173 research outputs found

    Hybrid Evolutionary Shape Manipulation for Efficient Hull Form Design Optimisation

    Get PDF
    ‘Eco-friendly shipping’ and fuel efficiency are gaining much attention in the maritime industry due to increasingly stringent environmental regulations and volatile fuel prices. The shape of hull affects the overall performance in efficiency and stability of ships. Despite the advantages of simulation-based design, the application of a formal optimisation process in actual ship design work is limited. A hybrid approach which integrates a morphing technique into a multi-objective genetic algorithm to automate and optimise the hull form design is developed. It is envisioned that the proposed hybrid approach will improve the hydrodynamic performance as well as overall efficiency of the design process

    An overview of population-based algorithms for multi-objective optimisation

    Get PDF
    In this work we present an overview of the most prominent population-based algorithms and the methodologies used to extend them to multiple objective problems. Although not exact in the mathematical sense, it has long been recognised that population-based multi-objective optimisation techniques for real-world applications are immensely valuable and versatile. These techniques are usually employed when exact optimisation methods are not easily applicable or simply when, due to sheer complexity, such techniques could potentially be very costly. Another advantage is that since a population of decision vectors is considered in each generation these algorithms are implicitly parallelisable and can generate an approximation of the entire Pareto front at each iteration. A critique of their capabilities is also provided

    An Analysis of Particle Swarm Optimizers

    Get PDF
    Many scientific, engineering and economic problems involve the optimisation of a set of parameters. These problems include examples like minimising the losses in a power grid by finding the optimal configuration of the components, or training a neural network to recognise images of people's faces. Numerous optimisation algorithms have been proposed to solve these problems, with varying degrees of success. The Particle Swarm Optimiser (PSO) is a relatively new technique that has been empirically shown to perform well on many of these optimisation problems. This thesis presents a theoretical model that can be used to describe the long-term behaviour of the algorithm. An enhanced version of the Particle Swarm Optimiser is constructed and shown to have guaranteed convergence on local minima. This algorithm is extended further, resulting in an algorithm with guaranteed convergence on global minima. A model for constructing cooperative PSO algorithms is developed, resulting in the introduction of two new PSO-based algorithms. Empirical results are presented to support the theoretical properties predicted by the various models, using synthetic benchmark functions to investigate specific properties. The various PSO-based algorithms are then applied to the task of training neural networks, corroborating the results obtained on the synthetic benchmark functions.Thesis (PhD)--University of Pretoria, 2007.Computer ScienceUnrestricte

    An intelligent manufacturing system for heat treatment scheduling

    Get PDF
    This research is focused on the integration problem of process planning and scheduling in steel heat treatment operations environment using artificial intelligent techniques that are capable of dealing with such problems. This work addresses the issues involved in developing a suitable methodology for scheduling heat treatment operations of steel. Several intelligent algorithms have been developed for these propose namely, Genetic Algorithm (GA), Sexual Genetic Algorithm (SGA), Genetic Algorithm with Chromosome differentiation (GACD), Age Genetic Algorithm (AGA), and Mimetic Genetic Algorithm (MGA). These algorithms have been employed to develop an efficient intelligent algorithm using Algorithm Portfolio methodology. After that all the algorithms have been tested on two types of scheduling benchmarks. To apply these algorithms on heat treatment scheduling, a furnace model is developed for optimisation proposes. Furthermore, a system that is capable of selecting the optimal heat treatment regime is developed so the required metal properties can be achieved with the least energy consumption and the shortest time using Neuro-Fuzzy (NF) and Particle Swarm Optimisation (PSO) methodologies. Based on this system, PSO is used to optimise the heat treatment process by selecting different heat treatment conditions. The selected conditions are evaluated so the best selection can be identified. This work addresses the issues involved in developing a suitable methodology for developing an NF system and PSO for mechanical properties of the steel. Using the optimisers, furnace model and heat treatment system model, the intelligent system model is developed and implemented successfully. The results of this system were exciting and the optimisers were working correctly.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Optimising Multilayer Perceptron weights and biases through a Cellular Genetic Algorithm for medical data classification

    Get PDF
    In recent years, technology in medicine has shown a significant advance due to artificial intelligence becoming a framework to make accurate medical diagnoses. Models like Multilayer Perceptrons (MLPs) can detect implicit patterns in data, allowing identifying patients conditions that cannot be seen easily. MLPs consist of biased neurons arranged in layers, connected by weighted connections. Their effectiveness depends on finding the optimal weights and biases that reduce the classification error, which is usually done by using the Back Propagation algorithm (BP). But BP has several disadvantages that could provoke the MLP not to learn. Metaheuristics are alternatives to BP that reach high-quality solutions without using many computational resources. In this work, the Cellular Genetic Algorithm (CGA) with a specially designed crossover operator called Damped Crossover (DX), is proposed to optimise weights and biases of the MLP to classify medical data. When compared against state-of-the-art algorithms, the CGA configured with DX obtained the minimal Mean Square Error value in three out of the five considered medical datasets and was the quickest algorithm with four datasets, showing a better balance between time consumed and optimisation performance. Additionally, it is competitive in enhancing classification quality, reaching the best accuracy with two datasets and the second-best accuracy with two of the remaining.Fil: Rojas, Matias Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; ArgentinaFil: Olivera, Ana Carolina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; ArgentinaFil: Vidal, Pablo Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina. Universidad Nacional de Cuyo. Instituto para las Tecnologías de la Información y las Comunicaciones; Argentina. Universidad Nacional de Cuyo. Facultad de Ingeniería; Argentin

    Economic Load Dispatch for IEEE 30-Bus System Using PSO

    Get PDF
    ELD or economic load dispatch is a crucial aspect in any practical power network. Economic load dispatch is the technique whereby the active power outputs are allocated to generator units in the most cost-effective way in compliance with all constraints of the network. The traditional methods for solving ELD include Lambda-Iterative Technique, Newton-Raphson Method, Gradient method, etc. All these traditional algorithms need the incremental fuel cost curves of the generators to be increasing monotonically or piece-wise linear. But in practice the input-output characteristics of a generator are highly non-linear leading to a challenging non-convex optimisation problem. Methods like artificial intelligence, DP (dynamic programming), GA (genetic algorithms), and PSO (particle swarm optimisation) solve non-convex optimisation problems in an efficient manner and obtain a fast and near global and optimum solution. In this project ELD problem has been solved using Lambda-Iterative technique, GA (Genetic Algorithms) and PSO (Particle Swarm Optimisation) and the results have been compared. All the analyses have been made in MATLAB environment

    Investigating evolutionary computation with smart mutation for three types of Economic Load Dispatch optimisation problem

    Get PDF
    The Economic Load Dispatch (ELD) problem is an optimisation task concerned with how electricity generating stations can meet their customers’ demands while minimising under/over-generation, and minimising the operational costs of running the generating units. In the conventional or Static Economic Load Dispatch (SELD), an optimal solution is sought in terms of how much power to produce from each of the individual generating units at the power station, while meeting (predicted) customers’ load demands. With the inclusion of a more realistic dynamic view of demand over time and associated constraints, the Dynamic Economic Load Dispatch (DELD) problem is an extension of the SELD, and aims at determining the optimal power generation schedule on a regular basis, revising the power system configuration (subject to constraints) at intervals during the day as demand patterns change. Both the SELD and DELD have been investigated in the recent literature with modern heuristic optimisation approaches providing excellent results in comparison with classical techniques. However, these problems are defined under the assumption of a regulated electricity market, where utilities tend to share their generating resources so as to minimise the total cost of supplying the demanded load. Currently, the electricity distribution scene is progressing towards a restructured, liberalised and competitive market. In this market the utility companies are privatised, and naturally compete with each other to increase their profits, while they also engage in bidding transactions with their customers. This formulation is referred to as: Bid-Based Dynamic Economic Load Dispatch (BBDELD). This thesis proposes a Smart Evolutionary Algorithm (SEA), which combines a standard evolutionary algorithm with a “smart mutation” approach. The so-called ‘smart’ mutation operator focuses mutation on genes contributing most to costs and penalty violations, while obeying operational constraints. We develop specialised versions of SEA for each of the SELD, DELD and BBDELD problems, and show that this approach is superior to previously published approaches in each case. The thesis also applies the approach to a new case study relevant to Nigerian electricity deregulation. Results on this case study indicate that our SEA is able to deal with larger scale energy optimisation tasks
    corecore