4,743 research outputs found

    Renyi Entropy based Target Tracking in Mobile Sensor Networks

    Get PDF
    This paper proposes an entropy based target tracking approach for mobile sensor networks. The proposed tracking algorithm runs a target state estimation stage and a motion control stage alternatively. A distributed particle filter is developed to estimate the target position in the first stage. This distributed particle filter does not require to transmit the weighted particles from one sensor node to another. Instead, a Gaussian mixture model is formulated to approximate the posterior distribution represented by the weighted particles via an EM algorithm. The EM algorithm is developed in a distributed form to compute the parameters of Gaussian mixture model via local communication, which leads to the distributed implementation of the particle filter. A flocking controller is developed to control the mobile sensor nodes to track the target in the second stage. The flocking control algorithm includes three components. Collision avoidance component is based on the design of a separation potential function. Alignment component is based on a consensus algorithm. Navigation component is based on the minimization of an quadratic Renyi entropy. The quadratic Renyi entropy of Gaussian mixture model has an analytical expression so that its optimization is feasible in mobile sensor networks. The proposed active tracking algorithm is tested in simulation. © 2011 IFAC

    GP-Localize: Persistent Mobile Robot Localization using Online Sparse Gaussian Process Observation Model

    Full text link
    Central to robot exploration and mapping is the task of persistent localization in environmental fields characterized by spatially correlated measurements. This paper presents a Gaussian process localization (GP-Localize) algorithm that, in contrast to existing works, can exploit the spatially correlated field measurements taken during a robot's exploration (instead of relying on prior training data) for efficiently and scalably learning the GP observation model online through our proposed novel online sparse GP. As a result, GP-Localize is capable of achieving constant time and memory (i.e., independent of the size of the data) per filtering step, which demonstrates the practical feasibility of using GPs for persistent robot localization and autonomy. Empirical evaluation via simulated experiments with real-world datasets and a real robot experiment shows that GP-Localize outperforms existing GP localization algorithms.Comment: 28th AAAI Conference on Artificial Intelligence (AAAI 2014), Extended version with proofs, 10 page
    • …
    corecore