.

We startwith a simple criterion for identifying optimal partitions for theNeumann problem
in some cases.

Lemma 7.1 Suppose G has total length L > 0 and A is any set of k-partitions of G. Suppose
there exists a partition P∗ ∈ A such that

�N∞(P∗) = π2k2

L2 .

Then
�N∞(P∗) = inf

{
�N∞(P) : P ∈ A

}
, (7.1)

P∗ is exhaustive, and the clusters G1, . . . ,Gk of P∗ are all path graphs (that is, intervals) of
length L/k. In particular, P∗ is also a minimising partition for LN ,c

k,p , for all p ∈ (0,∞].
Wewill generally take A = Rk to be the set of exhaustive rigid k-partitions, in which case

the infimum in (7.1) is, by definition, LN ,r
k,∞, but the result holds for any set A of k-partitions.

There is also a corresponding statement for Dirichlet minimal k-partitions, namely that the
same conclusion holds if �D∞(P∗) = π2k2/(4L2), but in this case each cluster must be a
path graph of length L/k with a Dirichlet vertex at one endpoint, which in particular requires
G to be an equilateral k-star.

Proof of Lemma 7.1 LetP ∈ A be a k-partition with clusters G1, . . . ,Gk . Then the sharp form
of Nicaise’ inequality (Theorem 2.5) implies that μ2(Gi ) ≥ π2/|Gi |2 for all i = 1, . . . , k,
with equality if and only if Gi is a path graph. The claim now follows immediately from the
definition of �N∞. ��
Example 7.2 Consider the graph G depicted in Fig. 12, consisting of two longer and four
shorter edges, the former of length 1 and the latter of length a, which we imagine to be
considerably smaller than 1. Onemay visualise G as a loopwith two short equal “reinforcing”
edges placed at antipodal points. On G, we will consider the respective partitions achieving
the four quantities LD

2,∞, LN ,r
2,∞,MD

2 andMN
2 ; by symmetry considerations, the two clusters

must always have equal energies and hence be congruent to each other. Since the purpose of
this example is essentially heuristic, wewill not give detailed proofs of our claims. Thiswould
be possible, albeit tedious, via case-bashing arguments based for example on the advanced
surgery techniques of [9] together with extensive use of the symmetry of the problems.

We start by considering the minimal partitions; the optimisers are depicted in Fig. 13. For
LD
2,∞, we are seeking the nodal partition corresponding toμ2(G) (see Proposition 8.5 below).

An argument similar to the ones in [9, § 5.1] shows that the eigenfunction of μ2(G) must
be invariant with respect to permutation of the longer two edges, and of each of the shorter
ones within each set of two adjacent short edges. This leaves only the possibilities depicted
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Fig. 12 The graph G. We assume
the longer edges both have length
1, and the four shorter edges all
have the same length a < 1

Fig. 13 Rigid 2-partitions of G realising LD
2,∞(G) (left) and LN ,r

2,∞(G) = LN ,c
2,∞(G) (middle). There exists a

further connected partition realising LN ,c
2,∞(G) (right). Black dots denote Neumann-Kirchhoff vertices, white

dots denote Dirichlet vertices

Fig. 14 Proper partitions of G
realising MD

2 (G) (left) and

MN
2 (G) (right)

Fig. 15 An equilateral
“6-pumpkin” (left) and a rigid

partition realising LN ,r
2,∞ on it

(right). Again, no connected
partition achieves an energy

lower than LN ,r
2,∞

in Figs. 13(left) and 14 (left). Either a direct calculation involving the secular equations or
an argument analogous to [9, Proposition 5.10] shows that the former has lower energy and
hence corresponds to μ2 and LD

2,∞. For LN ,r
2,∞, we see that it is possible to partition G into

two equal path graphs as shown in Fig. 13(right); hence, by Lemma 7.1, this is the optimal
partition.

If we turn to maximal partitions, in the Dirichlet case the same argument as in [9, Propo-
sition 5.10] implies that among all Dirichlet candidates, the eigenvalue λ1 is largest when
the shorter edges are as close to the Dirichlet (cut) set and as equal as possible, yielding
Fig. 14(left). To maximise the Neumann eigenvalues, the doubled edges should be located
as close to, and as symmetrically about, the zero set of the eigenfunctions as possible, corre-
sponding to Fig. 14(right). We omit the details, which closely follow the principles laid out
in [9, § 5].

Example 7.3 Our second example will be the equilateral 6-pumpkin H depicted in Fig. 15:
it is the graph with two vertices and six parallel edges running between them, all of the same
length (say, length 1 each).

In Fig. 15 we also see howH can be partitioned into two path graphs of length 3 each; by
Lemma 7.1, this is an optimal 2-partition, corresponding to LN ,r

2,∞(H). This is thus another
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Fig. 16 Two different partitions
realising LD

2,∞ on the equilateral
6-pumpkin. The partition on the
left is internally connected, the
one on the right is not as the
Dirichlet vertices disconnect the
clusters

Fig. 17 A dumbbell graph, its rigid Neumann/Dirichlet minimal partition and a connected Neumann minimal
partition

illustration of the assertion that “LN ,r
k,∞ tends to seek out paths embedded in the graph”. In

terms ofDirichletminimal partitions, to findpartitions achievingLD
2,∞(H), byProposition 8.5

below we merely have to consider the nodal patterns of eigenfunctions corresponding to
μ2(H); these are depicted in Fig. 16. We observe explicitly that this is an (easy) example of
an intrinsic non-uniqueness: there are two completely different partitions of H which both
yield LD

2,∞(H).

Example 7.4 Let us finally present an example of a graph with different rigid and connected
minimal partitions: an equilateral dumbbell graph G. The unique minimiser for LN ,r

2,∞(G) and

the different minimiser for LN ,c
2,∞(G) are shown in Fig. 17. The former is also a minimiser for

LD
2,p(G), p ∈ (0,∞].

7.2 Exhaustive versus non-exhaustive partitions

We now give a few remarks on what can be expected if we allow, or disallow, non-exhaustive
partitions.

Example 7.5 We give a basic example to show that if instead of LN ,r
k,p we consider the cor-

responding minimisation problem among all non-exhaustive rigid partitions, then there may
be no exhaustive minimising partition. If we take k = 1 and any p ∈ (0,∞], then the claim
is that there exist a graph G and a proper subset (i.e. a non-exhaustive one-partition) �1 ⊂ G,
as well as a graph G1 associated with �1, such that μ2(G1) < μ2(G). Take G to be a loop of
length 1 and �1 to be a connected subset of it of length 1 − ε, so that G1 is a path graph of
length 1 − ε. Then

μ2(G1) = π2

(1 − ε)2
< 4π2 = μ2(G)

as long as ε ∈ (0, 1/2). In such cases, P := {G} is not the optimal 1-partition of G if
non-exhaustive partitions are allowed.

Example 7.6 Here is another example akin to Example 7.5, but where we canmore clearly see
the similar role to non-exhaustive partitions played by non-rigid (but exhaustive) ones. We
take G to be an equilateral pumpkin graph on three edges of length one each (cf. Example 7.3)
and, analogously to the previous example, seek a 1-partition minimising LN ,r

1,p , p ∈ (0,∞].
Allowing exhaustive connected partitions, we can cut through the vertices of G to produce
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Fig. 18 A minimal 1-partition of
the 3-pumpkin of Example 7.6
among connected but exhaustive
partitions (left) and a
non-exhaustive but rigid
1-partition approximating it
(right; the dotted lines represent
the parts of the graph excluded
from the cluster support). The
numbers give the lengths of the
respective edges

1
1

1

1
1− ε

ε

ε
1− ε

a path graph I, much as was done in Fig. 15(right); see Fig. 18(left). Lemma 7.1 (with
A = Ck) shows that P∗ = {I}, and not P = {G}, is the optimal partition for LN ,c

1,p (G),

p ∈ (0,∞]. Indeed, the former has energy �N
p (P∗) = μ2(I) = π2/9, while the latter has

energy �N
p (P∗) = μ2(G) = π2.

But now consider rigid non-exhaustive 1-partitions of G. By removing an arbitrarily small
piece of edge near each of the vertices, we can produce a partition consisting of a single
path graph of length arbitrarily close to 3; see Fig. 18 (right). As the piece removed becomes
smaller, we have convergence of the length to 3, and thus convergence of the eigenvalue
(equally, the energy of the partition) to π2/9 = �N

p (P∗).

The preceding example suggests that in the natural case, infimising over non-exhaustive
partitions is equivalent tominimising over connected exhaustive partitions. Indeed,whenever,
on forming an optimal partition, one wishes to detach a single edge from a vertex (as was
done in Example 7.6), one can do this either by allowing connected partitions or infimising
over non-exhaustive ones. At work here are two “surgery” principles: cutting through vertices
decreases μ2, as does lengthening pendant edges (see, e.g., [28, Lemma 2.3]). However, in
general the two are not equivalent, as Example 7.8 below shows. Since allowing connected
partitions in general seems to give more freedom to cut through vertices than allowing non-
exhaustive rigid ones, we still expect the following general principle to hold. Since it would
take us too far afield to prove the claim in the current context, we record it as a conjecture
for future work.

Conjecture 7.7 Fix a graph G, a number k ≥ 1 and p ∈ (0,∞]. Then the quantity

inf
{
�N

p (P) : P is a non-exhaustive but rigid k-partition of G
}

(7.2)

is no smaller than

LN ,c
k,p = inf

{
�N

p (P) : P is an exhaustive connected k-partition of G
}

. (7.3)

Example 7.8 We sketch an example of a graph G, with k = 2 and p = ∞, where the
quantity in (7.3) is strictly smaller than the one in (7.2), which in turn is strictly smaller than
LN ,r
2,∞(G). We take G to be the “dumbbell”-type graph depicted in Fig. 19, consisting of a

bridge (“handle”) e0 of length 1, with a chain of two loops of total length ε > 0 attached at
each end of e0; thus G has total length 1 + 2ε.

Firstly, a short symmetry argument shows that LN ,r
2,∞(G) is given by the partition bisecting

G at the midpoint of e0.
Secondly, if we allow connected partitions, then we can partition G into two equal path

graphs of length 1/2 + ε each, as depicted in Fig. 20 (left). Since this gives the smallest
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Fig. 19 A dumbbell with “double
weights”. The handle e0 has
length 1 and the total length of
each of the figure-8 “weights” is ε

e0

εε

Fig. 20 The optimal partition among all connected exhaustive ones (left) and a candidate for the infimum
among all rigid but non-exhaustive ones (right)

possible energy for a 2-partition, by Lemma 7.1 it yields the minimum, and the minimum is
only achieved by two equal path graphs. (In particular, LN ,c

2,∞(G) < LN ,r
2,∞(G).)

Finally, we consider rigid but non-exhaustive partitions. In this case, a topological argu-
ment shows that it is impossible to obtain two equal path graphs, since there is no way to
cut through a degree-four vertex to obtain two degree-two vertices within a cluster support.
Thus there is strict inequality between (7.2) and (7.3) in this case. However, if we take the
partition in Fig. 20 (right), which is achievable as the limit of a sequence of non-exhaustive
rigid partitions, then this partition is obtainable from the optimal one for LN ,r

2,∞(G) by cutting
through certain vertices of the latter. One may then show using the strictness statement in [9,
Theorem 3.4] (in the form of Remark 3.5) that this partition has strictly lower energy than
LN ,r
2,∞(G); thus the infimum (7.2) is also lower. This completes the proof of the claimed chain

of strict inequalities.

We shall finish with a different observation on non-exhaustive partitions. We will see in
Example 8.11 that a partition P∗ achieving LD

k,∞ need not be an equipartition. However,
if we allow non-exhaustive partitions, then we can always “artificially generate” a minimal
equipartition by shrinking every cluster in P∗ whose first eigenvalue is too large. Similarly,
by then discarding superfluous connected components in each cluster, we can guarantee that
the resulting minimal equipartition consists only of internally connected clusters.

Proposition 7.9 Suppose P = {G1, . . . ,Gk} is an (exhaustive) rigid k-partition of G such
that �D∞(P) = LD

k,∞(G) for some k ≥ 2. Then there exists another, possibly non-exhaustive

rigid k-equipartition P ′ = {G′
1, . . . ,G′

k} such that also �D∞(P ′) = LD
k,∞(G). The partition

P ′ may additionally be chosen in such a way that the clusters G′
1, . . . ,G′

k are all internally
connected.

Proof It suffices to prove that if H is any graph with a non-empty set of Dirichlet vertices
VD(H) and λ ≥ λ1(H;VD(H)), then there exists a subgraphH′ ⊂ H with boundary (equiv-
alently, Dirichlet vertex set)

∂H′ :=
(
H′ ∩ H \ H′

)
∪ (H′ ∩ VD(H)

)
(7.4)

such that λ1(H′; ∂H′) = λ.5 Indeed, in this case, whenever λ1(Gi ) < �D∞(P), we simply
find some G′

i ⊂ Gi such that λ1(G′
i ) = �D∞(P).

5 Throughout this proof, in accordance with Remark 4.4 we will not distinguish between the clusters and the
cluster supports of a partition.
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To this end, simply choose any fixed z ∈ VD(H) and for t ∈ [0,maxx∈H dist(x, z)] set
Ht := H \ {x ∈ H : dist(x, z) < t}

(where dist denotes the Euclidean distance within H, defined such that paths may not pass
through vertices in VD(H), and ∂Ht is defined as in (7.4)). We claim that t �→ λ1(Ht ; ∂H′

t )

is continuous for t ∈ [0,maxx∈H dist(x, z)] (although Ht may not necessarily be con-
nected). Assuming this claim, since also |Ht | → 0 as t → maxx∈H dist(x, z)], we also have
λ1(Ht ; ∂H′

t ) → ∞) by Theorem 2.5. The statement of the proposition thus follows.
To prove the claim, we simply observe that this is a special case of Lemma 3.6, where the

graphs need not be connected. Indeed, fix t ∈ [0,maxx∈H dist(x, z)] and a sequence tn → t ;
then the conclusion follows with Ht = G∞ and Htn = Gn .

Finally, fix an arbitrary cluster G′
i and suppose that it is not internally connected. Without

loss of generality, we regard all points in ∂G′
i , which are equipped with a Dirichlet condition,

as having degree one: then in particular G′
i is not connected. Let ψi be any eigenfunction

corresponding to λ1(G′
i ) (which may be multiple since G′

i is not connected; a minimal 2-
partition of an equilateral 3-star gives an example), such that the support of ψi is connected.
Upon replacing G′

i by G
†
i := suppψi and discarding G′

i \G†
i from the support of the partition,

we have obtained an internally connected cluster whose energy is still equal to λ1(G′
i ) =

LD
k,∞(G). Repeating this process for all i = 1, . . . , k yields an equilateral internally connected

k-partition realising LD
k,∞(G). ��

Remark 7.10 In the case of the Neumann problem, the situation is more complicated. Here
we limit ourselves to the observation that an (exhaustive) Neumann minimal partition need
not be an equipartition, even when p = ∞, and even generically: i.e., there exist graphs for
which the minimal partition is not an equipartition, and there is some ε > 0 for which no
perturbation of the edge lengths less than ε will produce a graph whose (exhaustive) minimal
partition is an equipartition.

As an example, take sufficiently small but fixed numbers 0 < ε1 < ε2 < ε3 < ε4 and
let G be the 4-star having edges e1, . . . , e4 of lengths 1+ ε1, . . . , 1 + ε4, respectively. Then
an easy but tedious case bash shows that the unique (up to relabelling) partition achieving
LN ,r
2,∞(G) is given by G1 = e1 ∪e4, G2 = e2 ∪e3 (that is, whose only cut is through the central

vertex). If the εi are chosen in such a way that ε1+ε4 �= ε2+ε3, then not only is the partition
not equilateral, but no sufficiently small perturbation will change this.

8 Nodal and bipartite minimal Dirichlet partitions

We now wish to consider in detail the relationship between Dirichlet spectral minimal par-
titions of a graph G and eigenfunctions of the Laplacian on G, analogous to the results that
have been established in recent years linking partitions of domains � with eigenfunctions
of the Dirichlet Laplacian on �, such as discussed in [24] and related works. On graphs G,
however, the correct analogue of the Dirichlet Laplacian on � will be the Laplacian with
natural vertex conditions, see Sect. 2.1.

Since in this section we will be working exclusively with the Dirichlet minimisation
problem for rigid partitions, we will not generally distinguish between the cluster supports
�i ⊂ G and the clusters Gi themselves of a partition P of G, in accordance with Remark 4.4.
In such cases, in a slight but simplifying abuse of our own terminology we will speak of the
clusters themselves as being subsets of G. Recall that for the Dirichlet minimisation problem
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it makes no difference whether we consider the minimisation problem in the class of all
connected partitions or the class of all rigid partitions.

8.1 Nodal partitions

We begin by introducing an important property of connected partitions of a metric graph.

Definition 8.1 Let ψ be an eigenfunction associated with μ j (G). We call the nodal partition
associated with ψ the unique internally connected, possibly non-exhaustive partition whose
support � (see Definition 2.9) is the union of edges of G on which ψ does not vanish
identically, and whose cut set is the zero set of ψ on the support �. We call the cluster
supports of this partition the nodal domains of ψ , and denote by ν(ψ) the number of nodal
domains. We say that a given partition is nodal if it is the nodal partition associated with
some eigenfunction.

Since it is possible for eigenfunctions to vanish identically on one ormore edges of a graph,
corresponding to a non-exhaustive nodal partition, in such cases there is some freedom as
to how exactly to construct a partition out of the eigenfunction; this leads to the following
definition. Let us stress once again that λ1(Gi ) denotes the lowest eigenvalue of the Laplacian
on Gi , where Dirichlet conditions are imposed at all cut points.

Definition 8.2 LetP = {G1, . . . ,Gk} ∈ Ck be a k-partition of G, hence especially exhaustive.
Then we say that P is a generalised nodal partition if there exist eigenfunctions ψ1, . . . , ψk

for λ1(G1), . . . , λ1(Gk) with the following properties:

(1) for each i , there exists a cut G′
i of Gi such that on each connected component of G′

i either
ψi is identically zero, or the connected component is the closure of a nodal domain of
ψi on Gi ; and

(2) the k0-partition P ′ of G, k0 ≥ k, consisting of all connected components of G′
i on which

ψi is not identically zero, for all i = 1, . . . , k, is a nodal partition associated with some
eigenfunction of G.

At the risk of being redundant, let us elaborate on Definition 8.2. As P may fail to be
internally connected, Dirichlet conditions may be imposed on vertices of clusters Gi in such
a way that Gi is de facto disconnected; and in particular, the lowest eigenvalue need not be
simple and the ground state need not be strictly positive; indeed it may vanish identically on
an edge, as the following examples show (see also Example 4.10).

Example 8.3 (1) Let G be the equilateral pumpkin on 3 edges of length 1 (Example 4.1); then
the eigenvalueμ2(G) = π2 hasmultiplicity three. Ifψ is taken as the eigenfunctionwhich
is monotonic on each edge and invariant under permutations of the edges (longitudinal, in
the language of [9, Section 5.1]), then the corresponding nodal partition is an exhaustive
faithful 2-partition of G whose clusters are both 3-stars with edges of length 1/2 each. If
ψ is a transversal eigenfunction, supported on two of the edges and identically zero on
the third, then the nodal partition is a non-exhaustive rigid 2-partition of graph, whose
clusters are each edges of G (and the third edge is not in the cluster support). If we take
ψ a linear combination of transversal eigenfunctions which has its zeros at the vertices
of G, is positive on two edges and negative on the third, then the result is an exhaustive
rigid 3-partition whose clusters are the edges of G.
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(2) If we now take G to be a star on 3 edges e1, e2, e3 of lengths 1, 1 and ε ∈ (0, 1),
respectively, then μ2(G) = π2 has multiplicity one, with eigenfunction supported on
e1 ∪ e2. The unique corresponding nodal partition has clusters e1 and e2; e3 is not in the
support of the eigenfunction and hence not in the support of the partition. However, the
exhaustive 2-partition P = {e1, e2 ∪ e3}, which is rigid but not internally connected, is
a generalised nodal partition, as we can recover the nodal partition upon removing the
extraneous edge e3 on which the eigenfunction vanishes from the cluster e2 ∪ e3.

Thus a partition P is a generalised nodal partition of G if there exists an eigenfunction
whose eigenvalue equals the energy of the partition, and whose nodal domains correspond
exactly to subsets of clusters of P—but there may be parts of these clusters on which the
eigenfunction vanishes identically. The non-exhaustive partition obtained by removing the
latter parts is then nodal. We have already met a slightly different aspect of extracting such
nodal-type partitions from more general partitions in Proposition 7.9.

All nodal partitions are rigid, since no eigenfunction on G has an isolated zero without
changing sign in a neighbourhood of it; this fact follows from the fact that the eigenfunction
satisfies the Kirchhoff condition at every point of the graph (see also [30] for a more gen-
eral discussion of eigenfunction positivity). Furthermore, all nodal partitions are Dirichlet
equipartitionswhose energy is the associated eigenvalue. In fact, more generally, theDirichlet
energy �D∞(P) of any generalised nodal partition is necessarily equal to the corresponding
eigenvalue. Next, we extend to metric graphs two relationships between Laplacian eigenval-
ues and optimal Dirichlet partitions which are well known in the case of domains (see [12,
Proposition 10.6 and eq. (10.44)]), and give a partial extension to metric graphs of Courant’s
Nodal Domain Theorem.

Proposition 8.4 We have μk(G) ≤ LD
k,∞(G).

Proof Let P = {G1, . . . ,Gk} ∈ Rk be arbitrary, and denote by ϕ1, . . . , ϕk the normalised
positive ground states ofG1, . . . ,Gk , respectively; that is,ϕi is the positive eigenfunction asso-
ciated with λ1(Gi ), i = 1, . . . , k, chosen to have L2-norm 1. Let us denote by ψ1, . . . , ψk−1

orthonormalised eigenfunctions associated with μ1(G), . . . , μk−1(G) respectively. We set,
for a fixed k-tuple (t1, . . . , tk) ∈ R

k which will be specified later,

φ := t1ϕ1 + · · · + tkϕk .

The system of equations

〈ψi , φ〉 =
k∑

j=1

t j 〈ψi , ϕ j 〉 = 0

has size (k − 1) × k and so rank at most k − 1. Hence there exists (t1, . . . , tk) ∈ R
k such

that 〈ψi , φ〉 = 0 for all i ∈ {1, . . . , k − 1} and ∑k
j=1 t

2
j = 1. Then, from the variational

characterisation of the eigenvalues,

μk(G) ≤
∫

G
(φ′)2 dx =

k∑

j=1

t2j

∫

G j

(ϕ′
j )
2 dx =

k∑

j=1

t2j λ1(G j )

≤ �D∞(P).

Since P ∈ Rk was arbitrary, taking the infimum concludes the proof. ��
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Proposition 8.5 We have μ2(G) = LD
2,∞(G), and any partition realising LD

2,∞(G) is a gen-
eralised nodal partition.

Proof Let ψ2 be an eigenfunction associated with μ2(G), P its associated nodal partition
and ν the cardinality of P . The function ψ2 is orthogonal to the constants in L2(G) and
therefore changes sign. It follows that ν ≥ 2 and thus LD

2,∞(G) ≤ LD
ν,∞(G) = μ2(G) by

Proposition 4.11, while μ2(G) ≤ LD
2,∞(G) according to Proposition 8.4. We have shown that

LD
2,∞(G) = μ2(G).

Let us now consider a partition P∗ = {G∗
1 ,G∗

2 } realising LD
2,∞(G) and let us denote by ϕ∗

1
and ϕ∗

2 the normalised positive ground states of G∗
1 and G∗

2 . There exists (t1, t2) ∈ R such that
ψ = t1ϕ∗

1 + t2ϕ∗
2 is orthogonal to the constants and t21 + t22 = 1. Then, from the variational

characterisation of the eigenvalues,

μ2(G) ≤
∫

G
(ψ ′)2 dx = t21

∫

G∗
1

((ϕ∗
1 )′)2 dx + t22

∫

G∗
2

((ϕ∗
2 )′)2 dx = t21μ1(G∗

1 ) + t22μ1(G∗
2 ) ≤ LD

2,∞(G).

SinceLD
2,∞(G) = μ2(G), the above inequality implies thatP∗ is an equipartition andμ2(G) =

∫
G(ψ ′)2 dx . By the variational characterisation,ψ is an eigenfunction associated withμ2(G).

��
Proposition 8.6 (Weak Courant Theorem). Given an eigenvalue μk(G) and an associated
eigenfunction ψ , denote by κ(μk(G)) the integer

κ(μk(G)) := max{ j ∈ N : μ j (G) = μk(G)},
and by ν(ψ) the number of nodal domains of ψ . Then ν(ψ) ≤ κ(μk(G)).

This theorem is well known for domains, where in fact the stronger statement ν(ψ) ≤ k
always holds, and has been the subject of much work since Pleijel’s groundbreaking paper
[39]; see, for example, [12, Section 10.2.4] or [35] and the references therein. This weaker
version also holds for discrete graph Laplacians; see [18, Theorem 2]. For metric graphs for
which all Laplacian eigenvalues are simple, κ(μk(G)) = k, while ν(ψ) is the corresponding
nodal count.Hence the above inequality reduces to the main result in [21], obtained for more
general Schrödinger operators.

Proof To simplify notation, we set ν := ν(u) and κ := κ(μk(G)). Let us assume for a
contradiction that ν ≥ κ + 1. We denote by P the nodal partition associated with u. We
have μκ(G) = �D∞(P) ≥ LD

ν,∞(G). According to Proposition 8.4, μν(G) ≤ LD
ν,∞(G).

Since μκ+1(G) ≤ μν(G) and μκ(G) < μκ+1(G), by definition of κ = κ(μk(G)), we obtain
μκ(G) < μκ(G). ��

8.2 Bipartite minimal partitions

As observed in [4], the links between minimal and nodal partitions appear more clearly if
we restrict ourselves to partitions that are proper. The following theorem can be deduced
immediately from results in [4]. We state it using our notation for future reference.

Definition 8.7 Let P be a proper partition of G. We say that P is bipartite if each of its
clusters can be marked with signs + or − in such a way that any two clusters have different
signs if their supports are neighbours.
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Extending the definition of bipartiteness to non-proper partitions seems to be a hard
problem, cf. Example 8.11 below.

Theorem 8.8 Let P be an exhaustive, proper Dirichlet minimal k-partition of G, that is, such
that �D∞(P) = LD

k,∞(G). Then P is bipartite if and only if it is nodal.

Note that the assumptions thatP is proper andDirichletminimal imply thatP is necessarily
exhaustive.

Proof If P is nodal, we see that it is bipartite by using the sign of the corresponding eigen-
function and the assumption that P is proper. Conversely, let us assume that P is bipartite.
Since P is minimal, it is in particular critical for the functional � introduced in Definition
2.6 in [4] and corresponding to�D∞ in our notation. From [4, Theorem 2.10(1)], we conclude
that P is nodal, under the condition that k is large enough. According to [4, Theorem 5.2],
the conclusion actually holds without this last condition. ��

The assumption that P is proper is crucial in the previous theorem. However, if G is
a tree, then any (exhaustive) equipartition is nodal, since we can recursively construct an
eigenfunction out of the ground states of the clusters.

Theorem 8.9 Let G be a compact tree and suppose P = {G1, . . . ,Gk} is an exhaustive
Dirichlet k-equipartition of G, k ≥ 2. Then P is nodal.

We note explicitly that P does not have to be a minimal partition of G for the theorem to
hold: important is merely the equipartition property.

While Theorem 8.9 is obvious for proper partitions (and indeed the corresponding eigen-
function is the k-th eigenfunction of G, see [3]), the proof in the general case requires more
work. Our proof is essentially constructive, and always yields an eigenfunction supported on
the whole of the tree; the existence of eigenfunctions with this property is irrelevant here but
plays a role in certain other contexts such as Pleijel-type theorems on the nodal count [26].

We first wish to establish some basic structural properties of partitions of trees, since the
proof will consist of gluing together the eigenfunctions of the individual clusters recursively
in the right way. We will use the terminology introduced in Sect. 2.3, in particular Defini-
tions 2.9, 2.10 and 2.11, without further comment; in particular, we assume without loss of
generality that the cut set of a partition consists only of vertices of G.

Lemma 8.10 Under the assumptions of Theorem 8.9 the following assertions hold.

(1) Each Gi is itself a tree, i = 1, . . . , k.
(2) Any two cluster supports share at most one separating point, that is, for all i �= j ,�i ∩� j

consists of at most one vertex.
(3) There exists at least one i = 1, . . . , k for which ∂�i consists of exactly one vertex.

Proof (1) Trivial.
(2) Follows from a simple argument tracing paths between clusters.
(3) Suppose for a contradiction that for each i = 1, . . . , k, ∂�i contains at least two vertices.

We will construct a loop in G using (2). Start at any cut point, call it v0, choose a
neighbouring support �1 and a second vertex v0 �= v1 ∈ ∂�1. Let γ1 be (the unique
image in G of) a continuous, injective mapping of [0, 1] into �1 which goes from v0
at 0 to v1 at 1. Now, at v1, pick some other neighbour �2 �= �1 with another vertex
v1 �= v2 ∈ ∂�2 and an injective path γ2 from v1 to v2 within �2. Repeat this process
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inductively: then, for some 2 ≤ m ≤ k, wemust have that�m = �i for some 1 ≤ i ≤ m.
At this point, on choosing vm = vi−1,we see that γi∪. . . γm forms a closed path from vi−1

to itself, which is injective except at at most a finite number of vertices. This contradicts
the assumption that G was a tree.

��
We may imagine any cluster support satisfying condition (3) to be at the “end” of the

graph in some sense, and build a natural hierarchy of neighbours emanating from it. More
precisely, suppose �1 is any such support. We will refer to the level of any support within
the same partition, with respect to �1, via the rules:

• �1 has level zero;
• any neighbour of �1 has level one;
• the level of any support other than �1 is the minimum of the levels of its neighbours,

plus one.

The level structure thus constructed corresponds to the notion of a breadth-first search of a
(discrete) tree, with the cluster satisfying (3), the level zero cluster, playing the role of the
root vertex. Thus the level is, loosely speaking, the number of supports we need to traverse
to reach �1 (excluding �1 itself). By Lemma 8.10, this is well defined, and indeed any
support �im of level m ≥ 1 can only have supports of level m − 1, m and/or m + 1 as
neighbours. It always shares a separating point vm with exactly one support �im−1 of level
m − 1: ∂�im ∩ ∂�im−1 = {vm}; moreover, if � jm is any other neighbour of �im of level m,
then also ∂�im ∩ ∂� jm = {vm}.

With this background and terminology, we can give the proof of Theorem 8.9.

Proof of Theorem 8.9 Set μ := λ1(G1) = . . . = λ1(Gk), denote by �1, . . . , �k ⊂ G the
cluster supports corresponding to G1, . . . ,Gk , and denote by ψ1, . . . , ψk ∈ H1(G) the func-
tions supported on �i , i = 1, . . . , k, which correspond to the eigenfunctions of G1, . . . ,Gk ,
respectively, normalised to have L2-norms one; that is, ψi satisfies −ψ ′′(x) = μψ(x) in the
interior of each edge of �i , and ψ(x) = 0 for all x ∈ G \ �i .

We will define an eigenfunction ψ on G of the form

ψ(x) =
k∑

i=1

tiψi (x) (8.1)

for all x ∈ G, for coefficients ti ∈ R \ {0} to be chosen in such a way that ψ satisfies the
Kirchhoff condition at each vertex of G. (Since the �i are pairwise disjoint, it is clear from
the outset that −ψ ′′ = μψ on each edge and ψ satisfies the continuity condition at each
vertex of G; hence, to check that ψ is an eigenfunction on G for μ, we only need to check
the Kirchhoff condition.)

To this end, we first note that at every boundary vertex v ∈ VD , for any edge e incident to
v, if, say, e ⊂ �i , then by Lemma 8.10 and the fact that ψi is strictly positive everywhere in
�i (see [30, Theorem 3]), the outer normal derivative ∂νψi |e(v) of ψi on e at v is different
from zero.

Based on this observation and the level structure of the supports �i , we specify the ti by
induction on the level. Note that in general other choices will be possible; we will make our
choice in such a way that ti �= 0 for all i = 1, . . . , k, meaning that ψ is supported on the
whole of G, although this is obviously not necessary. Appealing to Lemma 8.10(3), we first
fix any support whose boundary consists of exactly one vertex, without loss of generality�1,
and label v1 the only vertex in ∂�1. We then set t1 = 1.
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Now v1 is in the boundary of a certain number n1 ≥ 1 of supports of level one, say
�i1 , . . . , �in1

. Using the above observation that the outer normal derivatives of the ψi j do
not vanish at any edge in �i j adjacent to vm , we may choose the ti1 , . . . , tin1 ∈ R\ {0} in any
way such that the sum of the normal derivatives at v1 is zero. Note that by Lemma 8.10(2), no
two of these level one supports share any separating points other than v1; thus the function
ψ1 +∑n1

j=1 ti j ψi j is a well-defined function supported on �1 ∪⋃n1
j=1 �i j which satisfies

the Kirchhoff condition at every vertex of the latter set interpreted as a closed metric graph.
We then repeat this process inductively, level-wise: after choosing the coefficients ti �= 0

at every support of level m, we proceed to choose those of every support of level m + 1 in
the obvious way. This yields the desired eigenfunction ψ . ��

We finish this subsection with an example of an exhaustive minimal partition which is not
an equipartition, nor is it bipartite; but it still corresponds to a nodal partition. This illustrates
the difficulties in extending Theorem 8.8 to non-proper partitions; in particular, there does
not seem to be a natural concept of “bipartite” partitions that would allow the theorem to
hold.

Example 8.11 Suppose thatHε is the 3-star (cf. Example 4.10) having edges e1, e2 and e3 of
length 1+ε, 1 and 1, respectively, for some small ε ≥ 0, joined at a common vertex v0. Then
the unique internally connected partition achieving LD

3,∞(Hε) has {v0} as its cut set, with
Gi = ei , i = 1, 2, 3 and thus energy π2/4; this corresponds to the eigenvalueμ3(Hε), whose
eigenfunction is supported on the edges of length 1 and identically zero on e1: in particular,
this eigenfunction has a nodal pattern corresponding to the partition. Note that this is not an
equipartition if ε > 0, in opposition to domains where a Dirichlet minimal partition is always
an equipartition (see [12, Proposition 10.45]). If ε = 0, then this is a (Dirichlet) equipartition
and corresponds to the nodal partition for μ2(H0) = μ3(H0) (more precisely, it is nodal for
μ3(H0), and generalised nodal with respect to μ2(H0)). However, it is not bipartite.

8.3 Courant-sharp eigenfunctions

The next theorem, like Theorem 8.8, was proved in [4], but here we wish to give a fundamen-
tally different proof, based on a continuity argument involving the introduction of Robin-type
conditions at the cut set of the partition; we imagine that such ideas might also be adaptable
to the corresponding problem on domains.

Theorem 8.12 Given a positive integer k, suppose there exists a k-partition of G realising
LD
k,∞(G) which is proper and nodal. Then LD

k,∞(G) = μk(G).

Proof LetP be a nodal, minimal and proper (thus necessarily exhaustive) k-partition, and let
us denote the corresponding eigenvalue byμ, so thatμ = LD

k,∞(G). Letψ be an eigenfunction
associated with μ. We now define a family of vertex conditions in the following way; we
will denote the corresponding (quantum) graphs by (Gθ )θ∈[0,π/2]: at each cut point v of the
partition P , which by assumption is a vertex of degree two, we require functions f to satisfy
the Robin-type vertex condition

cos θ
(
f ′(v−) + f ′(v+)

) = (sin θ) f (v), (8.2)

with f additionally required to be continuous. (In fact, the condition (8.2) corresponds to
putting a δ-potential of strength tan θ atv, for θ ∈ [0, π/2), and imposing aDirichlet condition
if θ = π/2.) For all integers j ≥ 1, we write μ j (θ) := μ j (Gθ ). Note that when θ = 0, (8.2)
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reduces to the usual Kirchhoff condition, so that μ j (0) = μ j (G) for all j ≥ 1. We then have
the following further basic properties.

Lemma 8.13 The family of graphs (Gθ )θ∈[0,π/2] has the following properties.

(1) For all integers j ≥ 1, the function θ �→ μ j (θ) is continuous and non-decreasing on
[0, π/2].

(2) For all integers 1 ≤ j ≤ k, μ j (π/2) = μ, and μk+1(π/2) > μ.
(3) For all θ ∈ [0, π/2], μ is an eigenvalue of the graph Gθ , with ψ an associated eigen-

function.

We will not give a detailed proof: for part (1), cf. [8, Section 3.17] or [9, Theorem 3.4];
for (2), note that if we treat Dirichlet points as cut points, then Gπ/2 has exactly k connected
components, corresponding to the clusters of P , each having the same eigenvalue μ with
multiplicity one; for (3), we simply note that each v is a zero of ψ , so that the vertex
condition (8.2) reduces to the usual Kirchhoff condition.

We denote by U the subspace of the eigenspace of G = G0 associated with μ, whose
functions vanish at each cut point of P . We have ψ ∈ U , but U could contain functions
which are not proportional to ψ , in particular if μ has multiplicity greater than one.6 For all
θ ∈ [0, π/2],U is contained in the eigenspace of the graph Gθ associated with the eigenvalue
μ. Conversely, ifϕ is an eigenfunction of the graphGθ for some θ ∈ [0, π/2] and ifϕ vanishes
at each cut point of P , then ϕ ∈ U . This means that U can alternatively be described as the
intersection of all the eigenspaces of Gθ , associated with μ, for all θ ∈ [0, π/2].

Let us denote by � the smallest positive integer such that μ = μ�(G); it follows from
Proposition8.4 and the assumptionμ = LD

k,∞(G) that� ≥ k. Let us assume for a contradiction
that � > k, which is equivalent to μk(0) < μ.

Lemma 8.14 Under this assumption, there exists a smallest θ̄ := θ ∈ (0, π/2) such that
μk(θ) = μ, and an eigenfunction ϕ of Gθ̄ associated with μ, which does not belong to U.

Proof of Lemma 8.14 According to property (1) of Lemma 8.13,μk(θ) → μk(π/2) = μ and
μk+1(θ) → μk+1(π/2) as θ → π/2. Suppose that μk(θ) < μ for all θ ∈ (0, π/2). Then
since μ is also an eigenvalue for each θ by (2), that is, for each θ there exists some �(θ),
necessarily no smaller than k + 1, such that μ = μ�(θ)(θ), by continuity we would also have
μk+1(θ) ≤ μ, and thus, from (1), μk+1(π/2) ≤ μ. This contradicts (2), and we conclude
that there exists θ ∈ (0, π/2) such that μk(θ) = μ. We can then choose θ̄ to be the greatest
lower bound of all such θ .

For each θ ∈ [0, θ̄ ), we pick an eigenfunction ϕθ of Gθ associated with μk(θ), normalised
to have L2-norm one. We claim that (ϕθ )θ admits a convergent subsequence as θ → θ̄ .
Indeed, since each function satisfies −ϕ′′

θ = μk(θ)ϕθ edgewise, and (μk(θ))θ is bounded
in R and (ϕθ )θ is bounded in L2(G), there exists a subsequence converging weakly in H2

and hence strongly in H1 – in fact in C1—on each edge to a function ϕ. From the Rayleigh
quotients, possibly up to a further subsequence (which we will still simply denote by ϕθ ) we
also see that the convergence is weak in H1(G). In particular, by compactness of the injection
H1(G) ↪→ C(G), the limit function ϕ is continuous. The strong C1-convergence on each
edge implies that ϕ also satisfies the condition (8.2) at each vertex for θ = θ̄ . From the fact
that

∫
G |ϕ′|2 dx
∫
G |ϕ|2 dx = lim

θ→θ̄
μk(θ)

6 An example for such a G is the equilateral 3-star with edges of length 1 each, where we take μ = π2/4
corresponding to μ2(G) = μ3(G) and we consider any partition whose cut set is the central vertex of G.
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and an inductive argument involving convergence of the eigenfunctions of the lower eigen-
functions, we can finally conclude that ϕ is in fact an eigenfunction of Gθ̄ associated with
μk(θ̄), and in particular also with μ = μk(θ̄).

Finally, for each θ < θ̄ , since ϕθ is associated with μk(θ) < μ and U is contained in
the eigenspace associated with the eigenvalue μ, we have that ϕθ /∈ U , and in fact ϕθ is
orthogonal to each function of U . Strong convergence ϕθ → ϕ in L2(G) now implies that ϕ
is orthogonal to every function in U . ��

Let us now conclude the proof of Theorem 8.12. Since ϕ /∈ U , there exists at least one
cut point of P where ϕ does not vanish, which we denote by v0. For ε > 0 small enough,
the function ψε := ψ + εϕ has exactly one zero close to each cut point of P , and does not
vanish elsewhere. Therefore, the nodal partition associated with ψε , which we denote by Pε,
is a proper k-partition. Let us denote the clusters of Pε by G(ε)

i , with i ∈ {1, . . . , k}, and the

restriction of ψε to G(ε)
i by ψ

(ε)
i . There is one cluster G(ε)

i0
whose interior contains the cut

point v0.
Let us now consider a general cluster G(ε)

i and denote by {v1, . . . , v�} the cut points
contained in its interior (it is possible that there is no such cut point, in which case � = 0 and
this set is empty). We have

∫

G(ε)
i

∣
∣
∣
∣

(
ψ

(ε)
i

)′∣∣
∣
∣

2

dx = μ

∫

G(ε)
i

∣
∣
∣ψ

(ε)
i

∣
∣
∣
2
dx − tan θ

�∑

j=1

(
ψ

(ε)
i (v j )

)2

= μ

∫

G(ε)
i

∣
∣
∣ψ

(ε)
i

∣
∣
∣
2
dx − ε tan θ

�∑

j=1

ϕ(v j )
2 ≤ μ

∫

G(ε)
i

∣
∣
∣ψ

(ε)
i

∣
∣
∣
2
dx .

By the variational characterisation of the eigenvalues, λ1(G(ε)
i ) ≤ μ. In the particular case of

the clusterG(ε)
i0

, the sum on the right-hand side is strictly positive, and therefore λ1(G(ε)
i0

) < μ.

We obtain �D∞(Pε) ≤ �D∞(P), with λ1(G(ε)
i0

) < �D∞(P). We have reached a contradiction

to the assumption that � > k: either λ1(G(ε)
i ) < �D∞(P) for all 1 ≤ i ≤ k, in which case

P is not minimal, or λ1(G(ε)
i ) = �D∞(P) for some 1 ≤ i ≤ k, in which case Pε is minimal

without being an equipartition, contradicting Theorem 8.8. ��

8.4 Minimal partitions for non-Courant-sharp eigenfunctions

We now consider an example showing that for k ≥ 3, a nodal partition which achieves
LD
k,∞(G) is not necessarily given by an eigenfunction associated with μk(G). This is in

contrast to the situation for domains in R
2 (see [24, Theorem 1.17]).

We will consider a pumpkin graph on three edges, of length π , 2π and 2π , respectively;
in other words, we consider a graph H with two vertices {v,w} and three edges {e1, e2, e3}.
We set e1 = [x1, x1 + π ], e2 = [x2, x2 + 2π ] and e3 = [x3, x3 + 2π] (see Fig. 21).

Because the edges of H have rationally dependent lengths, we can easily exploit von
Below’s formula to compute the eigenvalues of the Laplacian onH. More precisely, insertion
of two dummyvertices turnsH into an equilateralmetric graph on four vertices andfive edges,
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Fig. 21 The pumpkin graphH
after insertion of two dummy
vertices (top and bottom,
corresponding to the points
x2 + π and x3 + π , respectively)
to make it equilateral (left); an
optimal 4-partition of H, where
the thick black dots denote the
partition cut set, which dividesH
into two equilateral 3-stars whose
edges all have length π/2, and
two intervals of length π each
(right)

v w
e1

e2

e3

each of length π . The underlying discrete graph has transition matrix

T =

⎛

⎜
⎜
⎝

0 − 1
3 − 1

3 − 1
3− 1

2 0 0 − 1
2− 1

2 0 1 − 1
2− 1

3 − 1
3 − 1

3 1

⎞

⎟
⎟
⎠

whose eigenvalues areμ j = 1, 0,− 1
3 ,− 2

3 . In view of [40, Theorem in § 5] and by rescaling,
the eigenvalues of H are

• 0 (with multiplicity 1, since H is connected);

• the infinitely many values attained by
( 1

π
arccosμ j

)2
, μ j �= 1, from the three nontrivial

eigenvalues of T ;
• k2 with multiplicity 3 for even k;
• k2 with multiplicity 1 for odd k.

In particular, the fifth-lowest eigenvalue of the Laplacian onHwith natural vertex conditions
is 1 and is simple.Moreover, one can check directly that its eigenfunction vanishes identically
on the edge e1, and at the four verticesmarked in Fig. 21-left, for a total of four nodal domains.
The following lemma summarises these statements.

Lemma 8.15 For the graph H just described (see Fig. 21), the eigenvalue μ5(H) is simple
and equal to 1. In addition, if ψ is an associated eigenfunction, the nodal (non-exhaustive)
4-partition associated with ψ is, in the notation introduced above (see Fig. 21):

N4 := {[x2, x2 + π ], [x2 + π, x2 + 2π ], [x3, x3 + π], [x3 + π, x3 + 2π]}.
Proposition 8.16 We have LD

4,∞(H) = μ5(H) = 1.

An optimal (exhaustive, internally connected, equilateral) partition corresponding to
LD
4,∞(H) is depicted in Fig. 21 (right). Note that this also equals LD

5,∞(H), which is realised
by the cut set indicated in Fig. 21 (left). Our proof will show that any minimal partition must
have energy 1. In fact, with a little more effort, one could show that even when minimising
among all not necessarily exhaustive partitions, the minimal energy is still 1, even though
the set of minimal partitions is larger (as Fig. 21 demonstrates). In Sect. 7.2 we have com-
pared exhaustive and non-exhaustive Dirichlet minimal partitions, and refer in particular to
Conjecture 7.7.

Proof of Proposition 8.16 Let P = {G1,G2,G3,G4} be a partition achieving LD
4,∞(H). It fol-

lows from Lemma 8.15 and Proposition 4.11 that �D∞(P) = LD
4,∞(H) ≤ 1. In the rest of
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the proof, for i ∈ {1, 2, 3, 4} and j ∈ {1, 2, 3}, we say that the cluster Gi is contained (resp.
strictly contained) in e j when Gi ⊂ e j (resp. Gi � e j ), and we say that Gi meets e j when
int Gi ∩ int e j �= ∅. (Here we emphasise that we are identifying Gi with �i ⊂ G.) Since
the energy of P is at most 1, we see easily that e1 cannot strictly contain a cluster of P;
in particular any cluster contained in e1 has to be equal to e1. Similarly, if e2 contains two
clusters, they are both intervals of length π and their union is equal to e2. The same holds
for e3.

Let us now discuss the possible cases. Since our partition is by assumption exhaustive, at
least one cluster ofP meets e1. Up to relabelling of the supports andwithout loss of generality,
we can assume that G1 meets e1. Let us first consider the case where G1 is contained in e1.
Then G1 = e1, and {v,w} is contained in the cut set of P . Each of the other clusters is thus
contained either in e2 or in e3. From the preliminary remarks, there is, up to relabelling of
the edges and the support, only one possiblity: e2 is the union of G2 and G3, which are both
intervals of length π , and G4 = e3. This gives energy exactly 1.

Up to relabelling of the clusters, there thus remains only one case: G1 meets e1 without
being contained in e1. Then one of the vertices {v,w} is contained in int G1. Without loss
of generality, we can assume v ∈ int G1. If no other cluster meets e1, then either e2 or e3
must strictly contain two clusters, in contradiction to the preliminary remarks. Without loss
of generality we can assume that G2 meets e1, and therefore that w ∈ int G2. Since P is
rigid, it follows that G3 and G4 are intervals of length at least π contained in int e3 and
int e4, respectively, and {G1,G2} is a partition of H \ G3 ∪ G4, whose cut set consists of a
single point in e1. We construct a new graph H′ from H \ G3 ∪ G4 by gluing together the
two degree one vertices corresponding to the two extremities of G3, and likewise gluing
together the two vertices corresponding to the extremities of G4. To be more explicit, let
us set G3 = [y3, z3] and G4 = [y4, z4], with x2 < y3 < y3 + π ≤ z3 < x2 + 2π and
x3 < y4 < y4 + π ≤ z4 < x3 + 2π . The graph H′ then has three edges e′

1 := e1,
e′
2 = [x2, x2 + 2π − z3 + y3] and e′

2 = [x3, x3 + 2π − z4 + y4]; and two vertices, v′ := v

and w′ = {x1 + π, x2 + 2π − z3 + y3, x2 + 2π − z3 + y3, 2π − z4 + y4}. It is a 3-pumpkin
graph with edges of length at most π each and P ′ := {G1,G2} is a (internally connected)
2-partition of H′. From Proposition 8.5,

μ2(H′) = LD
2,∞(H) ≤ �D∞(P ′) ≤ 1.

By monotonicity of the eigenvalues with respect to edge length, see [9, Corollary 3.12(1)],
we have, for any integer j ≥ 1, 1 = μ j (H∗) ≤ μ j (H′), where H∗ is the 3-pumpkin graph
with edges of length π . In particular, LD

2,∞(H′) = μ2(H′) ≥ 1. From this we conclude that

�D∞(P) = 1 in the case where v ∈ int G1 and w ∈ int G2. We have seen that, in all cases, we
necessarily have �D∞(P) = 1. ��

8.5 Non-bipartite minimal partitions

The goal of this section is to show that any proper minimal partition of a metric graph is
the projection of a nodal partition on a double covering. To reach it, we have to give some
additional definitions. We first recall the (standard) definition: given a metric graph G (the
base graph), a double covering is another metric graph Ĝ (the covering graph) equipped with
a surjective map � : Ĝ → G (the covering map). We require that

(1) � is locally an isometry;
(2) for all x ∈ G, �−1({x}) contains two elements.
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Furthermore, given such a covering, we define the deck map σ : Ĝ → Ĝ by σ(y) �= y and
�(σ(y)) = �(y) for all y ∈ Ĝ. The map σ clearly satisfy σ ◦ σ = I d and is locally an
isometry, and therefore is globally an isometry of Ĝ.

We have the orthogonal decomposition

L2(Ĝ) = S(Ĝ) ⊕ A(Ĝ),

where S(Ĝ) and A(Ĝ) are the subspaces of functions f ∈ L2(Ĝ) satisfying respectively
f ◦ σ = f or f ◦ σ = − f . This decomposition is preserved by L̂ , the natural Laplacian on
Ĝ, in the following sense. For any sufficiently regular function f , L̂( f ◦ σ) = L̂( f ) ◦ σ . It
follows that the domain D̂ of L̂ also has an orthogonal decomposition:

D̂ = (D̂ ∩ S(Ĝ)) ⊕ (D̂ ∩ A(Ĝ)).

Accordingly, we define the operator L̂a as the restrictions of L̂ to D̂ ∩ A(Ĝ). It is self-
adjoint with compact resolvent in the Hilbert space A(Ĝ). Its spectrum therefore consists of
a sequence of eigenvalues with finite multiplicity which we denote by (μa

j (Ĝ)) j≥1 (counting
multiplicities).

Let us now consider a partition P of G. For each cluster Gi ,�−1(Gi ) is a closed set having
at most two connected components. The collection of all these connected components when
i runs over all the possible values is a partition of Ĝ, once we have given it an (arbitrary)
indexation. We denote it by P̂ and call it the partition of Ĝ lifted from P .

Theorem 8.17 Let P be a proper Dirichlet minimal non-bipartite k-partition of G.

(1) There exists a double covering Ĝ such that the lifted partition P̂ is the nodal partition of
an eigenfunction of L̂a.

(2) For any such double covering, �D∞(P) = μa
k (Ĝ).

Proof Most of the work goes into proving (1). We follow closely the argument in the proof
of [4, Theorem 2.10(1)] (see Section 4.1 of that reference). SinceP is Dirichlet minimal, it is
a critical point for the functional �, with the parametrisation described by [4, Theorem 2.8].
More precisely, this means that the following holds, according to [4, Section 4.1].

We choose a set of edges {e j ; 1 ≤ j ≤ β} whose removal turns G into a tree. We choose
(arbitrarily) a point v j in the interior of each e j . These are called section points in [4]. We
split each v j into two vertices v−

j and v+
j according to the orientation of e j , v−

j and v+
j

being the end of the left and right part of e j respectively. We obtain a metric tree T . For any
(ϕ1, . . . , ϕβ) ∈ (−π, π]β , we define the self-adjoint operator on T acting as the (opposite
of) the second derivative, and whose domain consistes of the functions f ∈ ⊕e∈E(T )H2(e)
which satisfy the standard boundary conditions at the vertices ofG and, for all j ∈ {1, . . . , β},

{
cos
(
ϕ j/2

)
f ′(v−

j ) = − sin
(
ϕ j/2

)
f (v−

j ),

cos
(
ϕ j/2

)
f ′(v+

j ) = sin
(
ϕ j/2

)
f (v+

j ).

In this way, we have defined a quantum graph (i.e. triple of metric graph, differential expres-
sion and vertex conditions) that we denote by T(ϕ1,...,ϕβ ). According to [4, Theorem 2.8],
there exists (ϕ1, . . . , ϕβ) ∈ (−π, π]β such that P is the nodal partition of an eigenfunction
ψ of T(ϕ1,...,ϕβ ) associated with a simple eigenvalue. Furthermore, according to [4, Section

4.1], |ψ(v+
j )| = |ψ(v−

j )| and |ψ ′(v+
j )| = |ψ ′(v−

j )| for all j ∈ {1, . . . , β}.
For each j ∈ {1, . . . , β}, we denote by C j the shortest path in the metric graph T which

connects the vertices v−
j and v+

j . We have the following alternative.
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(A) ψ(v±
j ) �= 0 andC j contains an even number of zeros ofψ or ψ(v±

j ) = 0 andC j contains

an odd number of zeros of ψ . In that case, ψ(v+
j ) = ψ(v−

j ) and ψ ′(v+
j ) = −ψ ′(v−

j ).

(B) ψ(v±
j ) �= 0 andC j contains an odd number of zeros ofψ or ψ(v±

j ) = 0 andC j contains

an even number of zeros of ψ . In that case, ψ(v+
j ) = −ψ(v−

j ) and ψ ′(v+
j ) = ψ ′(v−

j ).

We construct the double cover Ĝ by gluing two copies of G, denoted by Tu and Td , according
to the following rules. For each j ∈ {1, . . . , β}, we denote by v−

j,u , v+
j,u , v−

j,d and v+
j,d the

vertices corresponding to v−
j and v+

j in Tu and Td respectively.

(1) In Case (A), we identify back v−
j,u with v+

j,u and v−
j,d with v+

j,d , that is we glue back the
cut points in each copy separately.

(2) In Case (B), we identify v−
j,u with v+

j,d and v−
j,u with v+

j,d .

The covering map � : Ĝ → G is defined as the unique continuous extension of the map
sending each point in Tu or Td , distinct from the selected section points, to the corresponding
point in G. This map is a local isometry and each of its fibres has two elements.

We then define the function ψ̂ as the continuous extension to Ĝ of the function which is
equal to ψ on Tu and −ψ on Td (this continuous extension exists by construction of Ĝ). By
construction, ψ̂ is an antisymmetric eigenfunction of standard Laplacian on Ĝ, associated
with the eigenvalue �D∞(P). Furthermore, its nodal partition is P̂ . This conclude the proof
of Part (1).

In order to prove Part (2), we repeat the proof of Theorem 8.12, replacing the Hilbert space
L2(G) with A(Ĝ), and more generally all the function spaces on G by the corresponding
antisymmetric function spaces on Ĝ. ��

For readers familiar with magnetic Schrödinger operators on metric graphs, we mention
that the previous construction has amagnetic interpretation. Indeed, L̂a is unitarily equivalent
to a magnetic Laplacian, by which we mean a magnetic Schrödinger operator with zero
potential (see [8, Section 2.6] for the relevant definitions). According to [8, Corollary 2.6.3],
such an operator is defined, up to unitary equivalence, by specifying themagnetic flux,modulo
2π , through each cycle of G. For this, we use the following rule. We count the number of
times the cycle crosses a cut-point of P . The flux is π if this number is odd and 0 if it is even.
Although we will not go further into details, let us also mention that for such a magnetic
Laplacian, P is the nodal partition of an eigenfunction associated with the k-th eigenvalue.

8.6 Comparison with two-dimensional domains

In order to put the results of this section into perspective, let us compare them with those
previously obtained for minimal partitions of two-dimensional domains. We first briefly
review this last theory, as developed in [24]. The interested reader can find a more extensive
survey (including numerical results) and a much more complete bibliography in [12].

Following [24], we take � ⊂ R
2 to be open, bounded and connected, with a piecewise

C1,α boundary for some α > 0 and call such a set a domain. In this subsection only, we
call a k-partition of � a family P = {�1, . . . , �k} of k subsets of � which are mutually
disjoint, connected and open. Comparing this definition with Sect. 2, we see that partitions
are defined in [24] by their cluster supports, taken to be open sets. The following example
is particularly important. Let ψ be an eigenfunction of −��, the Dirichlet realisation of the
Laplacian in �. The nodal partition associated with ψ is the family of all the nodal domains
of ψ , that is the connected components of the complement of its zero set. This is analogous
to Definition 8.1.
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We denote by Ck(�) the set of all k-partitions of � in the above sense. The following
definitions are in complete analogy with Sect. 4. We first set, for a given partition P ,

�D
p (P) :=

⎧
⎪⎪⎨

⎪⎪⎩

(
1
k

k∑

i=1
λ1(�i )

p
)1/p

if p ∈ (0,∞),

max
i=1,...,k

λ1(�i ) if p = ∞,

(8.3)

where λ1(�i ) denotes the first eigenvalue of −��i . We then define

LD
k,p(�) := inf

P∈Ck (�)
�D

p (P) (8.4)

and call minimal any k-partition P satisfying �D
p (P) = LD

k,p(�). It was proved in [24],
building on results from [13,15,17], that minimal partitions exist for any positive integer k
and any p ∈ [1,∞], and are very regular. In the terminology of [24], they are strong, meaning
that

� =
k⋃

i=1

�i ;

in our terminology such partitions would be called exhaustive. It is natural to define the
boundary of a strong (i.e., exhaustive) partition by

N (P) :=
k⋃

i=1

∂�i ∩ �.

When P is minimal, the set N (P) enjoys regularity properties which make it analogous to
the nodal set of an eigenfunction of −��. In particular, it consists of a finite number of
regular curves. More details can be found in [24, Theorem 1.12] or [12, Theorem 10.43]. We
additionally definewhat itmeans for two distinct cluster supports�i and� j to be neighbours:
the interior of the set �i ∪ � j ∩ � is connected. This is the analogue of Definition 2.11 in
the case of domains. We then say that the partition P is bipartite if we can colour its cluster
supports, using only two colours, in such a way that two neighbours have different colours.
This is the analogue of Definition 8.7, although in the case of domains we do not have to
restrict ourselves to a special class of partitions, such as proper partitions for graphs. As
pointed out in [24], a nodal partition is strong and bipartite.

In the case p = ∞, which we will assume for the rest of this section, the results in [24]
point to a clearer connection between minimal and nodal partitions for domains than for
graphs. Indeed, [24] establishes the following result.

Theorem 8.18 (Theorems 1.14 and 1.17 in [24]). Let P be a minimal k-partition (for some
positive integer k) realising LD

k,∞(�). If P is bipartite, then it is nodal; more precisely, it is
the nodal partition for an eigenfunction associated with λk(�), the k-th eigenvalue of −��.

Let us recall that if ψ is an eigenfunction associated with λk(�) and ν(ψ) its number of
nodal domains, Courant’s Nodal Theorem holds in its strong form and states that ν(ψ) ≤ k.
Following [24], we say that ψ is Courant sharp if

ν(ψ) = min{� ∈ N
∗ : λ�(�) = λk(�)}.

The second statement in Theorem 8.18 then tells us that if a minimal k-partition P is nodal,
λk−1(�) < λk(�) and P is given by a Courant-sharp eigenfunction associated with λk(�).
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As seen in this section, the results connecting nodal and spectralminimal partitions are less
sharp for metric graphs than for domains, except when the partitions considered are proper
(see point (5) of Definition 2.12). Indeed, even when we restrict ourselves to nodal partitions,
only theweak form of Courant’s Nodal Domain Theorem (Proposition 8.6) holds on graphs in
general. However (using the notation of this Proposition 8.6) the stronger inequality ν(ψ) ≤ k
holds when the eigenvalue is simple or the nodal partition associated with ψ is proper.

Similarly, it seems unclear how to give an appropriate definition for a bipartite partition
of a metric graph that would allow us to transpose the first statement in Theorem 8.18.
Nevertheless, this statement makes sense and is correct for proper minimal partitions. It is
indeed formulated as Theorem 8.8 in this section. Theorem 8.9 shows that considering only
proper partitions is unnecessarily restrictive, but we do not have a comprehensive theory yet.

The analogue of the second statement in Theorem 8.18 is given by Theorem 8.12 for
proper minimal partitions. However, there seems to be no natural way of extending the
notion of bipartiteness, and hence the scope of Theorem 8.8, to non-proper partitions, as
Proposition 8.16 exemplifies. Furthermore, as seen on Fig. 21, one can also find proper
minimal partitions ofH, although they are not nodal. The existence of suchpartitions therefore
does not guarantee that LD

k,∞ = μk .
Finally,wepoint out that ondomains there is a construction corresponding to the realisation

of proper minimal partitions as projection of nodal partitions in a double covering, described
in Theorem 8.17. This correspondence appears more clearly when we consider the magnetic
interpretation of this realisation, given at the end of Sect. 8.5. As shown in [23], any minimal
k-partition of a domain is a nodal partition associated with the k-th eigenvalue of a magnetic
Schrödinger operator having a finite number (possibly zero) of Aharonov–Bohm singularities
with magnetic fluxes equal to π , where the number of fluxes depends on k in a rather
complicated way.
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