2 research outputs found

    Vertex covers by monochromatic pieces - A survey of results and problems

    Get PDF
    This survey is devoted to problems and results concerning covering the vertices of edge colored graphs or hypergraphs with monochromatic paths, cycles and other objects. It is an expanded version of the talk with the same title at the Seventh Cracow Conference on Graph Theory, held in Rytro in September 14-19, 2014.Comment: Discrete Mathematics, 201

    Covering complete partite hypergraphs by monochromatic components

    Get PDF
    A well-known special case of a conjecture attributed to Ryser states that k-partite intersecting hypergraphs have transversals of at most k-1 vertices. An equivalent form was formulated by Gy\'arf\'as: if the edges of a complete graph K are colored with k colors then the vertex set of K can be covered by at most k-1 sets, each connected in some color. It turned out that the analogue of the conjecture for hypergraphs can be answered: Z. Kir\'aly proved that in every k-coloring of the edges of the r-uniform complete hypergraph K^r (r >= 3), the vertex set of K^r can be covered by at most ⌈k/r⌉\lceil k/r \rceil sets, each connected in some color. Here we investigate the analogue problem for complete r-uniform r-partite hypergraphs. An edge coloring of a hypergraph is called spanning if every vertex is incident to edges of any color used in the coloring. We propose the following analogue of Ryser conjecture. In every spanning (r+t)-coloring of the edges of a complete r-uniform r-partite hypergraph, the vertex set can be covered by at most t+1 sets, each connected in some color. Our main result is that the conjecture is true for 1 <= t <= r-1. We also prove a slightly weaker result for t >= r, namely that t+2 sets, each connected in some color, are enough to cover the vertex set. To build a bridge between complete r-uniform and complete r-uniform r-partite hypergraphs, we introduce a new notion. A hypergraph is complete r-uniform (r,l)-partite if it has all r-sets that intersect each partite class in at most l vertices. Extending our results achieved for l=1, we prove that for any r >= 3, 2 <= l = 1+r-l, in every spanning k-coloring of the edges of a complete r-uniform (r,l)-partite hypergraph, the vertex set can be covered by at most 1+\lfloor \frac{k-r+\ell-1}{\ell}\rfloor sets, each connected in some color.Comment: 14 page
    corecore