9 research outputs found

    New Challenges Arising in Engineering Problems with Fractional and Integer Order

    Get PDF
    Mathematical models have been frequently studied in recent decades, in order to obtain the deeper properties of real-world problems. In particular, if these problems, such as finance, soliton theory and health problems, as well as problems arising in applied science and so on, affect humans from all over the world, studying such problems is inevitable. In this sense, the first step in understanding such problems is the mathematical forms. This comes from modeling events observed in various fields of science, such as physics, chemistry, mechanics, electricity, biology, economy, mathematical applications, and control theory. Moreover, research done involving fractional ordinary or partial differential equations and other relevant topics relating to integer order have attracted the attention of experts from all over the world. Various methods have been presented and developed to solve such models numerically and analytically. Extracted results are generally in the form of numerical solutions, analytical solutions, approximate solutions and periodic properties. With the help of newly developed computational systems, experts have investigated and modeled such problems. Moreover, their graphical simulations have also been presented in the literature. Their graphical simulations, such as 2D, 3D and contour figures, have also been investigated to obtain more and deeper properties of the real world problem

    Fractional Differential Equations, Inclusions and Inequalities with Applications

    Get PDF
    During the last decade, there has been an increased interest in fractional differential equations, inclusions, and inequalities, as they play a fundamental role in the modeling of numerous phenomena, in particular, in physics, biomathematics, blood flow phenomena, ecology, environmental issues, viscoelasticity, aerodynamics, electrodynamics of complex medium, electrical circuits, electron-analytical chemistry, control theory, etc. This book presents collective works published in the recent Special Issue (SI) entitled "Fractional Differential Equation, Inclusions and Inequalities with Applications" of the journal Mathematics. This Special Issue presents recent developments in the theory of fractional differential equations and inequalities. Topics include but are not limited to the existence and uniqueness results for boundary value problems for different types of fractional differential equations, a variety of fractional inequalities, impulsive fractional differential equations, and applications in sciences and engineering

    Approximation Theory and Related Applications

    Get PDF
    In recent years, we have seen a growing interest in various aspects of approximation theory. This happened due to the increasing complexity of mathematical models that require computer calculations and the development of the theoretical foundations of the approximation theory. Approximation theory has broad and important applications in many areas of mathematics, including functional analysis, differential equations, dynamical systems theory, mathematical physics, control theory, probability theory and mathematical statistics, and others. Approximation theory is also of great practical importance, as approximate methods and estimation of approximation errors are used in physics, economics, chemistry, signal theory, neural networks and many other areas. This book presents the works published in the Special Issue "Approximation Theory and Related Applications". The research of the world’s leading scientists presented in this book reflect new trends in approximation theory and related topics

    Hadron models and related New Energy issues

    Get PDF
    The present book covers a wide-range of issues from alternative hadron models to their likely implications in New Energy research, including alternative interpretation of lowenergy reaction (coldfusion) phenomena. The authors explored some new approaches to describe novel phenomena in particle physics. M Pitkanen introduces his nuclear string hypothesis derived from his Topological Geometrodynamics theory, while E. Goldfain discusses a number of nonlinear dynamics methods, including bifurcation, pattern formation (complex GinzburgLandau equation) to describe elementary particle masses. Fu Yuhua discusses a plausible method for prediction of phenomena related to New Energy development. F. Smarandache discusses his unmatter hypothesis, and A. Yefremov et al. discuss Yang-Mills field from Quaternion Space Geometry. Diego Rapoport discusses theoretical link between Torsion fields and Hadronic Mechanic. A.H. Phillips discusses semiconductor nanodevices, while V. and A. Boju discuss Digital Discrete and Combinatorial methods and their likely implications in New Energy research. Pavel Pintr et al. describe planetary orbit distance from modified Schrödinger equation, and M. Pereira discusses his new Hypergeometrical description of Standard Model of elementary particles. The present volume will be suitable for researchers interested in New Energy issues, in particular their link with alternative hadron models and interpretation

    Particular Solutions of the Confluent Hypergeometric Differential Equation by Using the Nabla Fractional Calculus Operator

    No full text
    In this work; we present a method for solving the second-order linear ordinary differential equation of hypergeometric type. The solutions of this equation are given by the confluent hypergeometric functions (CHFs). Unlike previous studies, we obtain some different new solutions of the equation without using the CHFs. Therefore, we obtain new discrete fractional solutions of the homogeneous and non-homogeneous confluent hypergeometric differential equation (CHE) by using a discrete fractional Nabla calculus operator. Thus, we obtain four different new discrete complex fractional solutions for these equations

    Particular Solutions of the Confluent Hypergeometric Differential Equation by Using the Nabla Fractional Calculus Operator

    No full text
    In this work; we present a method for solving the second-order linear ordinary differential equation of hypergeometric type. The solutions of this equation are given by the confluent hypergeometric functions (CHFs). Unlike previous studies, we obtain some different new solutions of the equation without using the CHFs. Therefore, we obtain new discrete fractional solutions of the homogeneous and non-homogeneous confluent hypergeometric differential equation (CHE) by using a discrete fractional Nabla calculus operator. Thus, we obtain four different new discrete complex fractional solutions for these equations

    Quantum Mechanics

    Get PDF
    corecore