7,790 research outputs found

    Particle-dependent deformations of Lorentz symmetry

    Full text link
    I here investigate what is arguably the most significant residual challenge for the proposal of phenomenologically viable "DSR deformations" of relativistic kinematics, which concerns the description of composite particles, such as atoms. In some approaches to the formalization of possible scenarios for DSR-deformation of Lorentz symmetry it emerges that composite particles should have relativistic properties different from the ones of their constituent "fundamental particles", but these previous results provided no clue as to how the mismatch of relativistic properties could be consistently implemented. I show that it is possible to implement a fully consistent DSR-relativistic description of kinematics endowing different types of particles with suitably different deformed-Lorentz-symmetry properties. I also contemplate the possibility that some types of particles (or macroscopic bodies) behave according to completely undeformed special relativity, which in particular might apply to the DSR description of the macroscopic bodies that constitute measuring devices ("observers"). The formalization is also applicable to cases where different fundamental particles have different relativistic properties, leading to a type of phenomenology which I illustrate by considering possible applications to the ongoing analyses of the "Lorentz-symmetry anomaly" that was recently tentatively reported by the OPERA collaboration. Some of the new elements here introduced in the formulation of relativistic kinematics appear to also provide the starting point for the development of a correspondingly novel mathematical formulation of spacetime-symmetry algebras.Comment: v2: added one more example of conservation law for interactions involving particles with different relativistic propertie

    Kinematical solution of the UHE-cosmic-ray puzzle without a preferred class of inertial observers

    Get PDF
    Among the possible explanations for the puzzling observations of cosmic rays above the GZK cutoff there is growing interest in the ones that represent kinematical solutions, based either on general formulations of particle physics with small violations of Lorentz symmetry or on a quantum-gravity-motivated scheme for the breakup of Lorentz symmetry. An unappealing aspect of these cosmic-ray-puzzle solutions is that they require the existence of a preferred class of inertial observers. Here I propose a new kinematical solution of the cosmic-ray puzzle, which does not require the existence of a preferred class of inertial observers. My proposal is a new example of a type of relativistic theories, the so-called "doubly-special-relativity" theories, which have already been studied extensively over the last two years. The core ingredient of the proposal is a deformation of Lorentz transformations in which also the Planck scale EpE_p (in addition to the speed-of-light scale cc) is described as an invariant. Just like the introduction of the invariant cc requires a deformation of the Galileian transformations into the Lorentz transformations, the introduction of the invariant EpE_p requires a deformation of the Lorentz transformations, but there is no special class of inertial observers. The Pierre Auger Observatory and the GLAST space telescope should play a key role in future developments of these investigations. I also emphasize that the doubly-special-relativity theory here proposed, besides being the first one to provide a solution for the cosmic-ray puzzle, is also the first one in which a natural description of macroscopic bodies is achieved, and may find applications in the context of a recently-proposed dark-energy scenario.Comment: LaTex (revtex), 9 page

    General Very Special Relativity is Finsler Geometry

    Get PDF
    We ask whether Cohen and Glashow's Very Special Relativity model for Lorentz violation might be modified, perhaps by quantum corrections, possibly producing a curved spacetime with a cosmological constant. We show that its symmetry group ISIM(2) does admit a 2-parameter family of continuous deformations, but none of these give rise to non-commutative translations analogous to those of the de Sitter deformation of the Poincar\'e group: spacetime remains flat. Only a 1-parameter family DISIM_b(2) of deformations of SIM(2) is physically acceptable. Since this could arise through quantum corrections, its implications for tests of Lorentz violations via the Cohen-Glashow proposal should be taken into account. The Lorentz-violating point particle action invariant under DISIM_b(2) is of Finsler type, for which the line element is homogeneous of degree 1 in displacements, but anisotropic. We derive DISIM_b(2)-invariant wave equations for particles of spins 0, 1/2 and 1. The experimental bound, ∣b∣<10−26|b|<10^{-26}, raises the question ``Why is the dimensionless constant bb so small in Very Special Relativity?''Comment: 4 pages, minor corrections, references adde

    Is Nothing Sacred? Vacuum Energy, Supersymmetry and Lorentz Breaking from Recoiling D branes

    Get PDF
    Classical superstring vacua have zero vacuum energy and are supersymmetric and Lorentz-invariant. We argue that all these properties may be destroyed when quantum aspects of the interactions between particles and non-perturbative vacuum fluctuations are considered. A toy calculation of string/D-brane interactions using a world-sheet approach indicates that quantum recoil effects - reflecting the gravitational back-reaction on space-time foam due to the propagation of energetic particles - induce non-zero vacuum energy that is linked to supersymmetry breaking and breaks Lorentz invariance. This model of space-time foam also suggests the appearance of microscopic event horizons.Comment: 28 pages LaTeX, 5 eps figures, talk presented by DVN at 4th International Symposium On Sources And Detection Of Dark Matter In The Universe (DM 2000), Marina del Rey, California, 20-23 Feb 200

    OPERA neutrinos and relativity

    Full text link
    In a recent study, Cohen and Glashow argue that superluminal neutrinos of the type recently reported by OPERA should be affected by anomalous Cherenkov-like processes. This causes them to loose much of their energy before reaching the OPERA detectors. Related concerns were reported also by Gonzalez-Mestres and Bi et. al., who argued that pions cannot decay to superluminal neutrinos over part of the energy range studied by OPERA. We observe here that these arguments are set within a framework in which Lorentz symmetry is broken, by the presence of a preferred frame. We further show that these anomalous processes are forbidden if Lorentz symmetry is instead "deformed", preserving the relativity of inertial frames. These deformations add non-linear terms to energy momentum relations, conservation laws and Lorentz transformations in a way that is consistent with the relativity of inertial observers.Comment: 5 pages, some citations added; in v3 a footnote added and minor changes in the text made, the final version to appear in MPL

    Deforming the Maxwell-Sim Algebra

    Get PDF
    The Maxwell alegbra is a non-central extension of the Poincar\'e algebra, in which the momentum generators no longer commute, but satisfy [Pμ,Pν]=Zμν[P_\mu,P_\nu]=Z_{\mu\nu}. The charges ZμνZ_{\mu\nu} commute with the momenta, and transform tensorially under the action of the angular momentum generators. If one constructs an action for a massive particle, invariant under these symmetries, one finds that it satisfies the equations of motion of a charged particle interacting with a constant electromagnetic field via the Lorentz force. In this paper, we explore the analogous constructions where one starts instead with the ISim subalgebra of Poincar\'e, this being the symmetry algebra of Very Special Relativity. It admits an analogous non-central extension, and we find that a particle action invariant under this Maxwell-Sim algebra again describes a particle subject to the ordinary Lorentz force. One can also deform the ISim algebra to DISimb_b, where bb is a non-trivial dimensionless parameter. We find that the motion described by an action invariant under the corresponding Maxwell-DISim algebra is that of a particle interacting via a Finslerian modification of the Lorentz force.Comment: Appendix on Lifshitz and Schrodinger algebras adde

    Planck-scale deformation of Lorentz symmetry as a solution to the UHECR and the TeV-γ\gamma paradoxes

    Full text link
    One of the most puzzling current experimental physics paradoxes is the arrival on Earth of Ultra High Energy Cosmic Rays with energies above the GZK threshold. The recent observation of 20TeV photons from Mk 501 is another somewhat similar paradox. Several models have been proposed for the UHECR paradox. No solution has yet been proposed for the TeV-γ\gamma paradox. Remarkably, the drastic assumption of a violation of ordinary Lorentz invariance would resolve both paradoxes. We present a formalism for the description of the type of Lorentz-invariance deformation (LID) that could be induced by non-trivial short-distance structure of space-time, and we show that this formalism is well suited for comparison of experimental data with LID predictions. We use the UHECR and TeV-γ\gamma data, as well as bounds on time-of-flight differences between photons of different energies, to constrain the LID parameter space. A model with only two parameters, an energy scale and a dimensionless parameter characterizing the functional dependence on the energy scale, is shown to be sufficient to solve both the UHECR and the TeV-γ\gamma threshold anomalies while satisfying the time-of-flight bounds. The allowed region of the two-parameter space is relatively small, but, remarkably, it fits perfectly the expectations of the quantum-gravity-motivated space-time models known to support such deformations of Lorentz invariance: integer value of the dimensionless parameter and characteristic energy scale constrained to a narrow interval in the neighborhood of the Planck scale.Comment: LaTex (epsfig), 20 pages, 3 figure
    • …
    corecore