72 research outputs found

    Review on auto-depth control system for an unmanned underwater remotely operated vehicle (ROV) using intelligent controller

    Get PDF
    This paper presents a review of auto-depth control system for an Unmanned Underwater Remotely operated Vehicle (ROV), focusing on the Artificial Intelligent Controller Techniques. Specifically, Fuzzy Logic Controller (FLC) is utilized in auto-depth control system for the ROV. This review covered recently published documents for auto-depth control of an Unmanned Underwater Vehicle (UUV). This paper also describes the control issues in UUV especially for the ROV, which has inspired the authors to develop a new technique for auto-depth control of the ROV, called the SIFLC. This technique was the outcome of an investigation and tuning of two parameters, namely the break point and slope for the piecewise linear or slope for the linear approximation. Hardware comparison of the same concepts of ROV design was also discussed. The ROV design is for smallscale, open frame and lower speed. The review on auto-depth control system for ROV, provides insights for readers to design new techniques and algorithms for auto-depth control

    Adaptive simplified fuzzy logic controller for depth control of underwater remotely operated vehicle

    Get PDF
    A Remotely Operated Vehicle (ROV) is one class of the unmanned underwater vehicles that is tethered, unoccupied, highly manoeuvrable, and operated by a person on a platform on water surface. For depth control of ROV, an occurrence of overshoot in the system response is highly dangerous. Clearly an overshoot in the ROV vertical trajectory may cause damages to both the ROV and the inspected structure. Maintaining the position of a small scale ROV within its working area is difficult even for experienced ROV pilots, especially in the presence of underwater currents and waves. This project, focuses on controlling the ROV vertical trajectory as the ROV tries to remain stationary on the desired depth and having its overshoot, rise time and settling time minimized. This project begins with a mathematical and empirical modelling to capture the dynamics of a newly fabricated ROV, followed by an intelligent controller design for depth control of ROV based on the Single Input Fuzzy Logic Controller (SIFLC). Factors affecting the SIFLC were investigated including changing the number of rules, using a linear equation instead of a lookup table and adding a reference model. The parameters of the SIFLC were tuned by an improved Particle Swarm Optimization (PSO) algorithm. A novel adaptive technique called the Adaptive Single Input Fuzzy Logic Controller (ASIFLC) was introduced that has the ability to adapt its parameters depending on the depth set point used. The algorithm was verified in MATLAB® Simulink platform. Then, verified algorithms were tested on an actual prototype ROV in a water tank. Results show it was found that the technique can effectively control the depth of ROV with no overshoot and having its settling time minimized. Since the algorithm can be represented using simple mathematical equations, it can easily be realized using low cost microcontrollers

    State-of-the-Art System Solutions for Unmanned Underwater Vehicles

    Get PDF
    Unmanned Underwater Vehicles (UUVs) have gained popularity for the last decades, especially for the purpose of not risking human life in dangerous operations. On the other hand, underwater environment introduces numerous challenges in navigation, control and communication of such vehicles. Certainly, this fact makes the development of these vehicles more interesting and engineering-wise more attractive. In this paper, we first revisit the existing technology and methodology for the solution of aforementioned problems, then we try to come up with a system solution of a generic unmanned underwater vehicles

    Review on Auto-Depth Control System for an Unmanned Underwater Remotely Operated Vehicle (ROV) using Intelligent Controller

    Get PDF
    This paper presents a review of auto-depth control system for an Unmanned Underwater Remotely operated Vehicle (ROV), focusing on the Artificial Intelligent Controller Techniques. Specifically, Fuzzy Logic Controller (FLC) is utilized in auto-depth control system for the ROV. This review covered recently published documents for auto-depth control of an Unmanned Underwater Vehicle (UUV). This paper also describes the control issues in UUV especially for the ROV, which has inspired the authors to develop a new technique for auto-depth control of the ROV, called the SIFLC. This technique was the outcome of an investigation and tuning of two parameters, namely the break point and slope for the piecewise linear or slope for the linear approximation. Hardware comparison of the same concepts of ROV design was also discussed. The ROV design is for smallscale, open frame and lower speed. The review on auto-depth control system for ROV, provides insights for readers to design new techniques and algorithms for auto-depth contro

    Review on Auto-Depth Control System for an Unmanned Underwater Remotely Operated Vehicle (ROV) using Intelligent Controller

    Get PDF
    This paper presents a review of auto-depth control system for an Unmanned Underwater Remotely operated Vehicle (ROV), focusing on the Artificial Intelligent Controller Techniques. Specifically, Fuzzy Logic Controller (FLC) is utilized in auto-depth control system for the ROV. This review covered recently published documents for auto-depth control of an Unmanned Underwater Vehicle (UUV). This paper also describes the control issues in UUV especially for the ROV, which has inspired the authors to develop a new technique for auto-depth control of the ROV, called the SIFLC. This technique was the outcome of an investigation and tuning of two parameters, namely the break point and slope for the piecewise linear or slope for the linear approximation. Hardware comparison of the same concepts of ROV design was also discussed. The ROV design is for smallscale, open frame and lower speed. The review on auto-depth control system for ROV, provides insights for readers to design new techniques and algorithms for auto-depth contro

    Fault Detection, Isolation and Identification of Autonomous Underwater Vehicles Using Dynamic Neural Networks and Genetic Algorithms

    Get PDF
    The main objective of this thesis is to propose and develop a fault detection, isolation and identification scheme based on dynamic neural networks (DNNs) and genetic algorithm (GA) for thrusters of the autonomous underwater vehicles (AUVs) which provide the force for performing the formation missions. In order to achieve the fault detection task, in this thesis two level of fault detection are proposed, I) Agent-level fault detection (ALFD) and II) Formation-level fault detection (FLFD). The proposed agent-level fault detection scheme includes a dynamic neural network which is trained with absolute measurements and states of each thruster in the AUV. The genetic algorithm is used in order to train the DNN. The results from simulations indicate that although the ALFD scheme can detect the high severity faults, for low severity faults the accuracy is not satisfy our expectations. Therefore, a formation-level fault detection scheme is developed. In the proposed formation-level fault detection scheme, a fault detection unit consist of two dynamic neural networks corresponding to its adjacent neighbors, is employed in each AUV to detect the fault in formation. Each DNN of the fault detection unit is trained with one relative and one absolute measurements. Similar to ALFD scheme, these two DNNs are trained with GA. The simulation results and confusion matrix analysis indicate that our proposed FLFD can detect both low severity and high severity faults with high level of accuracy compare to ALFD scheme. In order to indicate the type and severity of the occurred fault the agent-level and formation-level fault isolation and identification schemes are developed and their performances are compared. In the proposed fault isolation and identification schemes, two neural networks are employed for isolating the type of the fault in the thruster of the AUV and determining the severity of the occurred fault. In the fist step, a multi layer perceptron (MLP) neural network categorize the type of the fault into thruster blocking, flooded thruster and loss of effectiveness in rotor and in the next step a MLP neural network classify the severity into low, medium and high. The neural networks in fault isolation and identification schemes are trained based on genetic algorithm with various data sets which are obtained through different faulty operating condition of the AUV. The simulation results and the confusion matrix analysis indicate that the proposed formation-level fault isolation and identification schemes have a better performance comparing to agent-level schemes and they are capable of isolating and identifying the faults with high level of accuracy and precision

    Algorithms for Fault Detection and Diagnosis

    Get PDF
    Due to the increasing demand for security and reliability in manufacturing and mechatronic systems, early detection and diagnosis of faults are key points to reduce economic losses caused by unscheduled maintenance and downtimes, to increase safety, to prevent the endangerment of human beings involved in the process operations and to improve reliability and availability of autonomous systems. The development of algorithms for health monitoring and fault and anomaly detection, capable of the early detection, isolation, or even prediction of technical component malfunctioning, is becoming more and more crucial in this context. This Special Issue is devoted to new research efforts and results concerning recent advances and challenges in the application of “Algorithms for Fault Detection and Diagnosis”, articulated over a wide range of sectors. The aim is to provide a collection of some of the current state-of-the-art algorithms within this context, together with new advanced theoretical solutions

    Least Squares Based and Two-Stage Least Squares Based Iterative Estimation Algorithms for H-FIR-MA Systems

    Get PDF
    This paper studies the identification of Hammerstein finite impulse response moving average (H-FIR-MA for short) systems. A new two-stage least squares iterative algorithm is developed to identify the parameters of the H-FIR-MA systems. The simulation cases indicate the efficiency of the proposed algorithms

    Least Squares Based Iterative Algorithm for the Coupled Sylvester Matrix Equations

    Get PDF
    By analyzing the eigenvalues of the related matrices, the convergence analysis of the least squares based iteration is given for solving the coupled Sylvester equations AX+YB=C and DX+YE=F in this paper. The analysis shows that the optimal convergence factor of this iterative algorithm is 1. In addition, the proposed iterative algorithm can solve the generalized Sylvester equation AXB+CXD=F. The analysis demonstrates that if the matrix equation has a unique solution then the least squares based iterative solution converges to the exact solution for any initial values. A numerical example illustrates the effectiveness of the proposed algorithm
    corecore