1,109 research outputs found

    Multimodal score-level fusion using hybrid ga-pso for multibiometric system

    Get PDF
    Due to the limitations that unimodal systems suffer from, Multibiometric systems have gained much interest in the research community on the grounds that they alleviate most of these limitations and are capable of producing better accuracies and performances. One of the important steps to reach this is the choice of the fusion techniques utilized. In this paper, a modeling step based on a hybrid algorithm, that includes Particle Swarm Optimization and Genetic Algorithm, is proposed to combine two biometric modalities at the score level. This optimization technique is employed to find the optimum weights associated to the modalities being fused. An analysis of the results is carried out on the basis of comparing the EER accuracies and ROC curves of the fusion techniques. Furthermore, the execution speed of the hybrid approach is discussed and compared to that of the single optimization algorithms, GA and PS

    Kalman filter with impulse noised outliers : A robust sequential algorithm to filter data with a large number of outliers

    Full text link
    Impulsed noise outliers are data points that differs significantly from other observations.They are generally removed from the data set through local regression or Kalman filter algorithm.However, these methods, or their generalizations, are not well suited when the number of outliers is ofthe same order as the number of low-noise data. In this article, we propose a new model for impulsenoised outliers based on simple latent linear Gaussian processes as in the Kalman Filter. We present a fastforward-backward algorithm to filter and smooth sequential data and which also detect these outliers.We compare the robustness and efficiency of this algorithm with classical methods. Finally, we applythis method on a real data set from a Walk Over Weighing system admitting around 60% of outliers. Forthis application, we further develop an (explicit) EM algorithm to calibrate some algorithm parameters

    Trajectory optimization of space vehicle in rendezvous proximity operation with evolutionary feasibility conserving techniques

    Get PDF
    In this paper, a direct approach is developed for discovering optimal transfer trajectories of close-range rendezvous of satellites considering disturbances in elliptical orbits. The control vector representing the inputs is parameterized via different interpolation methods, and an Estimation of Distribution Algorithm (EDA) that implements mixtures of probability models is presented. To satisfy the terminal conditions, which are represented as non-linear inequality constraints, several feasibility conserving mechanisms associated with learning and sampling methods of the EDAs are proposed, which guarantee the feasibility of the explored solutions. They include a particular implementation of a clustering algorithm, outlier detection, and several heuristic mapping methods. The combination of the proposed operators guides the optimization process in achieving the optimal solution by surfing the regions of the search domain associated with feasible solutions. Numerical simulations confirm that space transfer trajectories with minimum-fuel consumption for the chaser spacecraft can be obtained with terminal condition satisfaction in rendezvous proximity operation.KK-2021/00065 KK-2022/00106; PID2019-104933GB-10/AEI/10.13039/501100011033 PID2019-106453GAI00/AEI/10.13039/501100011033 IT1504-2

    Application of nature-inspired optimization algorithms to improve the production efficiency of small and medium-sized bakeries

    Get PDF
    Increasing production efficiency through schedule optimization is one of the most influential topics in operations research that contributes to decision-making process. It is the concept of allocating tasks among available resources within the constraints of any manufacturing facility in order to minimize costs. It is carried out by a model that resembles real-world task distribution with variables and relevant constraints in order to complete a planned production. In addition to a model, an optimizer is required to assist in evaluating and improving the task allocation procedure in order to maximize overall production efficiency. The entire procedure is usually carried out on a computer, where these two distinct segments combine to form a solution framework for production planning and support decision-making in various manufacturing industries. Small and medium-sized bakeries lack access to cutting-edge tools, and most of their production schedules are based on personal experience. This makes a significant difference in production costs when compared to the large bakeries, as evidenced by their market dominance. In this study, a hybrid no-wait flow shop model is proposed to produce a production schedule based on actual data, featuring the constraints of the production environment in small and medium-sized bakeries. Several single-objective and multi-objective nature-inspired optimization algorithms were implemented to find efficient production schedules. While makespan is the most widely used quality criterion of production efficiency because it dominates production costs, high oven idle time in bakeries also wastes energy. Combining these quality criteria allows for additional cost reduction due to energy savings as well as shorter production time. Therefore, to obtain the efficient production plan, makespan and oven idle time were included in the objectives of optimization. To find the optimal production planning for an existing production line, particle swarm optimization, simulated annealing, and the Nawaz-Enscore-Ham algorithms were used. The weighting factor method was used to combine two objectives into a single objective. The classical optimization algorithms were found to be good enough at finding optimal schedules in a reasonable amount of time, reducing makespan by 29 % and oven idle time by 8 % of one of the analyzed production datasets. Nonetheless, the algorithms convergence was found to be poor, with a lower probability of obtaining the best or nearly the best result. In contrast, a modified particle swarm optimization (MPSO) proposed in this study demonstrated significant improvement in convergence with a higher probability of obtaining better results. To obtain trade-offs between two objectives, state-of-the-art multi-objective optimization algorithms, non-dominated sorting genetic algorithm (NSGA-II), strength Pareto evolutionary algorithm, generalized differential evolution, improved multi-objective particle swarm optimization (OMOPSO) and speed-constrained multi-objective particle swarm optimization (SMPSO) were implemented. Optimization algorithms provided efficient production planning with up to a 12 % reduction in makespan and a 26 % reduction in oven idle time based on data from different production days. The performance comparison revealed a significant difference between these multi-objective optimization algorithms, with NSGA-II performing best and OMOPSO and SMPSO performing worst. Proofing is a key processing stage that contributes to the quality of the final product by developing flavor and fluffiness texture in bread. However, the duration of proofing is uncertain due to the complex interaction of multiple parameters: yeast condition, temperature in the proofing chamber, and chemical composition of flour. Due to the uncertainty of proofing time, a production plan optimized with the shortest makespan can be significantly inefficient. The computational results show that the schedules with the shortest and nearly shortest makespan have a significant (up to 18 %) increase in makespan due to proofing time deviation from expected duration. In this thesis, a method for developing resilient production planning that takes into account uncertain proofing time is proposed, so that even if the deviation in proofing time is extreme, the fluctuation in makespan is minimal. The experimental results with a production dataset revealed a proactive production plan, with only 5 minutes longer than the shortest makespan, but only 21 min fluctuating in makespan due to varying the proofing time from -10 % to +10 % of actual proofing time. This study proposed a common framework for small and medium-sized bakeries to improve their production efficiency in three steps: collecting production data, simulating production planning with the hybrid no-wait flow shop model, and running the optimization algorithm. The study suggests to use MPSO for solving single objective optimization problem and NSGA-II for multi-objective optimization problem. Based on real bakery production data, the results revealed that existing plans were significantly inefficient and could be optimized in a reasonable computational time using a robust optimization algorithm. Implementing such a framework in small and medium-sized bakery manufacturing operations could help to achieve an efficient and resilient production system.Die Steigerung der Produktionseffizienz durch die Optimierung von ArbeitsplĂ€nen ist eines der am meisten erforschten Themen im Bereich der Unternehmensplanung, die zur Entscheidungsfindung beitrĂ€gt. Es handelt sich dabei um die Aufteilung von Aufgaben auf die verfĂŒgbaren Ressourcen innerhalb der BeschrĂ€nkungen einer Produktionsanlage mit dem Ziel der Kostenminimierung. Diese Optimierung von ArbeitsplĂ€nen wird mit Hilfe eines Modells durchgefĂŒhrt, das die Aufgabenverteilung in der realen Welt mit Variablen und relevanten EinschrĂ€nkungen nachbildet, um die Produktion zu simulieren. ZusĂ€tzlich zu einem Modell sind Optimierungsverfahren erforderlich, die bei der Bewertung und Verbesserung der Aufgabenverteilung helfen, um eine effiziente Gesamtproduktion zu erzielen. Das gesamte Verfahren wird in der Regel auf einem Computer durchgefĂŒhrt, wobei diese beiden unterschiedlichen Komponenten (Modell und Optimierungsverfahren) zusammen einen Lösungsrahmen fĂŒr die Produktionsplanung bilden und die Entscheidungsfindung in verschiedenen Fertigungsindustrien unterstĂŒtzen. Kleine und mittelgroße BĂ€ckereien haben zumeist keinen Zugang zu den modernsten Werkzeugen und die meisten ihrer ProduktionsplĂ€ne beruhen auf persönlichen Erfahrungen. Dies macht einen erheblichen Unterschied bei den Produktionskosten im Vergleich zu den großen BĂ€ckereien aus, was sich in deren Marktdominanz widerspiegelt. In dieser Studie wird ein hybrides No-Wait-Flow-Shop-Modell vorgeschlagen, um einen Produktionsplan auf der Grundlage tatsĂ€chlicher Daten zu erstellen, der die BeschrĂ€nkungen der Produktionsumgebung in kleinen und mittleren BĂ€ckereien berĂŒcksichtigt. Mehrere einzel- und mehrzielorientierte, von der Natur inspirierte Optimierungsalgorithmen wurden implementiert, um effiziente ProduktionsplĂ€ne zu berechnen. Die Minimierung der Produktionsdauer ist das am hĂ€ufigsten verwendete QualitĂ€tskriterium fĂŒr die Produktionseffizienz, da sie die Produktionskosten dominiert. Jedoch wird in BĂ€ckereien durch hohe Leerlaufzeiten der Öfen Energie verschwendet was wiederum die Produktionskosten erhöht. Die Kombination beider QualitĂ€tskriterien (minimale Produktionskosten, minimale Leerlaufzeiten der Öfen) ermöglicht eine zusĂ€tzliche Kostenreduzierung durch Energieeinsparungen und kurze Produktionszeiten. Um einen effizienten Produktionsplan zu erhalten, wurden daher die Minimierung der Produktionsdauer und der Ofenleerlaufzeit in die Optimierungsziele einbezogen. Um optimale ProduktionsplĂ€ne fĂŒr bestehende Produktionsprozesse von BĂ€ckereien zu ermitteln, wurden folgende Algorithmen untersucht: Particle Swarm Optimization, Simulated Annealing und Nawaz-Enscore-Ham. Die Methode der Gewichtung wurde verwendet, um zwei Ziele zu einem einzigen Ziel zu kombinieren. Die Optimierungsalgorithmen erwiesen sich als gut genug, um in angemessener Zeit optimale PlĂ€ne zu berechnen, wobei bei einem untersuchten Datensatz die Produktionsdauer um 29 % und die Leerlaufzeit des Ofens um 8 % reduziert wurde. Allerdings erwies sich die Konvergenz der Algorithmen als unzureichend, da nur mit einer geringen Wahrscheinlichkeit das beste oder nahezu beste Ergebnis berechnet wurde. Im Gegensatz dazu zeigte der in dieser Studie ebenfalls untersuchte modifizierte Particle-swarm-Optimierungsalgorithmus (mPSO) eine deutliche Verbesserung der Konvergenz mit einer höheren Wahrscheinlichkeit, bessere Ergebnisse zu erzielen im Vergleich zu den anderen Algorithmen. Um Kompromisse zwischen zwei Zielen zu erzielen, wurden moderne Algorithmen zur Mehrzieloptimierung implementiert: Non-dominated Sorting Genetic Algorithm (NSGA-II), Strength Pareto Evolutionary Algorithm, Generalized Differential Evolution, Improved Multi-objective Particle Swarm Optimization (OMOPSO), and Speed-constrained Multi-objective Particle Swarm Optimization (SMPSO). Die Optimierungsalgorithmen ermöglichten eine effiziente Produktionsplanung mit einer Verringerung der Produktionsdauer um bis zu 12 % und einer Verringerung der Leerlaufzeit der Öfen um 26 % auf der Grundlage von Daten aus unterschiedlichen Produktionsprozessen. Der Leistungsvergleich zeigte signifikante Unterschiede zwischen diesen Mehrziel-Optimierungsalgorithmen, wobei NSGA-II am besten und OMOPSO und SMPSO am schlechtesten abschnitten. Die GĂ€rung ist ein wichtiger Verarbeitungsschritt, der zur QualitĂ€t des Endprodukts beitrĂ€gt, indem der Geschmack und die Textur des Brotes positiv beeinflusst werden kann. Die Dauer der GĂ€rung ist jedoch aufgrund der komplexen Interaktion von mehreren GrĂ¶ĂŸen abhĂ€ngig wie der Hefezustand, der Temperatur in der GĂ€rkammer und der chemischen Zusammensetzung des Mehls. Aufgrund der VariabilitĂ€t der GĂ€rzeit kann jedoch ein Produktionsplan, der auf die kĂŒrzeste Produktionszeit optimiert ist, sehr ineffizient sein. Die Berechnungsergebnisse zeigen, dass die PlĂ€ne mit der kĂŒrzesten und nahezu kĂŒrzesten Produktionsdauer eine erhebliche (bis zu 18 %) Erhöhung der Produktionsdauer aufgrund der Abweichung der GĂ€rzeit von der erwarteten Dauer aufweisen. In dieser Arbeit wird eine Methode zur Entwicklung einer robusten Produktionsplanung vorgeschlagen, die VerĂ€nderungen in den GĂ€rzeiten berĂŒcksichtigt, so dass selbst bei einer extremen Abweichung der GĂ€rzeit die Schwankung der Produktionsdauer minimal ist. Die experimentellen Ergebnisse fĂŒr einen Produktionsprozess ergaben einen robusten Produktionsplan, der nur 5 Minuten lĂ€nger ist als die kĂŒrzeste Produktionsdauer, aber nur 21 Minuten in der Produktionsdauer schwankt, wenn die GĂ€rzeit von -10 % bis +10 % der ermittelten GĂ€rzeit variiert. In dieser Studie wird ein Vorgehen fĂŒr kleine und mittlere BĂ€ckereien vorgeschlagen, um ihre Produktionseffizienz in drei Schritten zu verbessern: Erfassung von Produktionsdaten, Simulation von ProduktionsplĂ€nen mit dem hybrid No-Wait Flow Shop Modell und AusfĂŒhrung der Optimierung. FĂŒr die Einzieloptimierung wird der mPSO-Algorithmus und fĂŒr die Mehrzieloptimierung NSGA-II-Algorithmus empfohlen. Auf der Grundlage realer BĂ€ckereiproduktionsdaten zeigten die Ergebnisse, dass die in den BĂ€ckereien verwendeten PlĂ€ne ineffizient waren und mit Hilfe eines effizienten Optimierungsalgorithmus in einer angemessenen Rechenzeit optimiert werden konnten. Die Umsetzung eines solchen Vorgehens in kleinen und mittelgroßen BĂ€ckereibetrieben trĂ€gt dazu bei effiziente und robuste ProduktionsplĂ€ne zu erstellen und somit die WettbewerbsfĂ€higkeit dieser BĂ€ckereien zu erhöhen

    Towards a more representative parametrisation of hydrologic models via synthesizing the strengths of Particle Swarm Optimisation and Robust Parameter Estimation

    Get PDF
    The development of methods for estimating the parameters of hydrologic models considering uncertainties has been of high interest in hydrologic research over the last years. In particular methods which understand the estimation of hydrologic model parameters as a geometric search of a set of robust performing parameter vectors by application of the concept of data depth found growing research interest. BĂĄrdossy and Singh (2008) presented a first Robust Parameter Estimation Method (ROPE) and applied it for the calibration of a conceptual rainfall-runoff model with daily time step. The basic idea of this algorithm is to identify a set of model parameter vectors with high model performance called good parameters and subsequently generate a set of parameter vectors with high data depth with respect to the first set. Both steps are repeated iteratively until a stopping criterion is met. The results estimated in this case study show the high potential of the principle of data depth to be used for the estimation of hydrologic model parameters. In this paper we present some further developments that address the most important shortcomings of the original ROPE approach. We developed a stratified depth based sampling approach that improves the sampling from non-elliptic and multi-modal distributions. It provides a higher efficiency for the sampling of deep points in parameter spaces with higher dimensionality. Another modification addresses the problem of a too strong shrinking of the estimated set of robust parameter vectors that might lead to overfitting for model calibration with a small amount of calibration data. This contradicts the principle of robustness. Therefore, we suggest to split the available calibration data into two sets and use one set to control the overfitting. All modifications were implemented into a further developed ROPE approach that is called Advanced Robust Parameter Estimation (AROPE). However, in this approach the estimation of the good parameters is still based on an ineffective Monte Carlo approach. Therefore we developed another approach called ROPE with Particle Swarm Optimisation (ROPE-PSO) that substitutes the Monte Carlo approach with a more effective and efficient approach based on Particle Swarm Optimisation. Two case studies demonstrate the improvements of the developed algorithms when compared with the first ROPE approach and two other classical optimisation approaches calibrating a process oriented hydrologic model with hourly time step. The focus of both case studies is on modelling flood events in a small catchment characterised by extreme process dynamics. The calibration problem was repeated with higher dimensionality considering the uncertainty in the soil hydraulic parameters and another conceptual parameter of the soil module. We discuss the estimated results and propose further possibilities in order to apply ROPE as a well-founded parameter estimation and uncertainty analysis tool

    Adaptive algorithms for history matching and uncertainty quantification

    Get PDF
    Numerical reservoir simulation models are the basis for many decisions in regard to predicting, optimising, and improving production performance of oil and gas reservoirs. History matching is required to calibrate models to the dynamic behaviour of the reservoir, due to the existence of uncertainty in model parameters. Finally a set of history matched models are used for reservoir performance prediction and economic and risk assessment of different development scenarios. Various algorithms are employed to search and sample parameter space in history matching and uncertainty quantification problems. The algorithm choice and implementation, as done through a number of control parameters, have a significant impact on effectiveness and efficiency of the algorithm and thus, the quality of results and the speed of the process. This thesis is concerned with investigation, development, and implementation of improved and adaptive algorithms for reservoir history matching and uncertainty quantification problems. A set of evolutionary algorithms are considered and applied to history matching. The shared characteristic of applied algorithms is adaptation by balancing exploration and exploitation of the search space, which can lead to improved convergence and diversity. This includes the use of estimation of distribution algorithms, which implicitly adapt their search mechanism to the characteristics of the problem. Hybridising them with genetic algorithms, multiobjective sorting algorithms, and real-coded, multi-model and multivariate Gaussian-based models can help these algorithms to adapt even more and improve their performance. Finally diversity measures are used to develop an explicit, adaptive algorithm and control the algorithm’s performance, based on the structure of the problem. Uncertainty quantification in a Bayesian framework can be carried out by resampling of the search space using Markov chain Monte-Carlo sampling algorithms. Common critiques of these are low efficiency and their need for control parameter tuning. A Metropolis-Hastings sampling algorithm with an adaptive multivariate Gaussian proposal distribution and a K-nearest neighbour approximation has been developed and applied
    • 

    corecore