86 research outputs found

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Data-Intensive Computing in Smart Microgrids

    Get PDF
    Microgrids have recently emerged as the building block of a smart grid, combining distributed renewable energy sources, energy storage devices, and load management in order to improve power system reliability, enhance sustainable development, and reduce carbon emissions. At the same time, rapid advancements in sensor and metering technologies, wireless and network communication, as well as cloud and fog computing are leading to the collection and accumulation of large amounts of data (e.g., device status data, energy generation data, consumption data). The application of big data analysis techniques (e.g., forecasting, classification, clustering) on such data can optimize the power generation and operation in real time by accurately predicting electricity demands, discovering electricity consumption patterns, and developing dynamic pricing mechanisms. An efficient and intelligent analysis of the data will enable smart microgrids to detect and recover from failures quickly, respond to electricity demand swiftly, supply more reliable and economical energy, and enable customers to have more control over their energy use. Overall, data-intensive analytics can provide effective and efficient decision support for all of the producers, operators, customers, and regulators in smart microgrids, in order to achieve holistic smart energy management, including energy generation, transmission, distribution, and demand-side management. This book contains an assortment of relevant novel research contributions that provide real-world applications of data-intensive analytics in smart grids and contribute to the dissemination of new ideas in this area

    Optimal excitation controllers, and location and sizing of energy storage for all-electric ship power system

    Get PDF
    The Navy\u27s future all-electric ship power system is based on the integrated power system (IPS) architecture consisting of power generation, propulsion systems, hydrodynamics, and DC zonal electric distribution system (DC-ZEDS). To improve the power quality, optimal excitation systems, and optimal location and sizing of energy storage modules (ESMs) are studied. In this dissertation, clonal selection algorithm (CSA) based controller design is firstly introduced. CSA based controller design shows better exploitation ability with relatively long search time when compared to a particle swarm optimization (PSO) based design. Furthermore, \u27optimal\u27 small population PSO (SPPSO) based excitation controller is introduced. Parameter sensitivity analysis shows that the parameters of SPPSO for regeneration can be fined tuned to achieve fast optimal controller design, and thus exploiting SPPSO features for problem of particles get trapped in local minima and long search time. Furthermore, artificial immune system based concepts are used to develop adaptive and coordinated excitation controllers for generators on ship IPS. The computational approaches for excitation controller designs have been implemented on digital signal processors interfaced to an actual laboratory synchronous machine, and to multimachine electric ship power systems simulated on a real-time digital simulator. Finally, an approach to evaluate ESM location and sizing is proposed using three metrics: quality of service, survivability and cost. Multiple objective particle swarm optimization (MOPSO) is used to optimize these metrics and provide Pareto fronts for optimal ESM location and sizing --Abstract, page iv

    Towards a resilient networked service system

    Get PDF
    Large service systems today are of highly network structures. In this thesis, these large service systems are called networked service systems. The network nature of these systems has no doubt brought mass customized services but has also created challenges in the management of their safety. The safety of service systems is an important issue due to their critical influences on the functioning of society. Traditional safety engineering methods focus on maintaining service systems in a safe state, in particular aiming to maintain systems to be reliable and robust. However, resilience cannot be absent from safety out of many recent disasters that occur in society. The goal of this thesis is to improve the resilience of networked service systems. Four major works have been performed to achieve this goal. First, a unified definition of service systems was proposed and its relationship to other system concepts was unfolded. Upon the new definition, a domain model of service systems was established by a FCBPSS framework, followed by developing a computational model. Second, a definition of resilience for service systems was proposed, based on which the relationship among three safety properties (i.e., reliability, robustness and resilience) was clarified, followed by developing a framework for resilience analysis. Third, a methodology of resilience measurement for service systems was proposed by four measurement axioms along with corresponding mathematical models. The methodology focused on the potential ability of a service system to create optimal rebalancing solutions. Two typical service systems, transportation system and enterprise information system, were employed to validate the methodology. Fourth, a methodology of enhancing resilience for service systems was proposed by integrating three types of reconfigurations of systems, namely design, planning and management, along with the corresponding mathematical model. This methodology was validated by an example of transportation system. Several conclusions can be drawn from the work above: (1) a service system has a unique characteristic that it meets humans' demand directly, and its safety relies on the balance between the supplies and demands; (2) different from reliability and robustness, the resilience of a service system focuses on the rebalancing ability from imbalanced situations; (3) it makes sense to measure the resilience of a service system only for a particular imbalanced situation and based on evaluation of rebalancing solutions; and (4) integration of design, planning and management is an effective approach for improvement of the resilience for a service system. The contributions of this thesis can be summarized. Scientifically, this thesis work has improved our understanding of service systems and their resilience property; furthermore, this work has advanced the state of knowledge of safety science in particular having successfully responded to two questions: is a service system safe and how to make a service system safer? Technologically or methodologically, the work has advanced the knowledge for modeling and optimization of networked service systems in particular with multiple layer models along with the algorithms for integrated decision making on design, planning, and management

    Computational intelligence approaches to robotics, automation, and control [Volume guest editors]

    Get PDF
    No abstract available

    Bio-inspired optimization in integrated river basin management

    Get PDF
    Water resources worldwide are facing severe challenges in terms of quality and quantity. It is essential to conserve, manage, and optimize water resources and their quality through integrated water resources management (IWRM). IWRM is an interdisciplinary field that works on multiple levels to maximize the socio-economic and ecological benefits of water resources. Since this is directly influenced by the river’s ecological health, the point of interest should start at the basin-level. The main objective of this study is to evaluate the application of bio-inspired optimization techniques in integrated river basin management (IRBM). This study demonstrates the application of versatile, flexible and yet simple metaheuristic bio-inspired algorithms in IRBM. In a novel approach, bio-inspired optimization algorithms Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) are used to spatially distribute mitigation measures within a basin to reduce long-term annual mean total nitrogen (TN) concentration at the outlet of the basin. The Upper Fuhse river basin developed in the hydrological model, Hydrological Predictions for the Environment (HYPE), is used as a case study. ACO and PSO are coupled with the HYPE model to distribute a set of measures and compute the resulting TN reduction. The algorithms spatially distribute nine crop and subbasin-level mitigation measures under four categories. Both algorithms can successfully yield a discrete combination of measures to reduce long-term annual mean TN concentration. They achieved an 18.65% reduction, and their performance was on par with each other. This study has established the applicability of these bio-inspired optimization algorithms in successfully distributing the TN mitigation measures within the river basin. Stakeholder involvement is a crucial aspect of IRBM. It ensures that researchers and policymakers are aware of the ground reality through large amounts of information collected from the stakeholder. Including stakeholders in policy planning and decision-making legitimizes the decisions and eases their implementation. Therefore, a socio-hydrological framework is developed and tested in the Larqui river basin, Chile, based on a field survey to explore the conditions under which the farmers would implement or extend the width of vegetative filter strips (VFS) to prevent soil erosion. The framework consists of a behavioral, social model (extended Theory of Planned Behavior, TPB) and an agent-based model (developed in NetLogo) coupled with the results from the vegetative filter model (Vegetative Filter Strip Modeling System, VFSMOD-W). The results showed that the ABM corroborates with the survey results and the farmers are willing to extend the width of VFS as long as their utility stays positive. This framework can be used to develop tailor-made policies for river basins based on the conditions of the river basins and the stakeholders' requirements to motivate them to adopt sustainable practices. It is vital to assess whether the proposed management plans achieve the expected results for the river basin and if the stakeholders will accept and implement them. The assessment via simulation tools ensures effective implementation and realization of the target stipulated by the decision-makers. In this regard, this dissertation introduces the application of bio-inspired optimization techniques in the field of IRBM. The successful discrete combinatorial optimization in terms of the spatial distribution of mitigation measures by ACO and PSO and the novel socio-hydrological framework using ABM prove the forte and diverse applicability of bio-inspired optimization algorithms

    Enhancement of Metaheuristic Algorithm for Scheduling Workflows in Multi-fog Environments

    Get PDF
    Whether in computer science, engineering, or economics, optimization lies at the heart of any challenge involving decision-making. Choosing between several options is part of the decision- making process. Our desire to make the "better" decision drives our decision. An objective function or performance index describes the assessment of the alternative's goodness. The theory and methods of optimization are concerned with picking the best option. There are two types of optimization methods: deterministic and stochastic. The first is a traditional approach, which works well for small and linear problems. However, they struggle to address most of the real-world problems, which have a highly dimensional, nonlinear, and complex nature. As an alternative, stochastic optimization algorithms are specifically designed to tackle these types of challenges and are more common nowadays. This study proposed two stochastic, robust swarm-based metaheuristic optimization methods. They are both hybrid algorithms, which are formulated by combining Particle Swarm Optimization and Salp Swarm Optimization algorithms. Further, these algorithms are then applied to an important and thought-provoking problem. The problem is scientific workflow scheduling in multiple fog environments. Many computer environments, such as fog computing, are plagued by security attacks that must be handled. DDoS attacks are effectively harmful to fog computing environments as they occupy the fog's resources and make them busy. Thus, the fog environments would generally have fewer resources available during these types of attacks, and then the scheduling of submitted Internet of Things (IoT) workflows would be affected. Nevertheless, the current systems disregard the impact of DDoS attacks occurring in their scheduling process, causing the amount of workflows that miss deadlines as well as increasing the amount of tasks that are offloaded to the cloud. Hence, this study proposed a hybrid optimization algorithm as a solution for dealing with the workflow scheduling issue in various fog computing locations. The proposed algorithm comprises Salp Swarm Algorithm (SSA) and Particle Swarm Optimization (PSO). In dealing with the effects of DDoS attacks on fog computing locations, two Markov-chain schemes of discrete time types were used, whereby one calculates the average network bandwidth existing in each fog while the other determines the number of virtual machines existing in every fog on average. DDoS attacks are addressed at various levels. The approach predicts the DDoS attack’s influences on fog environments. Based on the simulation results, the proposed method can significantly lessen the amount of offloaded tasks that are transferred to the cloud data centers. It could also decrease the amount of workflows with missed deadlines. Moreover, the significance of green fog computing is growing in fog computing environments, in which the consumption of energy plays an essential role in determining maintenance expenses and carbon dioxide emissions. The implementation of efficient scheduling methods has the potential to mitigate the usage of energy by allocating tasks to the most appropriate resources, considering the energy efficiency of each individual resource. In order to mitigate these challenges, the proposed algorithm integrates the Dynamic Voltage and Frequency Scaling (DVFS) technique, which is commonly employed to enhance the energy efficiency of processors. The experimental findings demonstrate that the utilization of the proposed method, combined with the Dynamic Voltage and Frequency Scaling (DVFS) technique, yields improved outcomes. These benefits encompass a minimization in energy consumption. Consequently, this approach emerges as a more environmentally friendly and sustainable solution for fog computing environments
    • …
    corecore