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Abstract

Fault Detection, Isolation and Identification of Autonomous

Underwater Vehicles Using Dynamic Neural Networks and Genetic

Algorithms

Shaghayegh Shahrokhi Tehrani

The main objective of this thesis is to propose and develop a fault detection, isolation

and identification scheme based on dynamic neural networks (DNNs) and genetic

algorithm (GA) for thrusters of the autonomous underwater vehicles (AUVs) which

provide the force for performing the formation missions. In order to achieve the fault

detection task, in this thesis two level of fault detection are proposed, I) Agent-level

fault detection (ALFD) and II) Formation-level fault detection (FLFD). The proposed

agent-level fault detection scheme includes a dynamic neural network which is trained

with absolute measurements and states of each thruster in the AUV. The genetic al-

gorithm is used in order to train the DNN. The results from simulations indicate

that although the ALFD scheme can detect the high severity faults, for low sever-

ity faults the accuracy is not satisfy our expectations. Therefore, a formation-level

fault detection scheme is developed. In the proposed formation-level fault detection

scheme, a fault detection unit consist of two dynamic neural networks corresponding

to its adjacent neighbors, is employed in each AUV to detect the fault in formation.

Each DNN of the fault detection unit is trained with one relative and one absolute

measurements. Similar to ALFD scheme, these two DNNs are trained with GA. The

simulation results and confusion matrix analysis indicate that our proposed FLFD can

detect both low severity and high severity faults with high level of accuracy compare

to ALFD scheme.

In order to indicate the type and severity of the occurred fault the agent-level and

formation-level fault isolation and identification schemes are developed and their per-

formances are compared. In the proposed fault isolation and identification schemes,

two neural networks are employed for isolating the type of the fault in the thruster of
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the AUV and determining the severity of the occurred fault. In the fist step, a multi

layer perceptron (MLP) neural network categorize the type of the fault into thruster

blocking, flooded thruster and loss of effectiveness in rotor and in the next step a MLP

neural network classify the severity into low, medium and high. The neural networks

in fault isolation and identification schemes are trained based on genetic algorithm

with various data sets which are obtained through different faulty operating condition

of the AUV. The simulation results and the confusion matrix analysis indicate that

the proposed formation-level fault isolation and identification schemes have a better

performance comparing to agent-level schemes and they are capable of isolating and

identifying the faults with high level of accuracy and precision.
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Chapter 1

Introduction

1.1 Statement of the Problem

Autonomous Underwater Vehicles (AUVs) are complex systems often performing mis-

sions in unstructured and hazardous environments. AUVs play an important role in

performing underwater tasks, in both civilian and military applications [1, 2].

As the complexities of the missions are increasing, a single AUV could not accom-

plish the mission tasks individually; therefore applying multiple AUVs has received

lots of attention in recent years [3, 4]. The basic idea is to use relatively inexpensive,

simple and small AUVs instead of expensive specialized ones to cooperatively fulfill

difficult and complex underwater missions. The mentioned approach can increase the

overall reliability of the system while decreasing the mission complexity or fulfill the

missions that cannot be executed by a single AUV [5, 6]. The degree of autonomy, ca-

pability of fault detection, isolation and identification are the crucial factors in these

systems to accomplish the tasks of the missions successfully.

Over the last few years, lots of attentions have been paid to the research on the

cooperative control and formation control of multiple autonomous agents, especially

on the cooperative control of groups of robots, UAVs and AUVs [7 - 14].
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Formation of multiple AUVs is a critical technology for underwater missions. In

formation of AUVs the precise formation keeping and collision avoidance between

agents of the formation while doing the mission tasks are the main issues that must

be considered. These issues can be solved with applying the appropriate control

laws and precise sensors and actuators in the formation of AUVs. However, the

performance of the formation can be affected by the possible faults in any of these

components; thus in order to fulfill the mission successfully the fault diagnosis system

is a mandatory part that should be considered for this type of missions.

In general, faults are the abnormal conditions that occur when the plant or its

instruments deviate from their normal behavior. The system that is capable of de-

tecting, isolating and identifying of the faults is called Fault Detection, Isolation and

Identification (FDII) system. The FDII system contains three parts. The first one

is the fault detection system that is in charge of making decision about the working

condition of the monitored system, which can be the normal (healthy) or abnormal

(faulty). The second part is the fault isolation that determines the location of the

fault in the monitored system. In the third section the fault identification indicates

the type of the occurred fault in the monitored system.

In recent years, FDII systems have been developed for the AUVs. Different ap-

proaches have been presented in the literatures on FDII systems, which consider the

faults of sensors, actuators and controllers [111 - 144]. However, majority of these

studies have been done for a single AUV and not much works have been developed

in the literatures on FDII system for multiple AUVs in a formation.

The thrusters are considered as the only actuators in a large number of underwater

vehicles; thus they are considered as one of the most common and important sources

of the faults in AUVs. Consequently, developing a fault diagnosis system for thrusters

of the AUV is essential. The main objective of this work is detecting, isolating and
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identifying the faults in thrusters of multiple autonomous underwater vehicles by

applying artificial neural networks (ANNs).

1.2 Literature Review

1.2.1 Fault Detection, Isolation and Identification

Fault diagnosis for control systems such as autonomous underwater vehicles have been

widely studied in recent years, since sometimes it is critical for the vehicle to perform

the mission in the presence of faults in sensors, actuators and plant. The main task

of the fault diagnosis is to detect and isolate the occurring faults and indicate their

severity in plant, actuators and sensors to avoid the overall failure of the monitored

system.

1.2.1.1 Classification of Fault Diagnosis Systems

The fault diagnosis (i.e. fault detection, isolation and identification) methods can

be categorized in two classes: I) Model-based fault diagnosis and II) History-based

fault diagnosis. Each of these categories are divided into qualitative and quantitative

methods [69]. In the model-based fault diagnosis a priori knowledge about the model

that is expanded based on some principle understanding of the physics of the process

is an essential requirement. In quantitative model-based methods, these understand-

ings are considered as the mathematical functional relationships between the inputs

and outputs of the system, while in qualitative model-based techniques these mathe-

matical functional relationships are stated in terms of qualitative functions centered

around different units in a process. In opposition to the model-based approaches, in

history-based methods the availability of a large amount of historical process data is

necessary. These data are transformed and presented throughout a process, named
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of a mathematical model. The structure of the model-based FDI is illustrated in

Figure 1.2. The two fundamental blocks in the model-based FDI structure are: I)

Figure 1.2: Structure of model-based FDI system [72].

Residual generation and II) Residual evaluation. Residual generation produces signals

by utilizing the available inputs and outputs from the monitored system. These

generated signals that are named as residuals are used to indicate whether or not

the fault occurs. The residual evaluation block performs the threshold test on the

residuals and makes decision if any faults have occurred.

According to the Figure 1.1 , the model-based FDI is categorized in two groups,

quantitative and qualitative approaches. All the approaches in the quantitative cat-

egory named as observer-based, parameter estimation and parity space, require a

mathematical model of the monitored system [73 - 75]. The parameter estimation

technique determines the unknown process parameters with measuring the input and
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output signals based on the model of the system; therefore the faults can be diag-

nosed if the estimated parameter value deviates from its nominal value [76, 77]. The

idea of the parity space methods is to generate auxiliary signals (residuals or parity

vectors) that are independent of system operating conditions and system inputs un-

der nominal operating conditions while carrying fault information [78]. The task of

parity space fault diagnosis is to construct a space for analyzing the residuals (parity

vectors) [79 - 82]. The observer-based method, state observers or output observers,

utilizes the observers that are the dynamical systems in order to estimate the states

and consequently the outputs of a process. Thus, the residuals can be calculated as

the difference between the estimated output and the measured output. Two observers

are applied in the literatures for estimating the output of the system that are named

as Luenberger observers [83 - 90] and Kalman filters [91 - 93], which are utilized in

deterministic setting and stochastic setting respectively.

1.2.1.1.2 History-based Fault Diagnosis

The main issue in model-based fault detection is related to the accuracy of the math-

ematical model that describes the behavior of the monitored system. This issue arises

when the modeling uncertainties make it impossible to fully understand the moni-

tored system and obtain complete information about it. In other words, finding the

precise mathematical model of the monitored system that can be very sensitive to

modeling errors, parameter variation, noise and disturbances is challenging. In order

to overcome this issue, the history-based FDI is developed. The history-based fault

diagnosis approach requires the large amount of the historical process data, which

are transformed by diverse techniques to provide a priori knowledge for the diag-

nostic system. The history-based process is divided in two category: I) Qualitative

and II) Quantitative. The major methods in each of these categories are the expert
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systems and trend modeling for the qualitative and the non-statistical and the sta-

tistical for the quantitative. In past decades, the intelligence and learning theory

approaches in history-based such as neural network, fuzzy-logic, neuro-fuzzy systems,

and genetic algorithms have been developed and utilized as a fault diagnosis system

in different engineering processes. These novel methods provide a way that can get

over the above-mentioned problems of the model-based [94, 95]. Neural networks

based on their nonlinear function approximation property and their ability to learn

and reproduce the system from historical data, are perfect mathematical tools when

the system behavior is provided in a form of large quantitative data sets. Powerful

nonlinear mapping properties, noise tolerance, self-learning and self-adapting, and

parallel processing capabilities are the advantages of the neural networks over the

other fault diagnosis methods [23, 24, 26, 96 - 99].

As mentioned previously, model-based fault diagnosis methods depend on the

mathematical models of the system to determine the deviations between healthy and

faulty operating modes. Developing the mathematical models for complex and non-

linear systems is difficult and time consuming. In addition, in order to validate the

model-based approach, lots of experimentation is required. According to the afore-

mentioned drawbacks of the model-based method, in this thesis the fault diagnosis

approach based on artificial neural networks is applied.

1.2.1.1.3 Hybrid Methods of Fault Diagnosis

As mentioned in previous sections, no single method can provide all the requirements

for a diagnostic system due to their restrictions such as the quality of the information.

The fundamental idea in hybrid fault diagnosis is that some of these methods can

complement each other resulting in more desirable diagnostic system. In other words,

combination of these individual techniques can overcome the limitations of them [26,

100]. In the literature there are some methodologies that utilize the mathematical
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model of a system and the approximation and adaption capability of the neural

networks at the same time [99].

1.2.1.2 Desirable Characteristics of Fault Diagnosis Systems

Fault diagnostic can fulfill with various approaches, in order to make them compara-

ble, it is useful to identify a set of desirable characteristics that a diagnostic system

should possess. According to [69], the fault diagnosis system should posses ideally

the following characteristics:

• Quick detection, isolation and identification

The quick response of the diagnosis system in detection, isolation and identifi-

cation of the process malfunctions is an important factor in order to avoid any

consequences. However, the sensitivity of the fault diagnosis system to noise and

disturbances in normal operation condition can result in frequent false alarms.

• Isolability

Isolability is defined as the ability of the diagnosis system in classification of

various failures in the monitored system. This ability of the classifiers in diag-

nosis system depends to a great extent on the process characteristics. The fault

diagnosis system with high degree of isolability has problem with rejection of

the modeling uncertainties.

• Robustness

The ability of the diagnosis system to operate in the presence of the noise, dis-

turbance and modeling uncertainties is called robustness. In other words, the

performance of the robust fault diagnosis system degrades gracefully instead of

failing totally and abruptly.
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• Novelty identifiability

It refers to the ability of the FDI system in making decisions about the moni-

tored system that whether it operates in a normal or abnormal condition and

if abnormal, whether the cause is a known fault, unknown fault or novel fault.

According to this characteristic, it is expected that the fault diagnosis system

can recognize the occurrence of the novel faults and not misclassify them into

the other groups.

• Classification error estimate

Providing a prior estimate on classification error that can occur in monitored

system is an important practical requirement for the fault diagnosis system.

Such error estimations would be useful to give the reliability level of the fault

diagnosis system.

• Adaptability

The monitored process could change due to structural changes, disturbances and

changing in the environmental conditions, therefore the fault diagnosis system

should be adaptable to these different changes.

• Explanation facility

The fault diagnosis system not only should identify the source of the faults but

also it should provide the information and explanation about the origination of

them. Achieving this ability requires the capability of reasoning on causes and

effects relationships in a process.

• Modeling requirements

The modeling effort for development of the diagnosis classifier that capable to

perform in real-time should be minimal as possible.
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• Storage and computational requirements

The implementation of the algorithms that are no too complex computationally

and have the high capability of the information storing are the two competing

requirements for a fault diagnosis system.

• Multiple fault identifiability

The fault diagnosis system should be able to detect and isolate multiple faults,

which is a difficult task due to the interacting nature of most faults.

1.2.2 Previous Work on Fault Diagnosis of AUVs

Underwater vehicles are liable to faults or failures through underwater tasks to prevent

annulling the missions. In spite of the fact that researchers attempt to design a

model to minimize the occurrence of the faults and failures, the probability of the

fault occurrence exists. Identification that such situations do occur empowers the

designers to minimize the effect of them. In the literature numerous applications of

fault diagnosis are reported for aeronautical and aerospace systems, automotive and

traffic systems, chemical processes, electrical and electronic systems, nuclear plants,

power systems and transportation systems [113]. Recently a significant attention has

been dedicated to fault diagnosis for unmanned underwater vehicles. The integration

of fault-tolerant capabilities within the frameworks of the various control architectures

for unmanned underwater vehicles is still an open problem.

In [111, 114] a model-based fault detection scheme was proposed for isolating

actuators faults in the horizontal motions. The presented algorithm was based on

a bank of Extended Kalman Filters (EKFs) that the outputs of them were checked

in order to diagnose a performance of the system, which was different from dynamic

model. Designing three EKFs simulates the behaviors of the two horizontal thrusters

and horizontal motion. These behaviors were categorized in three types: I) Nominal
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II) Left thruster fault II) Right thruster fault. In [115], the similar method was studied

while instead of using EKFs a sliding-mode observer was applied. The effectiveness

of this approach was validated experimentally.

The study in [104, 116] focused on the thruster failure detection through observing

the motor current and the propeller’s revolution rate. The non-linear nominal char-

acteristic has been identified in experiment; therefore if the measured couple current

propeller’s rate was out of a specific bound, then a fault was occurred. Mapping of

the i-o axis made it feasible to specify the possible cause and informed the remote

human operator. Two types of thruster failures, thruster flooding and rotor failure,

could be isolated as they fell in different axis regions.

The failure in a thruster was also considered in [107] by utilizing the hall-effect

sensor mounting on each thruster. The controller and the thruster control matrix

(TCM) computed the desired voltage, input, when the hall-effect sensor measured

the output voltage. The difference between the measured and the predicated values

for the voltage indicated that a fault occurred.

In [117], a fault manager subsystem was applied for an AUV, which was considered

as a high-level fault detection approach. This method was based on layered control

concepts that in the first step divided the mission into different phases (phase i.e.

series of maneuvers between way points) and secondly when a failure occurred in

each of the phases, it activated a related behavior.

In [118] a model-based fault detection scheme for thrusters and sensors was pre-

sented. It had been developed with respect to the identified model of the 6-thruster

remotely operated vehicle (ROV) and it consisted of a bank of single-output Luen-

berger observers. Its effectiveness was verified by simulations.

In [119] a robust failure detection and isolation (RFDI) method was applied to

the open loop pitch dynamic of an underwater vehicle for detecting the failure during
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maneuvers and also during straight and level cruise. The proposed technique is sen-

sitive to a fault occurrence while remaining robust to failure mode, noise and plant

model uncertainties. This algorithm was the general model of likelihood ration test

for failure detection and isolation in dynamic systems.

The authors in [120] proposed an intelligent decision making (IDM) to detect,

isolate and control faults in control surfaces and sensors of an AUV. The proposed

system was the combination of the learning capability of an ANN and the decision

making ability of a fuzzy expert system (FES). The ANN was trained to detect the

faults and the FES was utilized to suggest alternate measures to recover from the

failure and to identify the stability of the system in the faulty situation.

In [121, 122], the Hotelling’s T 2 statics and the principle component analysis

(PCA) were applied to detect and isolate the faults in underwater vehicles. The stern

plane jams and rudder jams were considered as the fault scenarios in this paper. The

simulation showed that the presented technique was reliable in detecting and isolating

the fault.

A control reconfiguration based on hierarchical FDI (HFDI) for rudder and sensor

failures of an unmanned underwater vehicles (UUVs) was investigated in [123]. The

authors developed a control reconfiguration technique with multiple sliding mode

controller associated with each of the hypothesized failures modes. A probability-

weighted average of all control signals was used to reconfigure the control signal. The

results demonstrated that the proposed method compensated the steering track and

heading angle properly.

The authors in [124] presented an observer-based fault diagnosis to detect, isolate

and identify the actuator faults of the AUV. The support vector machine (SVM)

was utilized as the diagnostic observer which was trained off line. In addition, for

detecting and estimating the unknown actuator faults, a RBF network was embedded
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into the observer. The effectiveness of the proposed method has been validated by

performing simulation for the NPS AUV II vehicle (PHOENIX).

A novel thruster fault diagnosis and accommodation system (FDAS) for open-

frame underwater vehicles was presented in [125]. The presented FDAS composed

of two subsystems named as fault diagnosis subsystem (FDS) and fault accommoda-

tion subsystem (FAS). The FDS utilized fault detector units (FDUs) for monitoring

the thruster states and reporting any internal or external faulty situations. The

proposed FDUs were based on integration of self-organizing maps and fuzzy logic

clustering methods. The FAS accommodated the faults and performed a proper con-

trol reallocation with respect to the information providing by the FDS. The weighted

pseudo-inverse was used in the FAS to find a solution for control allocation problem.

The performance of the proposed FDAS in various faulty situations was evaluated by

a ROV simulator.

The authors in [126] presented a statistical method for detecting and isolating the

faults in the actuator of an AUV. The Hotelling’s T 2 statics and the partial PCA

(PPCA) were utilized in this paper. In PPCA technique the data set was divided

into some subsets and the PCA algorithm was applied on each subset.

The authors in [105] applied a model-based observer to generate residuals between

real behavior of the system that was measured by sensors and the predicated one. In

this approach a fuzzy interface system was used to isolate the source of fault when

the residual is larger than a given threshold.

The authors in [127, 128] presented a fault tolerant control using qualification

of contributing variables (QCV) for AUVs in the presence of stern faults (i.e. stern

plane jams). In this paper the FDI unit was implemented by linear quadratic regulator

(LQR) method which precalculated the gains for different faults and different speeds.

The authors in [129] presented a new fault diagnosis and accommodation system
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for open-frame underwater vehicles. For the online FDI unit an improved credit

assignment cerebellar model articulation controllers (ICMAC) neural network was

utilized which has a faster training process in comparison with the traditional neural

networks (i.e. MLP). In the fault accommodation unit a weighted pseudo-inverse

based controller was applied.

Wang et al. presented a fault detection and identification scheme for sensors of

AUV based on the improved PCA model [130]. This novel method was named as

cumulative percent variance based on average eigenvalue that was applied to select

the principal component scores. In this work the PCA, Hotelling’s T 2 test and Q-

statics were used.

The authors proposed a model-based thruster fault detection scheme for an AUV

in [131]. Practically, a motor controller provides either, or both, electric current

load and shaft angular velocity as feedback. Accordingly, for a vehicle equipped

with servo motor based marine thrusters, the velocity and current feedback from

the motor controllers can be used to derive two independent thrust approximations.

The difference between the two models revealed the presence of fault conditions, and

computed the error of the output thrust relative to the desired reference. Moreover,

the faults were inherently isolated because each thruster had its dedicated motor

controller with independently monitored feedback data.

A grey dynamic prediction (GDP) based sensor fault diagnosis for AUV was pre-

sented in [132]. The proposed method was applied to diagnose the faults in depth

sensors of the AUV. The results showed that this method was fast and accurate in

diagnosing the faults but it was not sensitive for slow faults.

Liang et al. proposed a least disturbance wavelet neural network to produce the

dynamic model of an AUV [133]. The residuals were generated by comparing the

outputs of the dynamical models and the real state values to detect the thruster
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faults of the AUV.

The authors in [134] presented a fault diagnosis system for thruster of an AUV.

In the proposed FDI system, a bank of nonlinear diagnostic observers were applied

to generate the residuals. The generated residuals were the difference between the

behavior of the reference model and the behavior of the AUV. The decision about

the occurrence of the fault in the thruster was made by evaluating the residuals.

Corradini et al. presented an actuator fault-tolerant control (FTC) scheme for

a class of nonlinear system which was applied for an underwater remotely operated

vehicle (ROV) [135]. The proposed method consisted of three modules named as,

detection, isolation and accommodation. The fault detection was performed by a

nonlinear observer, while the isolation and the control was based on the sliding mode

control (SMC) where each sliding surface was affected by a single thruster. Finally,

when the faulty actuator was determined the control reconfiguration was done through

utilizing the redundant healthy actuator. Similarly the authors proposed a failure

tolerant robust control scheme for an actuator of the underwater ROV in [136]. In

this scheme in the first step a reduced order observer has been designed to estimate the

ROV velocities. Then the measured ROV positions and the estimated velocities has

been used to develop the SMC algorithm and detect the thruster failures. In the next

step, isolation was performed through exploiting the ROV structure and finally when

the faulty thruster was identified, it was replaced by a healthy redundant actuator.

A quantitative/qualitative hybrid fault diagnosis method for simultaneous faults

of thrusters and sensors of the AUV was proposed in [137]. The presented method

was the combination of neural network technology with the dynamic trend analysis

technology. In the first step of this method a fault detection observer model was

applied to achieve the estimated state and the fault vector of AUV, then the dynamic

trend analysis was proposed to locate the fault. The effectiveness of this method was
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shown by experiment results on ”Beaver” AUV.

Jianguo et al. presented a fault diagnosis scheme for AUV based on wavelet neural

networks (WNN) [138]. The WNN was used to build the model of the AUV, and the

residuals were generated by comparing the sensor outputs and the WNN outputs.

The fault diagnosis was accomplished by analyzing the residuals based on the rules

that were achieved through the simulation.

The authors in [139] presented a new fault diagnosis and accommodation tech-

nique for unmanned underwater vehicles. The proposed fault identification subsystem

was named as credit assignment-based fuzzy cerebellar model articulation controllers

(FCA-CMAC) neural network which was applied for identification of multi-uncertain

abrupt thruster faults of the unmanned underwater vehicles. A reconstruction algo-

rithm based on weighted pseudo-inverse was utilized for finding the possible solution

of the allocation problem.

The authors in [140] proposed an H∞ formulation of the simultaneous fault de-

tection and control (SFDC) problem for an AUV. In this method dynamic observer

detectors and state feed-back controller for linear continuous-time model of AUVs

were used. An LMI-based (linear matrix inequality) solution to the SFDC was pre-

sented in this work which stabilized the closed-loop system, and ensured achieving

control and fault detection.

A fault diagnosis method based on grey correlation analysis for sensor of AUV

was presented in [141]. The sensor fault was detected and isolated through analyzing

correlation coefficient between fault pattern vector and testing vector. The proposed

technique had some advantages such as, it required no system model. The simulation

results proved that the sensor faults were diagnosed fast and accurately by using

this method. The authors in [142] presented a sensor fault diagnosis method based

on second-order Taylor series dynamic prediction (SOTSDP) for AUV. Generally,
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the SOTSDP is utilized to build the model of the system when the information is

incomplete. The simulation results showed that the proposed method can diagnose

the sensor faults fast and precisely but it was not sensitive to slow change faults.

This technique improved the prediction accuracy in comparison with grey dynamic

prediction approach.

The authors in [143] developed an H∞/H− formulation of the simultaneous fault

detection, isolation and tracking (SFDIT) problem for linear continuous-time systems

using a dynamic observer. In the proposed method, each element of the residual

vector was sensitive to a specific fault, for this reason the occurrence of simultaneous

faults was manageable. An LMI-based approach to the SFDIT was proposed in this

work which stabilized the closed-loop system, and ensured achieving control and fault

detection. This method was applied to the linearized longitudinal mode of the Subzero

II AUV which the results illustrated its effectiveness.

An AUVmulti-fault mode classifier was established in [144] by using fuzzy weighted

support vector domain description (FWSVDD) method based on positive and nega-

tive class samples. In this paper, the multi-fault mode classification technique based

on a hierarchical strategy was presented to improve the training speed and the accu-

racy of the fault diagnosis. In the proposed method fault contain detection surface

was added for each thruster and sensor to isolate fault components during fault diag-

nosis. In addition, a relative judgment method was developed considering the class

ownership and judgment problem for fuzzy sample points that are in the overlapping

area of hyper spheres or that do not belong to any hyper-sphere in the process of

fault classification. The effectiveness of the presented multi-fault diagnosis approach

was validated through water tank experiments with an experimental AUV prototype.
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1.2.3 Dynamic Neural Networks

In recent years, dynamic neural networks (DNNs) have been significantly applied for

modeling nonlinear systems. The first type of a dynamic neural network applies the

internal feedback in its neurons for modeling the dynamical behavior of the nonlinear

system. This network utilizes the FIR (Finite Impulse Response) or IIR (Infinite

Impulse Response) filters in its neurons structure along with the activation function

[15 - 22].

The second type of dynamic neural networks is called time-delay neural networks,

which adds a delay associated with the weights of the network in order to modify

the static neurons. This modification lead to a network that is capable of generating

dynamical behavior of a nonlinear system [23 - 25].

Another form of the dynamic neural networks is developed with applying the

external feedbacks to the structure of the static neural network [26, 27]. In [27], the

tapped delay lines were utilized along a static network as the external feedbacks to

present the dynamical behavior. The other method in external feedback was proposed

in [26], where the extensive feedback between the neurons of different layers generates

the dynamics in the structure of the neural network. A fault diagnosis system for the

reaction wheel of the satellites based on a recurrent Elman network was presented

in [28]. Similarly, in [29] a fault diagnosis scheme based on recurrent neural network

was applied for detecting and isolating the fault in the actuator and thruster of the

satellite.

A neuro-dynamic structure was developed in [15], which utilized an internal feed-

back between the input and output of the neurons. This method employed an IIR filter

that lead to local memory characteristics for the neural network. In this approach

the filter was placed before the activation function while in [24] the filter was applied

after the activation function of the neuron that result in a simpler relation between
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the input and output of the network. In the other approach in [23], a delayed sample

of the output was considered as an input to the neural network for modeling the

dynamical systems.

As mentioned earlier the dynamic neural networks are capable of learning the

dynamics of the nonlinear systems, thus recently they have applied in fault diagnosis

systems. In [19], a dynamic neural model was proposed in order to detect actuator

faults in the attitude control subsystem of a satellite. The authors in [22] presented

a dynamic neural network for fault detection of real sugar evaporation processes.

A simulation perturbation stochastic approximation was developed for updating the

network parameters. In addition, for isolating the fault in the system a multiple model

including healthy and faulty modes was applied. The other fault diagnosis system

based on dynamic neural networks was developed for thrusters in the formation flying

of satellites [18]. The network had a series-parallel architecture, which means it

utilized a delayed feedback of the actual output for the training phase and a feedback

of the network for the recall phase. A dynamic neural network was developed in [30]

for process modeling and fault diagnosis of a two-tank process. A modified form of

dynamic neural networks for identification of nonlinear systems was presented in [24],

where the application of it for fault detection of the aircraft jet engines have been

shown in [17]. In [17], for each parameter of the engine a separate neural network

was developed and for the residual generation the series-parallel method was applied.

Time delay neural network (TDNN) is another structure for the dynamic neural

networks that primarily was developed by Wiabel [25] for phoneme recognition. This

network contains a delay along with each weight to provide a dynamic neuron. The

delays in TDNN are applied to all the layers of the network, while in taped delay

network the delays only are considered for the input layer. These two networks

are utilized for recognition of spatio-temporal patterns and the back propagation
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algorithm is used for training them.

In order to improve the performance of the conventional time delay neural net-

works that utilizes the fixed delays during the training phase, the adaptive time delay

neural network (ATDNN) was presented in [23]. In the ATDNN the weights and

the delays were updated in the training mode. The proposed neural networks in

[23] have been applied for identification of four different classes of nonlinear systems.

This method was developed for identification of a two-link flexible robot [31]. The

development of the TDNN can be seen in fault diagnosis systems of automobile trans-

missions gears which was combined with radial basis function (RBF) network [32] and

also damage detection of railway bridges [33]. The TDNN was applied in other areas

such as modeling industrial systems, speech recognition and image sequence analysis

[34].

The authors in [166] presented a fault detection and isolation scheme based on

neural networks in order to detect and isolate the component faults in a dual spool

turbo fan engine. In the proposed method, multiple dynamic neural networks (DNNs)

were used where each of the networks corresponded to different operation modes

of the healthy and faulty engine conditions. The performance of this method was

investigated through various faulty scenarios.

1.2.4 Formation Control of AUVs

During the last two decades, the ”Formation Control” is received lots of attentions

from researchers, since it can reduce the system cost and increase the robustness

and efficiency of the system. Formation control is considered as one of the most

fundamental problems in control of Multi-AUVs, which means each AUV keeps a

desired formation configuration while performing the mission. The formation of small

AUVs is capable of performing the tasks of a large AUV, since the tasks are distributed
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among them.

Formation control strategies are divided into two main category namely as, cen-

tralized and decentralized. A centralized coordination scheme depends on the as-

sumption that each vehicle in the team has the ability to communicate to a central

vehicle. Therefore, the coordination of all vehicles can be achieved if the central

command and control has the capability to process the information and inform each

individual vehicle the desired localization or command frequently enough. In decen-

tralized coordination scheme a group of vehicles reaches the desired group behavior

via local interaction [178]. In this scheme there is no central vehicle and the feedback

is only the relative states of each vehicle to its neighbor vehicles.

The centralized approach requires the stable communication among the vehicles

but is vulnerable because of inevitable disturbances, limited bandwidth, and unreli-

able communication channels [178]. Another disadvantage of the centralized scheme

is the failure of the overall system due to its single point of failure [164]. The cen-

tralized formation control is considered as a good strategy for the small teams which

are implemented with a single computer and a single sensor to monitor and control

the entire team. However, for the teams with a large number of agents that require

greater computational capacity and a large communication bandwidth, utilizing the

decentralized formation control strategy is preferred because the computational load

is equally distribute through the formation. Another advantage of the decentralized

method in comparison with the centralized approach is its robustness to a single-point

failure [177] .

In addition, the formation architectures are roughly categorized as leader-follower,

behavioral and virtual structure. These main categories are fully explained in follow-

ing.
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• Leader-Follower approach

In this method one of the agents is considered as a leader and the remaining

agents is designated as followers. The leader tracks the pre-specified trajectory

while the others should track the states that transforms by the leader to them.

The advantage of applying this technique is that the group behavior can be

determined through specifying the leader’s behavior. Although, it can result in

dependency of the formation failure on a single points and nonexistence of the

obvious feedback to the formation.

• Behavioral approach

In this method the various desired behaviors are determined for each of the

agents that leads to the controlling each of the agents based on the weighted

average of the control for each behavior. The behaviors can be named as: for-

mation keeping, goal seeking, collision avoidance and obstacle avoidance. The

pros. and cons. of this approach are listed below: Advantages: 1) The im-

plementation is decentralized that can compensate the problem of centralized

approach, which is the failure of the formation depends on one agent. 2) As

each agent reacts to the position of its neighbors, the explicit feedback to the

formation is existed. 3) Deriving control strategies naturally while the agents

have multiple competing objectives. Disadvantages: 1) An explicit group be-

havior cannot be defined in this technique. 2) At the point of mathematics it

is difficult to analyze and warrant the stability of the group.

• Virtual Structure

In this method the formation acts as a single structure, which is called ”Virtual

Structure”. It is considered as a rigid body with a specified direction and

orientation that should keep the geometric pattern among agents. The main
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advantage of this methodology is that describing the coordination behavior of

the group is easy. The disadvantage of it is that the virtual structure results in

the limitation of the area that this technique can be used.

The proposed framework in [35] for keeping the fixed geometrical formation while

performing the mission in multiple AUVs formation used the leader-follower algo-

rithm. In the presented scheme each follower stayed in the predetermined position

by use of measurement of its inertial position and the leader vehicle position, which

obtained by using acoustic Long Base Line (LBL). In addition, if the follower cannot

complete the mission it can be done in two ways: 1) Each follower use its independent

navigation that is gained through inertial LBL information or 2) Substituting one of

the followers as a new leader.

In [36] the authors presented a leader-follower formation control of underactuated

AUVs that a virtual vehicle was designed based on the position measurements from

the leader. The trajectory of the virtual vehicle converged to the reference trajectory

of the follower. The Lyapunov and backstepping synthesis were applied as a position

tracking control for the followers to track the virtual vehicle. A variable structure

control law for formation tracking of multiple AUVs was applied in [37]. The AUVs

tracked along the desired trajectory by minimizing the cross track error that was

calculated from the line-of-sight angle and the leader-follower formation control was

established, which was based on the feedback linearization.

In [38] a leader-follower formation control for multiple autonomous underwater

vehicles in spatial motion was presented while incorporating the uncertainties of hy-

drodynamic parameters into the controller design was considered. In this work the

leader kept its desired trajectory by applying adaptive inverse dynamics algorithm

and it periodically broadcasted its position to the followers, since they maintained in

a fixed configuration with use of this information and applying the adaptive control

23



algorithm.

The study in [39] presented an adaptive distributed control for a group AUVs,

which considered the hydrodynamic parameters uncertainties of the vehicle and the

communication constraints in underwater environment. In this work the inter-vehicle

communication in formation control was eliminated by use of a local controller for

each AUV that produced control signal based on the measured formation functions,

which broadcasted to the whole system. In this work, an adaptive inverse dynamics

algorithm was applied to deal with uncertainties in the hydrodynamic parameters.

The authors in [40] developed a formation control scheme for large-scale multiple

autonomous underwater vehicles, which was the combination of the leader-follower

and the virtual structure. In this method the AUVs were categorized into some

clusters based on their relative position in space. The leaders in all clusters track

their desired trajectories according to the virtual structure and back stepping control

algorithm, and the followers of all clusters followed their corresponding leader as

the desired tracking trajectory. In addition, this hierarchical virtual-leader-follower

structure was developed to overcome the constraints of the acoustic communication

that the AUVs deal with them.

The formation control of multiple AUVs presenting in [41] was a control method

under fixed interconnection topology, which means the AUV exchange information

with the fixed AUVs (neighbors) during the mission. This method included two parts:

1) Path Following and 2) Formation Keeping. In the formation keeping the formation

reference point (FRP) was considered that follows the given parameterized path with

a desired formation speed and each AUV followed the point with a predetermined

distance to FRP. The authors designed an adaptive sliding variable structure control

law for AUVs, since there was parameter uncertainty and environmental disturbances.
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1.2.5 Genetic Algorithms and Neural Networks

Genetic algorithms (GAs) are considered as the search techniques that are very ef-

ficient in optimization problems. The GAs search the enormous and complicated

spaces in order to find the global optima. Since the neural network weight selection

problem includes a search space, the GA method can be a possible solution for finding

the weights.

According to the literature, one of the main challenges in neural networks is

spreading more local optima over the space when the number of examples and com-

plexity of the network increases. The gradient-based approaches deal with some

difficulties to pass the local optima and find the global optima. Thus, the GAs

can be a possible choice when the complexity of the search space increases and the

gradient-based techniques such as back-propagation are not able to find the global

optima.

Another advantage of the GAs is their generality which means by applying minor

changes into the algorithm, it can be utilized to train various types of networks. They

can choose the weights for the networks with the closed paths in their topologies such

as recurrent networks. They can be used to train networks with different kind of

transfer functions like Gaussians and step transfer functions that are discontinuous

and cannot be trained by the traditional gradient-based methods. In addition, genetic

algorithms can optimize any networks with various combinations of weights, biases,

topologies, and transfer functions. Genetic algorithms have been used together with

neural networks in different modes that are expressed as follows [42]:

• Applying genetic algorithms in order to process neural network data, generally

GAs are used to do feature selection.

• Selecting the topology of the neural networks via using genetic algorithms. In
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other words, the GA determines the number of the hidden units that is required

in the network and how the nodes should be connected.

• Selecting the weights of the neural networks by means of genetic algorithms.

• Using genetic algorithms in order to learn the neural network learning algorithm.

The evolution of weights in the networks with the static structure can be consid-

ered as a replacement of the traditional training algorithms. The traditional gradient-

descent methods such as back-propagation (BP) [43], can be trapped in the local

minima and they require that the activation function be differentiable, while the evo-

lutionary approaches can overcome these difficulties. Therefore, instead of adapting

the weights locally, evolutionary algorithms (EAs) are applied to evolve the weights

with respect to the fitness of the whole network.

Different approaches have been presented in the literature for optimizing the neu-

ral network weights that utilize genetic algorithms. The methods in the literatures

are explained fully in following.

In [44] the biases and the weights of the neural network were encoded with real

numbers and were initialized based on a random probability distribution function.

Different type of genetic operators named as, mutations, crossovers and gradients

were applied in this study. Mutation employed perturbation to some of the entries

in the chromosomes at random for generating its offspring. Crossover generated the

two offsprings that containing the genetic material from their parents. The gradient

operator determined the child of the selected individual through adding the gradient

value regarding the evaluation function to its entries. The main objective of this work

was selecting a set of good operators for the problem based on their performance in

different situations. The results proved that the evolutionary training is faster that

the BP approach.
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Whitley et al. proposed a genetic approach based on binary encoding of the

weights that is called GENITOR [45]. In the proposed algorithm each string was

evaluated and the population was arranged with respect to ranking strings based on

their evaluations. The random selection was applied to select parents for recombina-

tion. Only one of the generated offsprings by recombination of the selected parents

remained and it was replaced in the population based on its ranked string. Whitley et

al. compared their algorithm with the Montana and Davis method in [46]. The main

difference of these two techniques was the implementation of encoding. Whitley et

al. presented a modified version of the GENITOR in [47, 48] where the real value en-

coding, a small population and high mutation rates were considered in the algorithm.

This new method provided better results in comparison with the back-propagation

technique.

One of the difficulties in applying GAs is the premature convergence that occurs

when the population looses its diversity [49]. Yang et al. proposed a genetic algorithm

based on evolutionary stable strategy (ESSGA) in [50] to overcome these problems

and manage convergence speed and the population diversity during the evolution

procedure. This objective was achieved through applying a mutation operator in

conjunction with a controller stable factor. Smith in [51] presented the ESS where

a controller was determined to maintain the quantity of preponderant individuals

to stable quantity of the population dimension in each generation. The authors

showed that by using this approach the premature convergence can be prevented

and there was no increase in the running time. In other words, restricting the over

reproduction of preponderant individuals result in a diverse population and a large

search space. This method applied for the XOR-problem and it increased the speed

and the accuracy.

The authors in [52] studied an evolutionary neural network for gait analysis of
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human motion. In this work the real numbers were selected for the weight evolution

of the network. The multi-point crossover and the mutations were the operators that

were implemented. In mutation procedure the mutation rate and the step size were

varied. The multi point crossover was carried out on the binary chromosomes and

they were decoded to generate the offsprings with real number of chromosomes. The

results proved that the mutation and crossover provided a system with the better

classification ability in comparison with the multi layer perceptron (MLP) network.

In addition, the simulation results showed that the BP approach was over-fitting the

training data and had more error comparing to the evolutionary method.

Seiffert in [53] presented a genetic algorithm in the training phase of the MLPs

which can be completely be replaced by the traditional gradient descent approach. In

this work the architecture of the neural network was determined in advance and stayed

fixed after the initialization. The chromosomes of the genetic algorithms contained

the weight values and did not include any information about the topology or the

structure of the network. Selection, reproduction and mutations were the operators

that were applied in this work. The author implemented this method on various

problems to compare the results with BP solutions. The outcome proved that in

the complex problem the BP algorithm failed and the GA can be considered as an

alternative.

A genetic inheritance operator named as, short-term reproduction expectancy

(STRE) was applied in [54] to determine the weights of an EANN that is a multi-layer

feedforward network with a predetermined fixed topology. In the STRE method a set

of best fit parent chromosomes were selected and their life expectancy is extended for

at least one generation whereas the remaining chromosomes were the best fit offspring.

In this algorithm no mutation operator was applied and a two-point crossover is used

for the reproduction. The chromosomes were coded in decimal with values between
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0 and 9. The inverse of the root mean squared error in the training phase was chosen

as the fitness value for the chromosomes. This algorithm was applied for prediction

of uplift capacity in the field of geotechnical engineering. The result showed that

the STRE converged faster, decreased the learning error and provided better values

compared to other approaches.

In [55], a genetic algorithm was applied to optimize the weights of a three-layer

back propagation network to minimize the error. This neural network was used to

anticipate punch radius regarding to the air-bending of sheet metal experiments.

The presented algorithm contained two steps: in the first stage the GA was applied

in order to find the optimal connection weights and the threshold for the network,

following the learning rules of the back-propagation was used for adjusting the final

weights. The simulation results showed the effectiveness of the proposed algorithm

in accurate prediction of punch radius with less time and fast convergence.

The authors in [56] presented a novel real-coded genetic approach called ”RCGA-

ELM” in order to find the optimal number of hidden neurons, input weights and

bias values. Selecting these optimal numbers is critical for performance of the ELM

network. Two new genetic operators were applied in this work namely as ”network

based operator” and ”weight based operator”. The network based operator for the

crossover used heuristic operation to generate the weights of the Lth hidden neuron

and for the mutation operator added or deleted a hidden neuron in the selected parent.

The weight based operator used an averaging operation to generate the values of the

selected connections in the children for crossover and randomly selected M weight

values in mutation. The results showed that the proposed method was effective.

In [57] the hybrid taguchi-genetic algorithm (HTGA) was implemented to find the

optimal parameters of the ANN including weights of links and biases. This HTGA

based ANN have been applied to predict the transfusions requirements of the RD-PC
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and the SD-PC on AML patients. The taguchi method applied two major tools named

as, signal-to-noise ration and orthogonal arrays to select better genes for crossover.

The experimental results proved the prediction accuracy of this proposed algorithm.

The combination of the adaptive genetic algorithm and modified Newton method

was proposed in [58] to train a feedforward neural network. The genetic algorithm and

its operators searched for the initial weights and bias, whereas the Newton algorithm

increased the performance of the network. The effectiveness of this method was shown

by experiments of system identification and suppression.

Karegowda et al. proposed a hybrid model that combined genetic algorithm and

BP where the GA was applied to initialize and optimize the connection weights of

neural network [59]. In the presented method the chromosomes were encoded through

real value approach, the fitness value was calculated through mean squared error and

the individuals with the best fit were replaced the worst fit individuals. A new

type of crossover called mixed crossover was implemented where for the 60% of the

generation the multipoint crossover were used, following by next 20% of generation

utilized two point crossover and the remained population used the one point crossover.

In the last stage of the algorithm the mutation was applied. This algorithm had been

experimented for classification of the PIMA data set and the experimental results

showed its accuracy in classification comparing to the BP network.

As in the RBF neural networks accomplishing the learning ability and decid-

ing about the network architecture is hard the authors in [60] proposed an algorithm

where the RBF neural network learning was optimized based on the genetic algorithm.

This method implemented hybrid encoding which encoded the network through bi-

nary encoding and encoded the weights by real encoding. The network architecture

was self-adapted while the weights of the network were learned. Finally the network
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was adjusted by pseudo inverse method or least mean square algorithm. The re-

sults showed that by applying this method the network had a better architecture and

classification ability and the time for constructing the network decreased.

A method was proposed in [61] for optimizing the BP algorithm by using genetic

algorithm for training the BP network for overcoming disadvantages of the BP named

as, getting stuck in local minima and not having a good rate of convergence. This

algorithm was validated by the UCI data set which proved that the combination

of the GA and BP had a better generalization ability and had a good stabilization

performance.

Elveren and Yumuşak in [62] proposed a genetic algorithm for training a multi-

layer neural network with two hidden layers. This method was applied for classifi-

cation of the tuberculosis data set and the experimental results proved that it had

a better performance in comparison with a traditional multi layer neural network

(MLNN).

Back propagation and genetic algorithm results in adjusting the feedforward neural

networks weights were compared in [63]. The comparison showed that the back

propagation method had a faster speed while it had the disadvantage of overtraining

where the GA did not. In addition, the required central processing unit (CPU) time

was less in back propagation comparing to GA.

A hybrid genetic algorithm-neural network (GA-ANN) is presented in [64] which

combined the ability of the gradient-based back propagation in local searching and

the ability of the genetic algorithm in global searching. The genetic algorithm was

applied to set the initial weights of the gradient decent method. The developed

ANN learning process contained two steps: in the first step the GA was employed to

find the approximate optimal weights and threshold for the network, then the back

propagation was applied to adjust the final weight values. The experimental results
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indicated that the presented method had a better performance in comparison with

back propagation.

Ahmadi et al. presented a feedforward artificial neural network where the opti-

mization of the network was done by means of hybrid genetic algorithm and particle

swarm optimization method [65]. The proposed genetic algorithm was applied for

initial weighting the parameters of the neural network. This hybrid algorithm was

applied to anticipate the permeability distribution in an oil field case. The experimen-

tal results indicated that the proposed algorithm was more reliable in comparison with

traditional methods; it was a strong optimization tool in problems when the objective

function has lots of local minima; it provided a precise prediction of the permeability

and it had lower mean squared error (MSE).

The authors in [66] studied the effectiveness of the evolutionary training of the

feedforward neural network in cancer detection and prediction of its recurrence.

The GA was particularly implemented to optimize the MLP weights. The encod-

ing approach was based on the real value encoding. Five different crossovers were

implemented separately named as, total arithmetic recombination operator, blend

crossover, wright’s heuristic crossover, linear BGA crossover and uniform crossover;

the effectiveness of each crossover approach compared to others. The experimental

showed that the presented algorithm provided the optimal weights and had the ability

of using different data sets with keeping the accuracy comparing to other methods.

The authors in [67] presented a wavelet neural network (WNN) which was opti-

mized using genetic algorithm to predict the air traffic flow. This presented method

overcame the difficulties of the local minima and the oscillation effect of the wavelet

neural network that uses only the traditional gradient descent method. The experi-

mental results proved that the proposed technique had a high precision feature and

can find the globally optimal parameters of the network.
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Kalderstam et al. in [68] developed a prognostic model by applying the ANNs

which were trained with genetic algorithm. The results of the proposed algorithm

compared with Cox model showed that the ANN model has a greater performance

on nonlinear data.

The authors in [168], presented an adaptive time delay neural network training

based on parallel genetic algorithm in order to predict time-series. In the proposed

training method the main population was divided into sub-populations which evolved

separately for a certain number of generation and after a certain time a number of

individuals is distributed between the sub-populations. The results indicated the

efficiency of the proposed method.

1.3 Objective of the Thesis

The main objective of this thesis is to present a fault detection, isolation and iden-

tification (FDII) scheme for thruster in formation of multiple AUVs. In order to

accomplish this goal, the dynamics of the AUV, thrusters and the formation control

architectures are presented and described fully. Two different fault detection schemes

based on dynamic neural networks are presented, named as agent-level fault detection

(ALFD) and formation-level fault detection (FLFD). The mentioned approaches are

developed, described and valued for formation of AUVs by performing extensive sim-

ulation and presenting their results. For the fault isolation and identification schemes,

a multiple neural network-based method is proposed. Two different fault isolation

and identification schemes are presented namely as, agent-level and formation-level.

In the proposed schemes two multi layer perceptron neural networks (MLPNNs) are

employed to classify the type of the occurred fault and indicate its severity respec-

tively. The performance of the proposed agent-level and formation-level fault isolation

and identification schemes are evaluated through simulation.
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1.4 Contributions of the Thesis

The main contributions of this thesis are presented as follows:

• A novel fault detection scheme for thruster of the AUV in a formation is pro-

posed by employing dynamic neural networks (DNNs) which are trained with

genetic algorithm (GA). The fault detection scheme is developed in two different

approaches namely as, agent-level fault detection (ALFD) and formation-level

fault detection (FLFD) scheme. The proposed schemes are capable of success-

fully detecting commonly occurring thruster faults in an AUV. The results that

are obtained through simulations indicate that both agent-level fault detection

and formation-level fault detection schemes can detect medium severity and

high severity faults in the thruster, while the formation-level fault detection

is capable of detecting low severity faults with a high level of accuracy and

precision as well. In addition, the results obtained through a large number of

simulation scenarios demonstrate a high level of accuracy and precision. The

capability of combining the continues genetic algorithm and neural networks

schemes in the fault diagnosis problem is successfully demonstrated.

• The capabilities and advantages of our proposed training algorithm (i.e. genetic

algorithm) for dynamic neural networks is compared with the extended dynamic

back-propagation (EDBP) algorithm. The results indicates that our proposed

training method converge faster and has a less root mean squared error in

comparison with the EDBP algorithm.

• A fault isolation and identification scheme based on multiple neural networks is

proposed to indicate the type of the fault in the thruster of the AUVs and deter-

mining the severity of the occurred fault. The fault isolation and identification
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schemes are developed through two different approaches namely as, agent-level

and formation-level. Two MLPNNs are employed in the fault isolation and

identification schemes respectively to categorize the faults into thruster block-

ing, flooded thruster and loss of effectiveness in rotor and classify their severity

into low, medium and high. The performance of the proposed approaches are

investigated through various faulty scenarios and extensive simulations. The

confusion matrix analysis indicate that the formation-level fault isolation and

identification schemes have a better performance comparing to agent-level and

it is capable of isolating and identifying the faults with acceptable accuracy and

precision.

1.5 Outline of the Thesis

The organization of this thesis is expresses as following:

• In Chapter 2, firstly the model and the architecture of the dynamic neural net-

work (DNN) is explained. Afterward the extended dynamic back-propagation

(EDBP) which is a training algorithm for DNN is described. Secondly the evo-

lutionary computation, evolutionary algorithms and its principles are presented

fully. Afterward the genetic algorithm and its operators are explained in details.

Thirdly, the model of an AUV is fully explained, which includes the kinemat-

ics and nonlinear dynamics. In addition, the concept of AUVs formation and

the controller designs for a single AUV and formation of multiple AUVs are

described in details. Finally, the mathematical model of the propulsion system

of the AUV and the common faults in AUVs are explained.

• In Chapter 3, the agent-level and formation-level fault detection schemes in

the formation of multiple AUVs are proposed and developed. Different fault
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scenarios for thruster are considered and simulated and the accuracy and the

precision of the proposed fault detection schemes are evaluated and compared to

each other. The results corresponding to the training phase of the dynamic neu-

ral network (DNN) based on extended back-propagation (EDBP) and genetic

algorithm (GA) are compared.

• In Chapter 4, the agent-level and formation-level fault isolation and identifica-

tion schemes based on multiple neural networks are proposed and developed.

In the proposed fault isolation and identification schemes, at first a MLPNN is

applied to indicate the type of the occurred fault and secondly, a MLPNN is

used to determine its severity respectively. The generated residuals from the

agent-level and formation-level are processed and are used as the inputs for

these networks. In order to evaluate the performance of these schemes different

faulty scenarios are considered.

• In Chapter 5, the conclusions and the contributions of this thesis are provided

and explained. Finally, the suggestions for future work are presented.
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Chapter 2

Background Information

2.1 Neural Networks (NNs)

Neural networks are considered as nonlinear statistical models [145] that are inspired

by the biological nervous system. Several references exist that present the neural net-

works with combination of neuron and synaptic connections which have the capability

of transmitting data through multiple layers [146 - 147]. These networks are capable

of solving various problems such as pattern recognition and classification. One of the

important features of the artificial neural networks (ANNs) is their adaptive nature

that makes them capable of learning through examples. This feature is beneficial in

problem solving. In addition, ANNs constantly improve their performance through

the learning process.

In ANN design several parameters should be set that can be affect the finding

solution procedure. The number of layers and nodes that are part of the network

architecture and the connection weights are some of these parameters. Moreover, the

training data set and testing data set are considered as the critical factors in finding

solution process.

The back-propagation (BP) method is the common technique that is used in
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training of the neural networks to adapt weights. The BP is based on the gradient

descent algorithm which can get stuck in local minimum and not able to find the global

minimum when the error function is multimodal or non-differentiable. In addition,

the sensitivity of the BP to the initial conditions can make it slow. Therefore, the

evolutionary neural networks can be considered as an alternative to this traditional

method.

2.1.1 Dynamic Neural Network (DNN) Model

The proposed neuro-dynamic structure in this thesis is based on the Ayoubi model

[15], which is named as dynamic neuron model (DNM). Adding the internal dynamics

to the structure of the dynamic neuron model makes the neuron’s activity dependent

on its internal states. This network contains dynamic neurons in its structure that

these dynamic neurons can be produced by adding an infinite impulse response (IIR)

filter in the structure of the standard static perceptron. The structure of a dynamic

neuron model is depicted in Figure 2.1.

Figure 2.1: General structure of the DNM with p inputs [20].

According to the Figure 2.1, in the first stage of the dynamic neuron structure

38



the weighted sum of the inputs is calculated through the following equation:

x(k) = wTu(k) =
P∑

p=1

wpup(k) (2.1.1)

where w = [w1, w2, · · · , wp]
T is the weight vector and u = [u1(k), u2(k), · · · , up(k)]

T

denotes the input vector.

The output of this step is passed through the IIR filter. The transfer function and

the output of the nth order filter are expressed as follows:

ỹ(k) =
n∑

i=1

bix(k − i)−
n∑

i=1

aiỹ(k − i) (2.1.2)

H(q−1) =
b0 + b1q

−1 + b2q
−2 + · · ·+ bnq

−n

1 + a1q−1 + a2q−2 + · · ·+ anq−n
(2.1.3)

where n denotes the order of filter, q is the time shift operator, x(k) denotes the filter

input, ỹ(k) denotes the filter output, a = [a1, a2, · · · , an]
T and b = [b1, b2, · · · , bn]

T

are feedback weight vector and feedforward weight vector respectively. As a result,

the neuron output is stated as:

y(k) = F (g.ỹ(k)) (2.1.4)

where g is the slope parameter of the activation function and F (.) is the nonlinear

activation function.

2.1.2 Dynamic Neural Network Architecture

Figure 2.2 illustrates an L-layered network that uses the dynamic neuron in its struc-

ture. A differentiable activation function, F (.), describes the dynamic neurons.

In Figure 2.2 Nl is the number of neurons in the l − th layer, Ol
n(k) denotes the

39



Figure 2.2: Dynamic neural network architecture

output of the n − th neuron of the l − th layer, and ul
p(k) denotes the input of the

l − th layer, generated from the p− th neuron of the previous layer at discrete times

k (l = 1, · · · , L;n = 1, · · · , Nl). The output of the n − th neuron in the l − th layer

is defined as follows [30]:

Ol
n(k) = F [gln(

D∑

d=0

bldn

Nl−1∑

p=1

wl
npu

l
p(k − d)−

D∑

d=1

aldnỹ
l
n(k − d))] (2.1.5)

In equation (2.1.5), w =

[
wl

np

]
is the weight matrix, a =

[
aldn

]
and b =

[
bldn

]

are the feedback and feedforward filter parameters matrices respectively, g =

[
gln

]

is the slope parameter matrix and D denotes the order of the filter. (l = 1, · · · , L;

n = 1, · · · , NL; d = 1, · · · , D)

It can be noticed from the equation (2.1.5) that the network outputs depend on

the past outputs ỹ(k− 1), ỹ(k− 2), · · · , ỹ(k− n). Since the activation function, F (.),

is an invertible function (e.g. Tangent hyperbolic), therefore the network outputs will

also depend on past outputs y(k − 1), y(k − 2), · · · , y(k − n). Thus the last layer

outputs is expressed in the equation (2.1.6).

OL
n (k) = Γ[y(k − 1), · · · , y(k −ms), u(k), u(k − 1), · · · , u(k − ns)] (2.1.6)
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where Γ(.) is a nonlinear function presenting the overall network map. This equa-

tion shows that the network outputs are nonlinear functions of the inputs and their

delays as well as the previous output samples.

2.1.3 Extended Dynamic Back-Propagation (EDBP) Algo-

rithm

The main objective in both static and dynamic neural network is determining an

algorithm to adjust the parameters of the network. The extended dynamic back-

propagation (EDBP) algorithm which is the modified form of the static back-propagation

algorithm is applied to adjust the parameters of the dynamic neural network [30]. In

the learning process all the unknown network parameters are identified and adjusted

by using the training set of input-output pairs. The back-propagation error method

is applied extensively for training the static networks. The objective of the EDBP

algorithm is to modify all the parameters of the dynamical neural network vector,

γ = [w,A,B, g], to minimize the performance index J which is expressed as follows:

J =
1

2

N∑

i=1

(ei(k))
2 =

1

2

N∑

i=1

(ydi (k)− yi(k))
2 (2.1.7)

where ei(k) denotes the error of the i
th output which is the difference between the

desired response ydi (k) and the actual response yi(k), and N denotes the number of

outputs.

Based on the EDBP algorithm the parameters related to the n− th neuron of the

l − th layer are adjusted based on the following rule:

γl
n(k + 1) = γl

n(k) + ηδln(k)S
l
λn (2.1.8)

where γ is the unknown generalized parameter vector, η denotes the learning rate,

41



S represents the sensitivity function for the elements of the parameter vector γ, and δ

is the generalized output error which is defined for the output layer and hidden layer

in the following equations:

• Hidden layers generalized output error

δln =

Nl+1∑

z=1

(δl+1
n (k)gl+1

z bl+1
0z wl+1

zn )F ′(ỹl1n) (2.1.9)

• Output layer generalized output error

δLn = en(k)F
′(ỹL1n) (2.1.10)

The sensitivity function is given as below:

• Sensitivity with respect to the weight parameters

Sl
wpn

(k) = gln[
m∑

i=0

blinu
l
p(k − i)−

m∑

i=1

alinS
l
wpn

(k − i)] (2.1.11)

• Sensitivity with respect to the feedback parameters

Sl
ain

(k) = −glnỹ
k
n(k − i) (2.1.12)

• Sensitivity with respect to the feed-forward parameters

Sl
bin
(k) = glnx

l
n(k − i) (2.1.13)

• Sensitivity with respect to the slope parameters

Sl
gn
(k) = ỹln(k) (2.1.14)
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Based on the aforementioned equations the updating laws for each of the network

parameters can be expressed as following:

• Hidden layers parameters

– Weight parameters

wl
np(k + 1) = wl

np(k) + η[

Nl+1∑

z=1

(δln(k)g
l+1
z bl+1

0z wl+1
zn )F ′(ỹl1n(k))]

gln[
m∑

i=0

blinu
l
p(k − i)−

m∑

i=1

alinS
l
wpn

(k − i)]

(2.1.15)

– Filter feedback parameters

aln(k + 1) = aln(k)− η[

Nl+1∑

z=1

(δln(k)g
l+1
z bl+1

0z wl+1
zn )F ′(ỹl1n(k))]g

l
nỹ

l
n(k − i)

(2.1.16)

– Filter feed-forward parameters

bln(k+1) = bln(k)−η[

Nl+1∑

z=1

(δln(k)g
l+1
z bl+1

0z wl+1
zn )F ′(ỹl1n(k))]g

l
nx

l
n(k−i) (2.1.17)

– Slope parameters

gln(k + 1) = gln(k)− η[

Nl+1∑

z=1

(δln(k)g
l+1
z bl+1

0z wl+1
zn )F ′(ỹl1n(k))]g

l
nỹ

l
n(k) (2.1.18)

• Output layer parameters

– Weight parameters

wl
np(k+1) = wl

np(k)+η[en(k)F
′(ỹl1n(k))]g

l
n[

m∑

i=0

blinu
l
p(k−i)−

m∑

i=1

alinS
l
wpn

(k−i)]

(2.1.19)
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– Filter feedback parameters

aln(k + 1) = aln(k)− η[en(k)F
′(ỹl1n(k))]g

l
nỹ

l
n(k − i) (2.1.20)

– Filter feed-forward parameters

bln(k + 1) = bln(k)− η[en(k)F
′(ỹl1n(k))]g

l
nx

l
n(k − i) (2.1.21)

– Slope parameters

gln(k + 1) = gln(k)− η[en(k)F
′(ỹl1n(k))]ỹ

l
n(k) (2.1.22)

2.2 Evolutionary Computation

Evolutionary computation (EC) is a recent field of research that is based on the

concept of evolution and adaption [145, 149 - 152]. The principal objective of the

evolutionary computation is to design highly robust, flexible and efficient algorithm

to solve real-world problem where the conventional computing methods deal with

lots of difficulties [153]. The main advantages of the evolutionary computations in

comparison with conventional techniques are presented in the literature [154], which

are the simplicity in concepts and computations, applicable to apply in extensive

types of problems, acceptable for real world problem, ability of the self-optimization,

etc.

According these advantages, the evolutionary computations approaches can be

used in the problems where the environment changes dynamically and multi-objective

optimization requirements. Traditional optimization applications may fail in process-

ing inaccurate, noisy and complex data and they can be replaced by the evolutionary
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computations techniques. The evolutionary computation contains three main tech-

niques namely as, genetic algorithm (GA), evolutionary strategies (ES) and evolu-

tionary programming (EP) which go back to 1960s [155].

2.2.1 Evolutionary Algorithms (EAs)

Recently, the evolutionary algorithm term has been used for the algorithms which im-

plement the evolutionary computation. In complex optimization problems where the

number of parameters is large and finding the analytical solutions are challenging, ap-

plying evolutionary algorithms are beneficial. EAs are capable of finding the optimal

solutions globally over a domain. Evolutionary algorithms have been implemented for

different applications such as combinational optimization problem [156]. The other

applications are related to the design problems such as designing the artificial neural

network topologies and finding the set of optimum weights by using EC techniques.

2.2.1.1 Principles of Evolutionary Algorithms

Evolutionary algorithms are based on three fundamental properties that make them

different from other search algorithms. These primary properties are explained in

following:

• Evolutionary algorithms rely on the population and they utilize the collective

learning procedure of a population of individuals. Each evolutionary algorithm

applies different methods to update the whole population in each of the itera-

tions where the population contains the possible solutions of the problem. The

initial population can be generated randomly from the solution space or the

solutions that are provided by the local search procedures. These algorithms

try to find the globally optimal solutions to the problem.
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• A population is evolved by applying stochastic operators named as, mutation,

recombination and selection. Mutation is applied to avoid from replication of

individuals; the characteristics of the parents are passed to the offspring through

recombination, and selection process choose the better individuals to reproduce

in the next generations.

• The quality of each individuals is measured in their environment. The fitness

of individuals is compared to each other and the selection procedure is fulfilled

based on these quality measurements.

All of these major properties are same for the entire evolutionary algorithms the

differences between algorithms are related to different representations of individuals

and schemes to achieve fitness evaluation, selection and search operators are adopted

differently in each of them.

2.2.2 Evolutionary Artificial Neural Networks (EANNs)

As mentioned in previous sections the evolutionary algorithms are applied in the prob-

lems with complexity and large number of parameters where finding the analytical

solutions is challenging. These types of methods are valuable in finding the optimal

solutions. One of these evolving systems is called neuro-genetic systems that are a

main topic of research in evolutionary computation.

Recently, evolutionary artificial neural networks (EANNs) are received significant

attention in the field of ANN design. One of the noticeable characteristics of EANNs

is their adaptability to dynamic environment. This feature includes two forms of the

adaptations namely as, evolution and learning [157] that makes EANNs capable of

adapting to the environment and it changes more efficiently. EANNs are considered

as the adaptive systems which are able to change their learning rules and architectures

without human interference.
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ANNs and EAs are evolved in different ways in order to achieve the objectives

such as connection weight training, architecture design, learning rule adaption, input

feature selection, connection weight initialization, etc. The three main evolving ANNs

and EAs approaches are expressed in the following:

• Connection weights: The evolution of connection weights is a weight optimiza-

tion method where the network architecture must be static. The evolution of

connection weights is considered as an adaptive and global training technique

that is valuable when the gradient-based training deals with difficulties.

• Learning rules: In this approach the adaption of the learning rules in ANN are

achieved by means of evolution. It can also be considered as an adaptive process

of finding the learning rules automatically.

• Architecture: In this method the ANNs are designed automatically without

human intervention. The ANNs adjust their topologies including connection

weights and structures through evolving.

Feature selection and the evolution of the transfer function of a neural network are

the other methods that are employed in conjunction with the three aforementioned

techniques to achieve more desirable results.

As previously explained, the evolutionary learning are applied in ANNs to pre-

vent the difficulties related to the traditional gradient descent methods such as back-

propagation that can result in trapping in local minima. EAs are less sensitive to

the initial condition of the training. They explore to find the globally optimal solu-

tion, while a gradient descent method can only obtain the locally optimal solution in

the neighborhood of the initial solution. EANNs can overcome these aforementioned

difficulties. One of the beneficial aspects in designing procedure of the evolutionary

artificial neural networks is that a near-optimal neural network with both structure
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and weights can be evolved automatically and there is no need to use the trial and

error.

Several research direction considered the design of the ANN as an optimization

problem. Tettamanzi et al. in [145] explained the evolutionary systems and their

interaction with neural and fuzzy systems. Different studies are done in the area of

designing neural network based on evolutionary algorithms. Some EAs are applied in

the weight optimization that can be considered as an alternative to training algorithm

in the networks with static structures. The other works are focused on the topology,

optimal learning parameters and neural network transfer functions.

2.3 Genetic Algorithms (GAs)

Genetic algorithm is the search and optimization algorithm that its concepts are based

on genetics and natural selection. Genetic algorithms originally attributed to John

Holland and his students in 1970s [158]. GA provides some advantages in comparison

with other methods, mentioning as follows [159]:

• GA can perform the optimization with both continuous and discrete variables.

• GA does not need the derivative information and has the capability to avoid

the local minima.

• GA can be applied for optimization problems with highly complex cost surfaces.

• GA can provide a list of optimal solutions and not only one solution.

• GA can efficiently deal with different objective functions such as, discontinuous

multimodal, and noisy functions.
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2.3.1 Genetic Algorithm Encoding

GA contains a pool of possible solutions that are encoded as chromosomes. The

encoding can be fulfilled in different ways. The two common encoding approaches are

called, binary encoding and real-valued encoding. The binary GA is used in the cases

that the variables are naturally quantized while the real-valued GA is applied when

the variables are continuous. The continuous genetic algorithm has two advantages

in comparison with the binary GA. First of all, since in continuous GA the floating

point numbers presents the variables the less storage is required. Secondly, for the

reason that the chromosomes do not have to be decoded before the evaluation of the

cost function, the continuous GA is faster than the binary GA. In this work, as the

neural network parameters are continuous values the real-valued GA is applied.

2.3.2 Genetic Algorithm Procedure

The genetic algorithm procedure starts with generating an initial population where

the members of this population can be selected at random or regarding some rules.

In the next step, a fitness value is determined for each of the chromosomes in the

population based on the defined fitness function. The fitness function measures the

optimality of each of the possible solutions. According to the fitness value the best

individuals are chosen to create the mating pool. After generating the mating pool,

the next generation is created by using crossover. In the crossover process, two parents

are selected randomly from the mating pool and they exchange their genetic material

and produce offsprings. In the next step the mutation operator is applied on the

offspring pool and randomly change part of the offspring’s genetic. Finally, the new

generated offsprings are compared with the chromosomes based on their fitness value

to decide which chromosomes should be survived to the next generation. These steps
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should be repeated till the termination criterion is accomplished.

Figure 2.3: Genetic algorithm cycle [160]

The genetic algorithm process is illustrated through the GA cycle in Figure 2.3.

In this figure, reproduction is the procedure that two or more parent is combined

to obtain one or more offspring. In fitness evaluation step, the individual’s quality

is calculated. In mutation process the original genetic material has been randomly

changed in one individual to produce a new version of it. Selection proceeding helps

to decide which individuals should be chosen for reproduction and mutation in order

to generate new search points.

2.3.3 Genetic Algorithm Operators

2.3.3.1 Selection

Selection is a critical operator in improving the performance of the GA. During the

selection process the better individuals are allowed to pass their genetic materials

to the next generation. The fitness of each individual determines the goodness of

each chromosomes. The selection can be implemented in different approaches. The
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common selection methods are explained as follows:

1) Roulette Wheel Selection: In this selection technique, the chromosomes are placed

on the roulette wheel regarding their fitness value. Each segment of the roulette wheel

is related to each of the chromosomes that the size of the segments are proportional

to the fitness values of the individuals. In other words, the larger segment is for the

chromosome with higher value of the fitness. The roulette wheel is spinned until it

stops. The individual corresponding to the place that the roulette wheel stopped,

is selected. This process is repeated until the required number of chromosomes is

chosen. Individuals with higher fitness have the more chance to be selected. The

disadvantage of this method is that some good individuals may not be survive to the

next generation.

2) Rank Selection: In this method, the individuals are ranked based on their fitness

values. The chromosomes with higher fitness values will be ranked higher and those

with lower fitness values will have the lower ranks. The chromosomes will be selected

with a probability that is linearly proportional to the rank of the individuals in the

population.

3) Natural Selection: This method inspired by natural selection where fitness values

associated with the chromosomes are ranked from highest values to lowest values.

Then the chromosomes with the most fitness survive and the least fit chromosomes

are eliminated and replaced by the new generated offsprings.

2.3.3.2 Crossover

In crossover process, pairs of parents exchange their materials to generate new off-

spring. The crossover procedure can be divided in two stages. In the first stage, pairs

of chromosomes are mated randomly to produce of two new offsprings. Secondly, a

point is selected in the chromosomes to exchange their genetic material. The most
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common crossover methods are described as follows:

1) Single point crossover

In single point crossover, in the first step a crossover point is chosen randomly. Sec-

ondly, all genes beyond the selected point are exchanged between two parents. The

process of the single point crossover is expressed in following equations:

Parent1 =

[
pm1

, pm2
⋆, pm3

, pm4
, pm5

, pm6
, · · · , pmNvar

]

Parent2 =

[
pd1 , pd2⋆, pd3 , pd4 , pd5 , pd6 , · · · , pdNvar

] (2.3.1)

Offspring1 =

[
pm1

, pm2
⋆, pd3 , pd4 , pd5 , pd6 , · · · , pdNvar

]

Offspring2 =

[
pd1 , pd2⋆, pm3

, pm4
, pm5

, pm6
, · · · , pmNvar

] (2.3.2)

In equation (2.3.1), two parents are mated where the ⋆ is the crossover point that

is selected at random. In equation (2.3.2), the generated offsprings after applying

crossover on parents are shown.

2) Two point crossover

The two point crossover is very much alike to single point crossover excepting the

number of crossover points. In this crossover approach two crossover points are se-

lected at random. The two point crossover method is shown in following equations:

Parent1 =

[
pm1

, pm2
⋆, pm3

, pm4
, pm5

⋆, pm6
, · · · , pmNvar

]

Parent2 =

[
pd1 , pd2⋆, pd3 , pd4 , pd5⋆, pd6 , · · · , pdNvar

] (2.3.3)

Offspring1 =

[
pm1

, pm2
⋆, pd3 , pd4 , pd5⋆, pm6

, · · · , pmNvar

]

Offspring2 =

[
pd1 , pd2⋆, pm3

, pm4
, pm5

⋆, pd6 , · · · , pdNvar

] (2.3.4)

In equation (2.3.3), two parents are mated where the two ⋆ is the crossover points
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that are selected at random. In equation (2.3.4), the generated offsprings after ap-

plying crossover on parents are shown.

3) Uniform crossover

In uniform crossover a gene value of the first parent is assigned to the first offspring

and the value of the second parent’s gene is assigned to the second offspring with prob-

ability of pc which is called as mixing ratio. The crossover operator decides which

gene values of the parents contributes to the offsprings chromosomes. An exemplar

of an uniform crossover is mentioned in following equations:

Parent1 =

[
pm1

, pm2
, pm3

, pm4
, pm5

, pm6
, · · · , pmNvar

]

Parent2 =

[
pd1 , pd2 , pd3 , pd4 , pd5 , pd6 , · · · , pdNvar

] (2.3.5)

Offspring1 =

[
pm1

, pm2
, pd3 , pd4 , pm5

, pd6 , · · · , pmNvar

]

Offspring2 =

[
pm1

, pd2 , pd3 , pd4 , pm5
, pd6 , · · · , pdNvar

] (2.3.6)

In the aforementioned example the mixing ratio for the uniform crossover is set

to pc, since the following genes values (pm3
, pm4

, pm6
> pc and pd1 , pd5 > pc ) in two

parents are bigger than the probability they are swapped with the value of the other

parent’s gene.

The main disadvantage of applying crossover is that it decreases the diversity

of the population. This decrement in diversity leads to a population with identical

chromosomes that are not able to generate new chromosomes. In order to avoid this

problem and keep the diversity of the population the mutation is applied.

2.3.3.3 Mutation

Mutation procedure is implemented differently for each type of chromosomes. The

mutation for a binary chromosome is performed through flipping some bits in the
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chromosome while for a real valued chromosome, the gene to be mutated is changed

with a random values which is selected between it given ranges. The mutation im-

proves the performance of the GA by avoiding fixed values of genes. On the other

hand, mutation can negatively affect the good combinations that found. In order to

reduce the consequences of this negative effect the mutation rate should be set to a

small number. The mutation rate should be selected based on the population size. In

smaller size population the probability that a specific bit in all the chromosomes be

stuck at the same value augments. In order to keep the diversity in the population

the larger mutation rate should be chosen for the smaller populations.

2.4 Underwater Vehicle

Unmanned underwater vehicles (UUVs) are all type of underwater robots which are

operated with minimum or without intervention of human operator. These vehi-

cles can be divided into two groups named as, remotely operated vehicles (ROVs)

and autonomous underwater vehicles (AUVs). The term ROV denotes an underwa-

ter vehicle that physically linked, via the tether, to an operator that can be on a

submarine or on a surface ship. AUV, on the other side, is supposed to be com-

pletely autonomous, thus relying to onboard power system and intelligence [101]. In

case of missions that require interaction with the environment, the vehicle can be

equipped with one or more manipulators; in this case the system is usually called un-

derwater vehicle-manipulator system (UVMS). Currently, there are about more than

100 prototypes in the laboratories all over the world. For instance, r2D4 developed

at URA laboratory of the University of Tokyo (Tokyo, Japan), ABE of the Deep

Submerge Laboratory of the Woods Hole Oceanographic Institution (Massachusetts,

USA), Odissey IId belonging to the AUV Laboratory of the Massachusetts Institute
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of Technology (Massachusetts, USA), ODIN III designed at the Autonomous Sys-

tems Laboratory of the University of Hawaii (Hawaii, USA), Phoenix and ARIES,

torpedo-like vehicles developed at the Naval Postgraduate School (California, USA)

and Girona500 belonging to the University of Girona (Girona, Spain) [101].

2.5 Model of AUV

Modeling of the AUV is divided into two main categories that are named as Kine-

matics and Dynamics, which analyze the geometrical aspects of the motion and the

forces causing the motion respectively. The AUV as a rigid body has six degree of

freedom, which determines the position and orientation of the AUV. The 6 DOF are

defined in table 2.1. In this table the first three coordinates and their time deriva-

tives determine the position and translational motion of the AUV along the x, y,

and z axes, while the last three coordinates and their time derivatives describe the

orientation and rotational motion.

Table 2.1: 6 DOFs of the AUV
DOF Motion Force and Moment Velocity Position

1 Motion in x-direction (Surge) X u x

2 Motion in y-direction (Sway) Y v y

3 Motion in z-direction (Heave) Z w z

4 Rotation about x-axis (Roll) K p φ

5 Rotation about y-axis (Pitch) M q θ

6 Rotation about z-axis (Yaw) N r ψ

55



2.5.1 Kinematics of the AUV

In order to present the motion of the AUV in 6 DOFs, two coordinate frames are

applied. I) Earth-Fixed (Inertial) Frame II) Body-Fixed Frame. The second coordi-

nate frame calling body-fixed reference frame, the moving reference frame, which is

fixed to the vehicle. The origin of the body-fixed frame coincides with the Center of

the Gravity (CG) and the body axes Xo, Yo and Zo coincide with principal axes of

inertia. The following definitions are used for these axes [1]:

• X: Longitudinal axis (Directed from aft to fore)

• Y : Transverse axis (Directed to starboard)

• Z: Normal axis (Directed from top to bottom)

The coordinate frames of the AUV are illustrated in Figure 2.4.

Figure 2.4: Coordinate frames of AUV [161].
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Motion of the body-fixed frame is described relative to inertial frame, therefore the

linear and angular velocities of the vehicle should be expressed in body-fixed frame

while position and orientation should be described with respect to inertial frame. The

following vectors describe the motion of an underwater vehicle in 6 DOF:

η = [ηT1 ηT2 ]
T η1 = [x y z]T η2 = [φ θ ψ]T (2.5.1)

v = [vT1 vT2 ]
T v1 = [u v w]T v2 = [p q r]T (2.5.2)

τ = [τT1 τT2 ]
T τ1 = [X Y Z]T τ2 = [K M N ]T (2.5.3)

where η describes the position and orientation of the vehicle with respect to the

earth-fixed reference frame, v denotes the translational and rotational velocities with

respect to the body-fixed reference frame, and τ is the total forces and moments acting

on the vehicle with respect to the body-fixed reference frame. Vehicle’s path relative

to the earth-fixed coordinate system is determined by a velocity transformation in

equation (2.5.4).

η̇1 = J1(η2)v1 (2.5.4)

where, J1(η2) is a transformation matrix that is calculated as follows:

J1(η2) =

⎡
⎢⎢⎢⎢⎣

cosψcosθ −sinψcosφ+ cosψsinθsinφ sinψcosφ+ cosψsinθcosφ

sinψcosθ cosψcosφ+ sinψsinθsinφ −cosψsinφ+ sinψsinθcosφ

−sinθ cosθsinφ cosθcosφ

⎤
⎥⎥⎥⎥⎦

(2.5.5)

The body-fixed angular velocity vector v2 and the Euler rate vector η̇2 have the

relation through the transformation matrix J2(η2) as bellow:

η̇2 = J2(η2)v2 (2.5.6)
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Where the transformation matrix is calculated in the equation (2.5.7).

J2(η2) =

⎡
⎢⎢⎢⎢⎣

1 sinφtanθ cosφtanθ

0 cosφ −sinφ

0 sinφ

cosθ

cosφ

cosθ

⎤
⎥⎥⎥⎥⎦

(2.5.7)

2.5.2 Nonlinear Dynamics of the AUV

The 6 DOF nonlinear dynamic equation motion of the underwater vehicle is expressed

as follows [1]:

Mv̇ + C(v)v +D(v)v + g(η) = τ (2.5.8)

where,

• M , is the inertia matrix for the rigid body and added mass.

• C(v), is the Coriolis and centripetal matrix for the rigid body and added mass.

• D(v), is the damping matrix.

• g(η), is the gravitational forces and moments vector.

• τ , is the external force and torque input vector.

• v, is the velocity state vector.

Dynamics of the AUV are categorized into Translational and Rotational Motion.

The equations of these two motions are respectively mentioning as follows:

m(v̇o + ω × vo + ω̇ × rG + ω × (ω × rG)) = fo (2.5.9)

Ioẇ + ω × (Ioω) +mrG × (v̇o + ω × vo) = mo (2.5.10)

where,
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• fo = τ1 = [X Y Z]T → External Forces

• mo = τ2 = [K M N ]T → Moment of External Forces

• vo = V1 = [u v w]T → Linear Velocity

• ω = V2 = [p q r]T → Angular Velocity

• rG = [xG yG zG]
T → Center of Gravity

The rigid body equations of motion for an underwater vehicle can be expressed

as:

m(u̇− vr + wq − xG(q
2 + r2) + yG(pq − ṙ) + zG(pr + q̇)) = X (2.5.11)

m(v̇ − wp+ ur − yG(r
2 + p2) + zG(qr − ṗ) + xG(qp+ ṙ)) = Y (2.5.12)

m(ẇ − uq + vp− zG(p
2 + q2) + xG(rp− q̇) + yG(rq + ṗ)) = Z (2.5.13)

Ixṗ+(Iz−Iy)qr−(ṙ+pq)Ixz+(r2−q2)Iyz+(pr−q̇)Ixy+m[yG(ẇ−uq+vq)−zG(v̇−wp+ur) = K

(2.5.14)

Iy q̇+(Ix−Iz)rp−(ṗ+qr)Ixy+(p2−r2)Izx+(pq−ṙ)Iyz+m[zG(u̇−vr+wq)−xG(ẇ−uq+vp) = M

(2.5.15)

Iz ṙ+(Iy−Ix)pq−(q̇+rp)Iyz+(q2−p2)Ixy+(rq−ṗ)Izx+m[xG(v̇−wp+ur)−yG(u̇−vr+wp) = N

(2.5.16)

2.5.2.1 Mass and Inertia Matrix

The M contains two parts: I) Rigid body mass and inertia (MRB) II) Hydrodynamic

added mass (MA), which is expressed as [1]:

M = MRB +MA (2.5.17)
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The effect of the added mass is expressed by matrix MA. The elements of this matrix

depend on the shape of the vehicle, which have constant values when the AUV fully

submerged. This matrix is written as following:

MA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ

Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ

Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5.18)

The rigid body mass, MRB, is expressed as:

MRB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 mzG −myG

0 m 0 −mzG 0 mxG

0 0 m myG −mxG 0

0 −mxG myG Ixx −Ixy −Ixz

mzG 0 −mxG −Iyx Iyy −Iyz

−myG mxG 0 −Izx −Izy Izz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5.19)

In equation (2.5.19) the m denotes the mass of the AUV and the I terms are the

inertial tensors.

In this thesis, it is assumed that the AUV is symmetric in all planes and the

origin of the body-fixed frame is located at the center of the gravity of the AUV (i.e.

rG =

[
0 0 0

]
), therefore the MA and MRB are simplified into equations (2.5.20)
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and (2.5.21) respectively.

MA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu̇ 0 0 0 0 0

0 Yv̇ 0 0 0 0

0 0 Zẇ 0 0 0

0 0 0 Kṗ 0 0

0 0 0 0 Mq̇ 0

0 0 0 0 0 Nṙ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5.20)

The rigid body mass, MRB, is expressed as:

MRB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 0 0

0 m 0 0 0 0

0 0 m 0 0 0

0 0 0 Ixx 0 0

0 0 0 0 Iyy 0

0 0 0 0 0 Izz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5.21)

2.5.2.2 Coriolis and Centripetal Matrix

C(v) is the Coriolis and Centripetal matrix that is shown as [1]:

C(v) = CRB(v) + CA(v) (2.5.22)

CA is called Coriolis-like matrix, that is written as:
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CA =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 −a3 a2

0 0 0 a3 0 −a1

0 0 0 −a2 a1 0

0 −a3 a2 0 −b3 b2

a3 0 −a1 b3 0 −b1

−a2 a1 0 −b2 b1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5.23)

where,

• a1 = Xu̇u+Xv̇v +Xẇw +Xṗp+Xq̇q +Xṙr

• a2 = Xv̇u+ Yv̇v + Yẇw + Yṗp+ Yq̇q + Yṙr

• a3 = Xẇu+ Yẇv + Zẇw + Zṗp+ Zq̇q + Zṙr

• b1 = Xṗu+ Yṗv + Zṗw +Kṗp+Kq̇q +Kṙr

• b2 = Xq̇u+ Yq̇v + Zq̇w +Kq̇p+Mq̇q +Mṙr

• b3 = Xṙu+ Yṙv + Zṙw +Kṙp+Mṙq +Nṙr

According to this assumption that the AUV is symmetric in all planes and the origin of

the body-fixed frame is located at the center of the gravity of the AUV, the centripetal

matrix ,CRB, is defined as:

CRB =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 mw −mv

0 0 0 −mw 0 mu

0 0 0 mv −mu 0

0 mw −mv 0 Izzr −Iyyq

−mw 0 mu −Izzr 0 Ixxp

mv −mu 0 Iyyq −Ixxp 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5.24)
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2.5.2.3 Hydrodynamic Damping Matrix

In underwater vehicles the hydrodynamic damping includes the drag and the lift

forces. According to this fact the AUV only operates at a low speed, the lift forces

can be neglected in comparison with the drag forces. The drag forces can be divided

into a linear and quadratic term as follows [1]:

D(v) ! Dq(v) +Dl(v) (2.5.25)

where, Dq(v) denotes to the quadratic term and Dl(v) is the linear drag. With

respect to this assumption that the AUV is symmetric in all planes then the linear

and quadratic drag term can be expressed as follows:

Dl(v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu 0 0 0 0 0

0 Yv 0 0 0 0

0 0 Zw 0 0 0

0 0 0 Kp 0 0

0 0 0 0 Mq 0

0 0 0 0 0 Nr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5.26)

Dq(v) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Xu|u| |u| 0 0 0 0 0

0 Yv|v| |v| 0 0 0 0

0 0 Zw|w| |w| 0 0 0

0 0 0 Kp|p| |p| 0 0

0 0 0 0 Mq|q| |q| 0

0 0 0 0 0 Nr|r| |r|

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5.27)
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2.5.2.4 Hydro static Forces and Moments (Restoring Forces and Mo-

ments)

The gravitational and buoyant forces are considered as the restoring forces for the

underwater vehicles. Assume that the m be the mass of the vehicle including water

in free-floating spaces,▽ be the volume of fluid displaced by the vehicle, g be the

acceleration of gravity (positive downwards), and ρ be the fluid density, the buoyancy

force and gravity force are expressed as follows [1]:

• W = mg → Weight Force

• B = ρg▽ → Buoyancy Force

The hydro static forces and moments are described as follows:

g(η) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(W − B)sinθ

−(W − B)cosθsinφ

−(W − B)cosθcosφ

−(yGW − yB)cosθcosφ+ (zGW − zBB)cosθsinφ

(zGW − zBB)sinθ + (xGW − xBB)cosθsinφ

−(xGW − xBB)cosθsinφ+ (yGW − yBB)sinθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2.5.28)

In equation (2.5.28), the rG =

[
xG, yG, zG

]
and the rB =

[
xB, yB, zB

]
are the

center of gravity and the center of buoyancy of the AUV respectively.

2.5.2.5 Physical Parameters of the AUV

The physical parameters of the of the proposed autonomous underwater vehicle in

this work, are expressed in Table 2.2 [175].
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Table 2.2: The physical parameters of the AUV [175].

Parameters Numerical values

Mass (m)[kg] 1089.8142
Volume m3 0.97
Xu̇ [kg] −26.2096
Yv̇ [kg] −1043.5908
Zẇ [kg] −1043.5908

Kṗ [kg.m2] 0
Mq̇ [kg.m2] −1907.0841
Nṙ [kg.m2] −1907.0841
Ixx [kgm2] 36.6777
Iyy [kgm2] 2154.3075
Izz [kgm2] 2154.3075

[XG, YG, ZG] [m] [0, 0, 0]
[XB, YB, ZB] [m] [0, 0, 0]

Xu [kg.m2] −3× 10−3

Yv [kg.m2] −1× 10−1

Zw [kg.m2] −3× 10−1

Kp [kg.m2] 1.1× 10−2

Mq [kg.m2] −1.6× 10−3

Nr [kg.m2] 1.6× 10−2

Xu|u||u| [kg/m] −25.5028
Yv|v||v| [kg/m] −920.1417
Zw|w||w| [kg/m] −920.1417
Kp|p||p| [kg.m

2] −0.3114
Mq|q||q| [kg.m

2] −2850.1982
Nr|r||r| [kg.m

2] −2850.1982
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2.5.2.6 Environmental Disturbances

Ocean currents and waves are considered as the environmental disturbances for the

AUV. In this thesis it is assumed that the AUVs are deeply submerged, therefore

the wave induced currents are neglected. Ocean currents are horizontal and vertical

circulating systems of ocean waters produced by gravity, wind friction and water

density variation in different parts of the ocean [167]. The ocean currents can be

modeled as a Gauss-Markov process as following [1]:

MV̇c(t) + µcVc(t) = wc(t) (2.5.29)

where wc(t) is Gaussian white noise, and µc is a constant that in many cases is chosen

to be zero (µc = 0). In integration process a saturation element is applied to limit

the ocean current speed that is expressed as following:

Vmin ≤ Vc(t) ≤ Vmax (2.5.30)

Considering this assumption that the fluid is irrotational, the the earth-fixed cur-

rent velocity vector is denoted by

[
uE
c , v

E
c , w

E
c

]
. The vertical ocean current compo-

nents are generally negligible in comparison to lateral currents [180], therefore the

earth-fixed current velocity is considered as:

[
uE
c , v

E
c , 0

]
.

where,

Vc =
√

(uE
c )

2) + (vEc )
2) (2.5.31)

and,

uE
c = Vccos(ψc)cos(θc)

vEc = Vcsin(ψc)cos(θc)
(2.5.32)

where ψc and θc denote horizontal and vertical current angel respectively.
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The current velocity in the the body-fixed can be computed as follows:

[
uB
c , v

B
c , 04×1

]
= JT

1 (η2)

[
uE
c , v

E
c , 04×1

]T
(2.5.33)

Therefore, the dynamical model of AUV with relative velocity, Vr =

[
u− uB

c , v − vBc , w, p, q, r

]
,

can be written as:

MV̇r + C(Vr)Vr +D(Vr)Vr + g(η) = τ

η̇ = J(η)Vr + V E
c

(2.5.34)

where J(η) is transformation matrix and is defined as follow:

⎡
⎢⎣
J1(η2) 03×3

03×3 J2(η2)

⎤
⎥⎦ (2.5.35)

2.6 Control of Single AUV

The computed torque control method is proposed in this section in order to control the

AUV. This method has the advantage of making a nonlinear system appear linear.

Computed torque control is a common method that is applied in robotics. This

technique allows for the feedback linearization of a nonlinear system which is very

useful in the case of an AUV since its dynamic model is highly nonlinear. According

to this fact that the proposed technique makes a nonlinear system appear linear,

therefore the linear control methods like PD control can be used in controlling the

AUV.

The authors in [162], presented the computed torque control method for robots

which is explained as following. The dynamic model of a robot can be written as:

M(θ)θ̈ +N(θ, θ̇) = τ (2.6.1)

67



where θ is a position state vector, M is a mass and inertia matrix, N is a combined

matrix representing the Coriolis, gravitational and friction forces, and τ represents

the joint forces and torque vector. The computed torque control law for equation

(2.6.1) is expressed as:

τ = ατ ′ + β (2.6.2)

where α is chosen to be M(θ) and β as N(θ, θ̇). Then, an appropriate linear controller

for τ ′ is chosen.

In the next section the aforementioned method is applied for the AUV.

2.6.1 Applying Computed Torque Control to the AUV

The dynamic model of an AUV can be expressed as:

Mv̇ + C(v)v +D(v)v + g(η) = τ (2.6.3)

Considering the similarity between the dynamic model of the AUV and the equation

(2.6.1), the computed torque control technique can be applied to the AUV. The

computed torque control law for the AUV’s dynamic model is expressed as [170]:

τ = ατ ′ + β (2.6.4)

where α is chosen to be M and β is chosen as D(v)v + C(v)v + g(η).

By choosing τ ′ as [170],

τ ′ = v̈d + kv ϵ̇+ kpϵ (2.6.5)

the computed torque controller is extended to a PD tracking controller where v̈d

represents the desired acceleration vector, while ϵ̇ and ϵ denote the tracking error
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vectors for velocity and position respectively. Then the kp and kv can be chosen with

respect to the desirable system characteristics. The error vector for the position state

vector is written as:

ϵ = Pd − P (2.6.6)

where Pd denotes the desired position vector and P is the current position vector.

The position vector contains spatial coordinates and the attitude of the AUV.

The error vector for the velocity state vector is expressed as:

ϵ̇ = Vd − V (2.6.7)

where Vd denotes the desired velocity vector and V the current velocity vector. The

velocity vector includes both linear and angular velocities.

2.7 Formation Control of Multiple AUVs

In this section the formation control of multiple AUVs is presented. The formation

control of multiple AUVs means that each vehicle follows a predefined path, and

maintain in a geometric configuration with its neighbors while performing its tasks

during the mission. The proposed method in this section assumes that the intercon-

nection topology of AUVs is fixed, that means each AUV exchange information with

a fixed vehicles during the mission. In this approach the nonlinear model of the AUV

is applied and the environmental disturbances are considered.

2.7.1 Formation Controller Design

In this thesis a decentralized architecture via the virtual structure approach is devel-

oped to control the formation of the four AUVs [164]. In the presented approach, four
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coordinate reference frames are used in formation of AUVs. The inertial frame FO,

the formation frame FF which is fixed at the virtual center of the formation, body

frame Fb and reference frame F d
b which denotes the desired configuration for each

AUV. In the virtual structure approach, the entire desired formation is considered as

a single structure with a formation frame FF located at its virtual center of mass to

represent its configuration. The virtual structure then has position rF ∈ R
3, velocity

vF ∈ R
3, attitude qF ∈ R

4 and angular velocity ωF ∈ R
3 relative to inertial frame

FO.

Let ri ∈ R
3, vi ∈ R

3, qi ∈ R
4 and ωi ∈ R

3 represent the position, velocity, attitude

and angular velocity of the ith AUV relative to the inertial frame FO. Similarly, let

riF , viF , qiF and ωiF represent position, velocity, attitude and angular velocity of the

ith AUV relative to formation frame FF and a superscript ”d” represent the desired

state of each AUV relative to FO or FF .

The actual states of the ith place holder represent the desired states of the ith

AUV, hence these states are denoted by qdiF and ωd
iF .

The state of the virtual structure is defined as:

ξ = [rTF , v
T
F , q

T
F ,ω

T
F ]

T (2.7.1)

If each AUV has knowledge of ξ and of its own desired position and orientation

with respect to the virtual structure, then formation keeping is transformed into an

individual tracking problem. Therefore, the vector ξ represents the minimum amount

of information needed by each AUV to coordinate its motion with the group. Given

rF , vF , qF and ωF , the desired states for the ith AUV are expressed as:

[rdi ]o = [rF ]o (2.7.2)
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instantiations, to bring each local instantiation into consensus. The decentralized

architecture via virtual structure approach is illustrated in Fig 2.5. In this figure,

block Gi is a discrete event supervisor for the ith AUV, block Fi is the formation

control module, which produces and broadcasts coordination variable, system Ki is

the local AUV controller for the ith AUV, and Ai represents the ith AUV. When

the formation maneuver starts, each discrete event supervisor Gi outputs the current

formation pattern to the formation control module Fi. Each formation control module

implements a coordination variable instantiation ξi. Formation control module Fi

then sends its coordination variable instantiation ξi to the local AUV controller Ki.

Based on ξi the local controller Ki derives the desired states for the ith AUV.

2.7.3 Formation Control Strategy

In the presented decentralized formation control via the virtual structure approach

the major tasks need to be carried out is to control each virtual structure instantiation

into consensus [164].

2.7.3.1 Formation Control Strategy for Each Virtual Structure

Let define ξi as the ith coordination variable instantiation and ξd as the current kth

desired constant goal for the coordination vriable instantiations, i.e. the current

formation pattern. The error state for the ith coordination variable instantiation is

defined as:

ξ̃i = ξi − ξd = [r̃TFi, ṽ
T
Fi, q̃

T
Fi, ω̃

T
Fi]

T (2.7.6)

where ξd represents a desired formation pattern to be achieved. There are two objec-

tives for the coordination variable implemented in each AUV. The first objective is to

reach its desired constant goal ξd defined by the formation pattern set and the second

objective is to drive each instantiation to consensus, meaning that ξ1 = ξ2 = ... = ξn.
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The goal seeking error between ξi and ξd is defined as:

EG(t) =
n∑

i=1

∥∥ξi − ξd
∥∥2

(2.7.7)

Also total consensus error between neighboring coordination variable instantiation is

defined as:

EA(t) =
n∑

i=1

∥ξi − ξi+1∥
2 (2.7.8)

where ξn+1 = ξ1 and ξ0 = ξn. Defining E(t) = EG(t) + EA(t), then the control

objective is to drive E(t) to zero asymptotically.

The proposed control force fFi
is given by [157]:

fFi
= mF [−KG(rFi

−rdF )−KA(rFi
−rFi+1

)−KA(rFi
−rFi−1

)−DA(vFi
−vFi+1

)−DA(vFi
−vFi−1

)]

(2.7.9)

where KG is a symmetrical positive-definite matrix and KA and DA are symmetrical

positive-semi-definite matrices.

The proposed control torque τFi is given as [157]:

τFi = kGq̂d∗F qFi − kA ̂qd∗
F (i+1)qFi −DA(ωFi − ωF (i+1))− kA ̂qd∗

F (i−1)qFi −DA(ωFi − ωF (i−1))

(2.7.10)

where KG > 0 and KA ≥ 0 are scalars, DA is symmetrical positive-semi-definite

matrix and q̂ represents the vector part of the unit quaternion.

2.8 Propulsion System Modeling

Propellers are considered as the main source of force producing in AUVs, and their

performance affects the AUVs mission fulfillment. The major problem in propellers

is that the produced thrust is reduced by many factors such as, changes in the in-line
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water velocity, cross flows, ventilation, in-and-out of water effects, wave-induced water

velocities, interaction between the vessel hull and propellers and between propellers.

This thrust losses affects the performance of the AUVs significantly. Therefore, ap-

plying a FDI system, which is capable of detecting and isolating the faults in the

propeller is essential.

2.8.1 Propeller System

The applied propeller in this thesis contains a fixed pitch propeller, that is driven by

an electric motor through a shaft and a gear box. The figure 2.6 illustrated the block

Figure 2.6: Block diagram of propeller system [165]

diagram of the propeller system. The parameters in the demonstrated block diagram

are defined as follows:

• Qm, is the motor torque applied to the shaft.

• ωm, is the motor shaft angular speed.

• ω, is the propeller angular speed. The value of the ω is affected by the load due

to the rotation of the blades in the water.

• Rgb =
ωm

ω
, is the gear ratio.
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• Qp and Qf are the propeller torque and the shaft friction torque respectively.

• Tp, is the thrust produced by the propeller.

• Qmd
and ωmd

are the desired motor torque and desired motor shaft speed re-

spectively.

The motor controller is in charge of the shaft speed or the motor torque regulation.

2.8.2 Propeller Thrust and Torque Modeling

For a fixed pitch propeller, the shaft torque Q and force T (thrust) depend on the

forward speed of the AUV, the advance speed ua (ambient water speed), and the

propeller rate n. In addition, other dynamic effects due to unsteady flows will influ-

ence the propeller thrust and torque. As in this thesis it is considered that the AUV

is fully submerged the other dynamic effects are neglected. The thrust and torque

model of the propeller is presented in detail in following section [171].

2.8.2.1 Quasi-Steady Thrust and Torque

In this work the thrust and torque models are approximated based on quasi-steady

representation [171]. Quasi-steady modeling of thrust and torque are usually done in

terms of lift and drag curves which are transformed to thrust and torque by using the

angle of incidence. In this representation, the thrust and torque of the propeller are

written as follows:

Tp = ρD4KT (J0)n |n| (2.8.1)

Qp = ρD5KQ(J0)n |n| (2.8.2)

75



where ρ denotes to density of water, D is the propeller diameter, n is the pro-

peller shaft speed, J(0) = ua

nD
is the advance number and KT and KQ are the non-

dimensional thrust and torque coefficients which can be calculated according to the

following equations:

KT (J0) =
Tp

ρD4n |n|
(2.8.3)

KQ(J0) =
Qp

ρD5n |n|
(2.8.4)

The numerical expressions for the aforementioned coefficients are obtained through

open water tests.

During the normal operation of the propeller the AUV is moving, thus the water

incident on the propeller have a velocity which is called ambient water velocity (ua).

This ambient water velocity is defined as follows:

ua = (1− w)u (2.8.5)

where w is the wake fraction number that is typically chosen as 0.1 and 0.4 [1] and

the u is the surge velocity of the AUV.

Therefore the quasi-steady model for estimating the thrust and torque produced

by the propeller during operation is written as:

Tp = Tn|n|n |n|− T|n|ua
|n| ua (2.8.6)

Qp = Qn|n|n |n|−Q|n|ua
|n| ua (2.8.7)

where n is the propeller rotational speed, Tn|n|, T|n|ua
, Qn|n| andQ|n|ua

are the propeller

coefficients that can be calculated based on following equation:

Qn|n| = ρD5β2, Tn|n| = ρD4α2, Q|n|ua
= ρD4β1, T|n|ua

= ρD3α2 (2.8.8)
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where the α and β values are nondenominational constants. More details of this

method can be found in [1].

2.8.3 Electric Motor Dynamics

Most thruster systems are driven by small DC motors designed for underwater oper-

ation condition. The dynamic of speed control DC motor can be written as [1]:

La

dia
dt

= −Raia − 2πKMn+ Va (2.8.9)

2πJm
dn

dt
= KM ia −Qp (2.8.10)

Qm = KM ia (2.8.11)

where La is the armature inductance, Ra is the armature resistance, Va is the

armature voltage, KM is the motor torque constant, Qm is the motor torque, Jm

is the moment of inertia of motor and thruster, n is the velocity of the motor in

revolutions per second and the Qp is the load from the propeller.

2.8.4 Propeller Shaft Dynamics

In the propeller system the motor connects to the propeller using a rigid shaft and a

gear-box with the gear ratio of Rgb. The factor affect the shaft is the friction torque,

Qf (w), assuming to depend on the shaft speed. The shaft dynamic can be presented

as follows [165]:

Jmω̇ = RgbQm −Qp −Qf (ω) (2.8.12)

where Jm is the total moment of inertia containing the shaft, the gear-box and

the propeller. In general, the shaft moment of inertia should include the effect of the

hydrodynamic added mass proportional to ω̇ which result in a time varying moment
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of inertia. In the presented work, the added mass has been neglected by reason of

the fact that its effect appeared to be not very significant and challenging to model.

According to the laboratory experiments, the friction torque has been modeled as

[165]:

Qf (ω) = kf1arctan(
ω

ϵ
) + kf2ω + kf3arctan(kf4ω) (2.8.13)

where kf1 , kf2 , kf3 and ϵ are constants and positive that related to specification of

thruster.

2.8.5 Propeller Simulation Model

According to the aforementioned sections the simulation model of the propeller is

illustrated in Figure 2.7.

Figure 2.7: Simulation model of the propeller.

As it can be seen from the Figure 2.7 the thrust (Tp) and torque (Qp) of the

propeller depends on the shaft speed and can be calculated from equations (2.8.6)

and (2.8.7) respectively. These are applied to the AUV dynamics as it is shown in

following section.

2.9 The Developed Model

In this section the design of the closed-loop controller of the modeled AUVs are

presented. The main elements of the closed-loop control system is presented in Figure
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they are equipped with sensors. Since a single sensor is not capable of providing all of

these information and measurements the sensor fusion technique is utilized. Kalman

filtering is one of the most common approaches in sensor fusion that provides the

required variables for the controller. The sensors in an AUV are mentioned as follows

[101]:

• IMU (Inertial Measurement Unit): This sensor is in charge of providing infor-

mation about the vehicle’s linear acceleration and angular velocity through a

combination of accelerometers, magnetometers and gyroscopes.

• Depth Sensor: It determines the depth of AUV by measuring the water pressure.

• Altitude and frontal sonars: They are applied to indicate the existence of ob-

stacles and the distance from the sea bottom.

• Ground Speed Sonar: It measures the linear velocity of the vehicle with reference

to the ground.

• Current meter: It provides the relative measurements between velocity vehicle

and water.

• GNSS (Global Navigation Satellite System): It is utilized to reset the drift error

of the IMU and localize exactly the vehicle; it works only at the surface.

• Compass: It gives the vehicle yaw.

• Baseline Acoustic: It gives exact localization of the vehicle in a specific range

of underwater environment by assistance of one or more transmitters.

• Vision system: It can be utilized for tracking the structures like pipelines.
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The types of sensors that are utilized in an AUV depends on the application of it.

In each of the aforementioned sensors the faults can be occurred. The output zeroing

or external disturbances can be considered as a failure in sensors of the AUV.

2.10.2 Actuator Failures

Thrusters are the main actuators in most underwater vehicles. Thus, thrusters are

considered as one of the common and important of fault sources in AUVs. In a 6

degree of freedom (DOF) AUV, at least 6 thrusters are applied to generate 3 linearly

independent translations and 3 linearly independent rotations. Generally, more than

6 thrusters are used in a 6 DOF AUV to provide a redundancy that makes the AUVs

capable of fulfilling the mission in the presence of thruster failures. The actuators of

the underwater vehicles are expressed in below [102]:

• Azimuth thrusters: Thruster units that can be rotated an angle α about the

z-axis during the mission and produce two force components (Fx, Fy) in the

horizontal plane.

• Fixed direction (non-rotable) thrusters: In contrast to azimuth thrusters, where

an angle α can vary with time, fixed direction thrusters are featured with a fixed

angle α = α0. In other words, the orientation of these types of thrusters is fixed

ahead and cannot be changed throughout the mission.

• Control surfaces: Control surfaces can be placed at different locations in AUVs

to provide lift and drag forces. For instance fins are mounted for diving, rolling

and pitching, rudders are installed for steering, etc.

The common faults in thruster of an AUV are listed as following:

• Thruster blocking: It happens when a solid body is between the propeller blades
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or for the rope entanglements [103]. This fault can be detected by observing

the current required by the thruster.

• Flooded thruster: A thruster flooded with water has been monitored during a

Romeo’s mission [104]. This failure leads to an electrical dispersion causing an

increasing blade rotation velocity; therefore the force of the thruster become

higher than the desired one.

• Fin stuck or lost: This failure can result in loss of steering ability explaining

in [105] by means of simple numerical simulations. In addition, it can lead to

other issues namely intermittent functioning or a non-null offset [103].

• Rotor failure: A possible result of different failures of the thrusters is the zeroing

of the blade rotation that causes the thruster not to work. This failure has been

observed in several mission experiments with ODIN [106 - 109], RAUVER [110]

and Roby 2 [111] and Romeo [104].

• Hardware-software failure: Crashes in the hardware or software are considered

as a fault in AUVs. In order to deal with this issues the redundancy techniques

are applied [103, 112].

In this thesis three fault scenarios with various severities are considered namely

as, thruster blocking, flooded thruster and loss of effectiveness in rotor. It should

be noticed that the low severity faults in the thruster of the AUV does not make

the topology of the formation unstable but it degrade the efficiency of the formation

in fulfilling the mission, while the high severity faults can cause the insatiability in

the formation. Therefore, existence of the reliable and autonomous fault detection,

isolation and identification is essential.
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2.10.3 Other Failures

Besides the faults that can occur in sensors and thrusters, the failures in other sub-

systems such as power systems, communication modules and payloads may result in

termination of the mission [103].

2.11 Conclusion

In this chapter, the model of the dynamic neural network that is used in this the-

sis have been explained fully. The extended dynamic back-propagation algorithm

is presented. The evolutionary algorithms and its principles have been provided.

Different techniques regarding to evolving ANN with EA have and the evolutionary

artificial neural networks been explained. GA and its operators have been completely

described. The dynamics of the AUV and the architecture of the formation con-

trol of multiple AUVs have been provided. Finally, the mathematical model of the

propulsion system of the AUV and the possible faults in AUVs have been explained.
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Chapter 3

Agent-Level and Formation-Level

Fault Detection Strategies

Health monitoring in formation of multiple AUVs has an important and critical role

in their missions. The occurrence of a fault in thrusters of the AUVs in a formation

can degrade the efficiency and reliability of the formation. Therefore, existence of

the autonomous and reliable fault detection, isolation and identification system is

necessary. It is obvious that formation of small AUVs can perform the same duties of

a single large AUV when the coordination of those small AUVs fulfills the mission’s

requirements. Hence, detection of faults in thrusters of the AUV which could result in

loss of coordination is highly desirable. In systems with high complexity like AUVs,

existence of an intelligent and autonomous fault diagnosis system with high degree

of accuracy and precision is essential. The mathematical models of the system are

essential to achieve the desirable level of precision and accuracy in fault diagnosis

scheme. Developing the accurate model for complex nonlinear systems like AUVs

and its components can be challenging. Considering aforementioned limitations in

this chapter we propose fault detection schemes for the thruster of the AUV based

on neural networks. In this method, the dynamic neural network is utilized as a
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nonlinear observer for fault diagnosis where genetic algorithm (GA) is employed to

train the dynamic neural network parameters. In this work an agent-level fault de-

tection (ALFD) and formation-level fault detection (FLFD) approaches for formation

of multiple AUVs are developed. In our ALFD scheme, the absolute measurements

of AUV are used for fault detection purpose however in our proposed FLFD scheme,

both relative and absolute measurements are considered as diagnostic signals. In both

ALFD and FLFD schemes, dynamic neural networks are employed to detect faults in

the AUV.

3.1 Topology of the Formation

Different network topologies can be roughly categorized into groups such as, ring,

line, fully connected, trees and bus. In this work the formation of AUVs includes four

AUVs having bidirectional ring topology which are controlled by consensus based

virtual structure controller that is fully explained in Chapter 2. The proposed method

in this thesis can be investigated for other topologies as a future work. In this work,

it is assumed that the four AUVs formation evolves as a rigid body and the formation

shape is preserved, and in the healthy situation each AUV maintains a fixed relative

orientation within the formation throughout the maneuvers. In this architecture each

AUV receives information from its two adjacent neighbors as it is depicted in Figure

3.1.
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Figure 3.1: Formation of 4 AUVs.

3.2 Fault Detection Methodology

3.2.1 Proposed Agent-Level Fault Detection Scheme

In our proposed agent-level fault detection scheme, dynamic neural network (DNN)

is used for AUV fault detection. The structure of the proposed agent-level fault

detection scheme is depicted in Figure 3.2. In agent-level fault detection scheme when

Figure 3.2: Structure of the agent-level fault detection scheme.

a fault injected in thruster of the AUV , the residual from estimated output (Dynamic
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neural network) and actual torque (Thruster) is compared with the threshold in the

agent-level fault detection unit to indicate the health status of the monitored system.

As it can seen from Figure 3.2 in order to measure the actual torque of the thruster

the torque sensor is used. Some practical torque sensors named as Vibrac series and

ATI Mini-45 are presented in [181, 182].

It should be noticed that the agent-level dynamic neural network in Figure 3.2

is trained and validated with proper data. The training procedure of the dynamic

neural network for ALFD scheme is fully explained in section 3.3.1.

3.2.2 Proposed Formation-Level Fault Detection Scheme

The formation-level fault detection is unique to multi platform missions. Each AUV

in the formation are considered as different components of the formation system.

Hence, at this level, fault detection is the binary decision determining whether or not

any fault exists in the formation components. At formation-level, fault detection is

based on both relative and absolute information. In this approach, the AUVi has

two adjacent neighbors namely, AUVi−1 and AUVi+1. The AUVi is called a neighbor

of AUVi−1 , if AUVi receives information from AUVi−1 and vice versa. In other

words, the proposed consensus-based virtual structure formation has bi-directional

ring topology structure.

In order to detect the fault in a formation, in the first step the faulty AUV must be

recognized. In our proposed formation-level fault detection algorithm, two dynamic

neural networks in each AUV are employed to detect the fault in formation. It should

be considered before using the DNNs in the fault detection scheme, each of them is

trained with one relative and one absolute information. The training and testing

procedure of the dynamic neural networks for FLFD scheme is fully explained in

section 3.3.1.
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Figure 3.3 demonstrates these two DNNs in the fault detection unit in AUVi.

In this method when a fault occurred in one of the AUVs, for instance AUVi, both

residuals corresponding to each of the DNNs in AUVi passed the threshold, therefore

in this case the AUVi considered as a faulty AUV in a formation. Meanwhile, when

the fault occurred in AUVi, in AUVi−1 and AUVi+1 just one of the DNN which is

related to AUVi shows the occurrence of the fault and in other DNN the residual did

not pass the threshold. Hence in our proposed algorithm, when the residuals of both

DNNs in fault detection unit of the AUV passed the threshold, that AUV considered

as a faulty AUV.

Figure 3.3: Fault detection unit in AUVi

3.3 Training DNN with Genetic Algorithm

The DNNs in both agent-level and formation-level fault detection schemes are trained

with genetic algorithm. The GA is applied to adjust all the parameters of the DNN

including connection weights, feedback and feedforward filter parameters and the

88



activation function slopes. The steps of the proposed algorithm are explained in

details as follows.

• First step (Initial Population)

The initial population consists ofNpop chromosomes that are selected at random.

According to the proposed initialization method no replication is permitted in

the population. As a result each time that a new chromosome is generated it is

compared with the ones produced before, if it has a replication it is neglected

and a new one is generated if not it becomes a member of the first generation.

Since the encoding method that is used in this thesis is based on the real-

valued encoding, therefore the genes of the chromosomes are real numbers in

value that are generated randomly. Each of the chromosomes includes Nvar

variables which represent all the connection weights, feedback filter parameters,

feedforward filter parameters and slope parameters. If we assume that the

DNN has the total of N connection weights, M feedback filter parameters, L

feedforward filter parameters and P slope parameters, then the lth chromosome

of the population can be written as:

Chromosomel = [w1l, · · · , wNl, a1l, · · · , aMl, b1l, · · · , bLl, g1l, · · · , gP l] (3.3.1)

where the w is the connection weight, a is the feedback filter parameter, b

denotes the feedforward filter parameter and the g is the slope parameter.

Considering that the initial population has Npop chromosomes, the matrix of

the initial population is calculated as follows:

Initial Population Matrix = rand(Npop, Nvar) (3.3.2)
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• Second step (Fitness Function)

The fitness function is responsible for evaluating the optimality of the chromo-

somes. In this work root mean squared error (RMSE) is used as fitness function

in our genetic algorithm which is defined as follows:

RMSE =

√√√√ 1

n

n∑

i=1

(ŷi − yi)2 (3.3.3)

The proposed fitness function is the error between the desired output and the

current output. In equation (3.3.3), ŷi and yi denote the estimated output and

desired output respectively and the n is the number of input data.

• Third step (Termination Criterion)

In the proposed method the GA evolves from one generation to another till

the termination criterion is achieved. The termination criterion we have cho-

sen for the algorithm is related with root mean squared error (RMSE). If the

RMSE is less than the desired value the algorithm stops and returns the optimal

parameters of the DNN.

• Forth step (Selection)

In this stage, the algorithm decides which chromosomes in the initial popula-

tion are appropriate to survive and probably reproduce offspring in the next

generation. The proposed selection method in this work is inspired by natural

selection where fitness values associated with the chromosomes are ranked from

highest values to lowest values. Then the chromosomes with the most fitness

survive and the least fit chromosomes are eliminated and replace by the new

generated offsprings. The natural selection procedure occur at each iteration of

the algorithm in order to allow the population of chromosomes to develop from

one generation to another for finding the most fit chromosomes as determined
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by the fitness function. In this thesis in each iteration 50% of the chromosomes

with highest rank are survived to the next generation and the remaining are

eliminated.

• Fifth step (Crossover)

In this step, firstly two chromosomes from the population are chosen to produce

the offsprings. It is assumed that the ith and jth chromosomes are selected.

Secondly, a DNN parameter in both chromosomes is selected to be the crossover

point. The crossover point selection is written as following:

α = roundup

{
random ∗Nvar

}
(3.3.4)

The α in equation (3.3.4) denotes the randomly selected parameter of the DNN

in both chromosomes. The randomly selected parameter can be a connection

weight, feedforward filter parameter, feedback filter parameter or slope parame-

ter. As an example it is assumed that a connection weight is chosen. Therefore,

chromosomes that are chosen for generating new offsprings can be written as:

Chromosomei = [w1i, · · · , wαi, · · · , wNi, a1i, · · · , aMi, b1i, · · · , bLi, g1i, · · · , gPi]

Chromosomej = [w1j, · · · , wαj, · · · , wNj, a1j, · · · , aMj, b1j, · · · , bLj, g1j, · · · , gPj]

(3.3.5)

In the next step, the selected parameters in each chromosomes (i.e wαi and wαj)

are replaced with the new values based on the following equation:

wnewi = wαi − β[wαi − wαj]

wnewj = wαj − β[wαi − wαj]

(3.3.6)

where β is also a random value between 0 and 1. The final step is to produce

the offsprings for the population by replacing the new connection weights in the
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chromosomes and swapping the connection weights of the two selected chro-

mosomes at the crossover point. The new connection weight values are named

as wα1 and wα2 and replaced with old values. The generated offsprings are

expressed as follows:

offspring1 = [w1i, · · · , wα1, · · ·wNj, a1j, · · · , aMj, b1j, · · · , bLj, g1j, · · · , gPj]

offspring2 = [w1j, w2j, · · · , wα2, · · ·wNi, a1i, · · · , aMi, b1i, · · · , bLi, g1i, · · · , gPi]

(3.3.7)

In the aforementioned crossover technique, if the first variable of the chromo-

somes is selected, then only the variables to the right of the selected variable

are swapped and if the last variable of the chromosomes is selected, then only

the variables to the left of the selected variable are swapped.

• Mutation

The mutation is considered as one of the GA operators that prevent the GA

from converging too quickly into one region of the cost surface. As a result,

the GA can be trapped in the area of the local minima instead of the global

minima. To avoid this problem of the fast convergence, the mutation is applied

in some of the variables of the chromosomes to force the algorithm to search

other areas of the cost surface. In the GA, in the first step the mutation rate

is chosen. In the next stage random numbers are chosen to select the rows and

columns of the variables to be mutated. Then, a mutated variable is replaced

by a new random variable. In order to find the total number of mutations, the

mutation rate should multiply by the whole number of variables that can be

mutated in the population.

The flow chart of our proposed method is illustrated in Figure 3.4 and the proposed

genetic algorithm parameters that are applied in this thesis are mentioned in Table
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3.6.

3.3.1 Training Phase Results in ALFD Scheme

In this thesis, the DNN in agent-level fault detection scheme is trained with different

data sets which are obtained from healthy operating condition of the AUV from the

simulation model. The training is done for different data sets, where each data set

includes 4000 samples. The voltage of the thruster is considered as an input the torque

is considered as the output. In order to provide a model that is similar to a practical

AUV, all data for training are considered under presence of the measurement noise.

These data are normalized in the range of [0,1] before the training process begins.

The identification models corresponding to ALFD training phase is depicted in Figure

3.5.

As it is shown in Figure 3.5 the DNN in ALFD scheme requires one input to

construct an acceptable identification model and produce the output.

As it is mentioned, in the first step the structure of the DNN has been decided.

Structure of the network includes, the number of layers, the number of neurons in

each layer, the order of the IIR filters in each neuron. In this work, it has been

observed that utilizing two hidden layers for the DNN in ALFD scheme, increases

the performance of the network in comparison with using one hidden layer. The

training procedure is started with a small network structure, then the number of

neurons and hidden layers are increased till the optimum structure of the DNN is

achieved. The DNN parameters including weights, activation function slopes and

filters feedforward parameter matrix, are initialized with small random values and the

IIR filter’s denominator coefficients are initialized to zeros to assure stable learning.

The order of IIR filters in ALFD scheme are set to 2 since the higher orders do not

enhance the performance of the network and increases computational complexity.

93



Figure 3.4: Flow chart of the proposed method.
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Figure 3.5: Identification model in training phase of ALFD scheme.

The optimum structure of the network and the specification of the proposed DNN

for agent-level fault detection (ALFD) is shown in Table 3.1.

Table 3.1: Dynamic neural network specifications in ALFD scheme.

Structure of the Network 1-6-1-1
IIR Filter Order 2nd Order

F (.) Hidden Layers Hyperbolic Tangent Sigmoid
F (.) Output Layer Linear

In the aforementioned table the four successive numbers in the structure of the

network are the number of neurons in the input layer, first hidden layer, second hidden

layer and output layer respectively.

As it is expressed in training phase the variables of each chromosomes in the

population includes, the connection weights, feedback filter parameters, feedforward

parameters and slope parameters of the DNN. The DNN in our ALFD scheme has

61 parameters that must be optimized with GA which are indicated in Table 3.2.

In addition, the genetic algorithm parameters which is applied in agent-level fault

detection scheme are expressed in 3.3.

The performance of the dynamic neural network in one of the AUVs during the

training process in ALFD scheme is shown in Figure 3.6. The average value of the
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Table 3.2: Parameters of DNN in ALFD scheme that are optimized with GA.

Parameters Number of Parameters

Weights of the hidden layer 1 W1(N(1), K) = W1(6, 1) = 6
Weights of the hidden layer 2 W2(N(2), N(1)) = W2(1, 6) = 6
Weights of the output layer W3(N(3), N(2)) = W3(1, 1) = 1
Filter parameters A1 A1(N(1), D) = A1(6, 2) = 12
Filter parameters A2 A2(N(2), D) = A2(1, 2) = 2
Filter parameters A3 A3(N(3), D) = A3(1, 2) = 2
Filter parameters B1 B1(N(1), D + 1) = B1(6, 3) = 18
Filter parameters B2 B2(N(2), D + 1) = B2(1, 3) = 3
Filter parameters B3 B3(N(3), D + 1) = B3(1, 3) = 3
Filter parameters g1 g1(N(1), 1) = g1(6, 1) = 6
Filter parameters g2 g2(N(2), 1) = g2(1, 1) = 1
Filter parameters g3 g3(N(3), 1) = g3(1, 1) = 1

K = Number of inputs
D = Order of the IIR filter
N(1) = Number of neurons in the hidden layer 1
N(2) = Number of neurons in the hidden layer 2
N(3) = Number of neurons in output layer

Table 3.3: Genetic algorithm parameters.

Population size 20
Termination criterion RMSE < 0.04

Mutation rate 0.25
Selection type Natural Selection
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Figure 3.6: The performance of the dynamic neural network in training phase for
ALFD scheme.

root mean squared error and its standard deviation in the training phase are 0.0415

and 0.00601 respectively, which is quite well.

3.3.2 Training Phase Results in FLFD Scheme

In this thesis, the two dynamic neural networks in each fault detection unit of the

AUVs are trained with various data sets which includes thruster voltage and relative

velocity as their input and the torque as the output. These data sets are obtained from

healthy operating condition of the AUV from the simulation model. Each of the data

set includes 4000 samples. In order to provide a model that is similar to a practical

AUV, all data for training are considered under presence of the measurement noise.

These data are normalized in the range of [0,1] before the training process begins.

The identification models corresponding to FLFD training phase is depicted in Figure

3.7.
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Figure 3.7: Identification model in training phase of FLFD scheme.
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According to Figure 3.7 each of the DNNs need two inputs to create the identifi-

cation model.

As it is mentioned, in the first step the structure of the DNN has been decided.

Structure of the network includes, the number of layers, the number of neurons in

each layer, the order of the IIR filters in each neuron. In this work, it has been

observed that utilizing two hidden layers for the DNNs in FLFD scheme, increases

the performance of the network in comparison with using one hidden layer. The

training procedure is started with a small network structure, then the number of

neurons and hidden layers are increased till the optimum structure of the DNNs

is achieved. The DNNs parameters including weights, activation function slopes and

filters feedforward parameter matrix, are initialized with small random values and the

IIR filter’s denominator coefficients are initialized to zeros to assure stable learning.

The order of IIR filters in ALFD scheme are set to 2 since the higher orders do not

enhance the performance of the network and increases computational complexity.

The optimum structure of the network and the specification of the proposed DNN

for formation-level fault detection (FLFD) is shown in Table 3.4.

Table 3.4: Dynamic neural network specifications in FLFD scheme.

Structure of the Network 2-4-1-1
IIR Filter Order 2nd Order

F (.) Hidden Layers Hyperbolic Tangent Sigmoid
F (.) Output Layer Linear

In the aforementioned table the four successive numbers in the structure of the

network are the number of neurons in the input layer, first hidden layer, second hidden

layer and output layer respectively.

As it is expressed in training phase the variables of each chromosomes in the

population includes, the connection weights, feedback filter parameters, feedforward

parameters and slope parameters of the DNN. The DNN in our FLFD scheme has 49
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parameters that must be optimized with GA which are indicated in Table 3.5.

Table 3.5: Parameters of DNNs in FLFD scheme that are optimized with GA.

Parameters Number of Parameters

Weights of the hidden layer 1 W1(N(1), K) = W1(4, 2) = 8
Weights of the hidden layer 2 W2(N(2), N(1)) = W2(1, 4) = 4
Weights of the output layer W3(N(3), N(2)) = W3(1, 1) = 1
Filter parameters A1 A1(N(1), D) = A1(4, 2) = 8
Filter parameters A2 A2(N(2), D) = A2(1, 2) = 2
Filter parameters A3 A3(N(3), D) = A3(1, 2) = 2
Filter parameters B1 B1(N(1), D + 1) = B1(4, 3) = 12
Filter parameters B2 B2(N(2), D + 1) = B2(1, 3) = 3
Filter parameters B3 B3(N(3), D + 1) = B3(1, 3) = 3
Filter parameters g1 g1(N(1), 1) = g1(4, 1) = 4
Filter parameters g2 g2(N(2), 1) = g2(1, 1) = 1
Filter parameters g3 g3(N(3), 1) = g3(1, 1) = 1

K = Number of inputs
D = Order of the IIR filter
N(1) = Number of neurons in the hidden layer 1
N(2) = Number of neurons in the hidden layer 2
N(3) = Number of neurons in output layer

In addition, the genetic algorithm parameters which id applied in formation-level

fault detection scheme are expressed in 3.6

Table 3.6: Genetic algorithm parameters.

Population size 20
Termination criterion RMSE < 0.04

Mutation rate 0.2
Selection type Natural Selection

The performance of the dynamic neural network in one of the AUVs during the

training process in FLFD scheme is shown in Figure 3.8.

The average value of the root mean squared error and its standard deviation in

the training phase are 0.0392 and 0.0037 respectively, which is quite acceptable.
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Figure 3.8: The performance of the two dynamic neural networks in training phase
for FLFD scheme.

3.3.3 Comparison of EDBP and GA

In this section the performance of the extended dynamic back-propagation and genetic

algorithm for training the dynamic neural network is compared. For both algorithm,

the network architecture is, N1−6−1−1, where the four successive numbers represent

number of neurons in input layer, first hidden layer, second hidden layer and output

layer respectively. The network parameters including weights, activation function

slopes and filters feedforward parameter matrix, are initialized with small random

values and the IIR filter’s denominator coefficients are initialized to zeros to assure

stable learning. The order of IIR filters are set to 2 since the higher orders do not

enhance the performance of the network and increases computational complexity.

The dynamic neural network in each of the methods is trained with 4000 samples. In

order to have the identical training for comparing the GA and EDBP, the training

data is normalized from 0 to 1.
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In order to compare the performance of the dynamic neural network during train-

ing phase of the EDBP and GA, the RMSE of these two methods with respect to the

500, 1000, 2000 and 4000 number of iterations are depicted in Figures 3.9 to 3.12.

Figure 3.9: RMSE in training phase of EDBP and GA for 500 iterations.

The depicted curves of RMSE with respect to different number of iterations in Figures

3.9 to 3.12 indicate that the GA converge faster in comparison with the EDBP, in

other words it provides better results in less number of iterations.

3.4 Threshold Determination

Comparing the actual and estimated outputs (i.e. system and DNN’s output, respec-

tively), the health status of the system can be evaluated. The threshold determines

if the data set presented to the network corresponds to a healthy or faulty scenario.

The threshold value is calculated by using collected healthy data. Due to apparent

model uncertainties residuals always deviate from zero, dependent on the input sig-

nals. Hence, using an adaptive threshold instead of a fixed one, can improve the

performance of a fault detection scheme significantly with respect to false alarm rate
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Figure 3.10: RMSE in training phase of EDBP and GA for 1000 iterations.

Figure 3.11: RMSE in training phase of EDBP and GA for 2000 iterations.
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Figure 3.12: RMSE in training phase of EDBP and GA for 4000 iterations.

and the delay in detection [163]. The adaptive threshold for agent-level fault detec-

tion scheme and formation-level fault detection scheme are demonstrated in Figures

3.13 and 3.14.

As it is depicted in Figures 3.13 and 3.14, the adaptive threshold consist of a filter

with lead-lag behavior which is driven by the input signals. This causes the filter

output to be zero for steady-state inputs; otherwise it is a measure for the dynamic

input excitation. In order to rectify this signal the absolute value is computed. A

constant value is added due to the effects of measurement noise on the residual. A

first-order low-pass filter can be applied in order to smooth the adaptive threshold.

In these figures K1 and K2 denote the sensitivity parameters that are used to

adjust the thresholds, T1, T2, T3 and T4 are constants which are determined in the

healthy operation condition of the AUV. The values of these parameters for ALFD

and FLFD are expressed in Table 3.7.

It is important to note that due to noise in the AUV signal measurements, if

smaller values for K1 and K2 is chosen, the false alarms increase in the monitored
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Figure 3.13: Adaptive threshold for agent-level fault detection scheme

Table 3.7: Threshold parameters for ALFD and FLFD.

ALFD parameters FLFD parameters
K1 = 9.88 K1 = 10
K2 = 9.83 K2 = 9.94
T1 = 0.22 T1 = 0.08
T2 = 70 T2 = 40
T3 = 1.7 T3 = 1.1
T4 = 0.1 T4 = 0.1
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(a) Upper threshold

(b) Lower threshold

Figure 3.14: Adaptive threshold for formation-level fault detection scheme
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system, however larger values for these parameters can decrease the ability of de-

tecting low severity faults in the thruster. In order to determine the threshold, the

aforementioned parameters (K1, K2, T1, T2, T3, T4) are determined through compar-

ing the residuals under various healthy scenarios. In the next step, the threshold are

defined in real time. According to the values of the K1 and K2 that are calculated un-

der the healthy scenario, two threshold named as upper threshold and lower threshold

are produced to cover the residual signals and to detect the faults in the AUV. When

the fault is injected in the thruster, if the residual signal passes the upper or lower

threshold, it can be concluded that the fault is detected.

3.5 Characterization of Possible Fault Scenarios in

Thruster of AUV

In order to be able to develop the fault detection algorithm and to inject faults in the

AUV, the potential sources of faults in the thruster must be identified. Experimental

experience with thruster in different AUVs missions has revealed that the potential

failures may occur in thruster namely as thruster blocking, flooded thruster and rotor

failure [179]. In this thesis the loss of effectiveness in rotor which is decreasing in

blade rotation, is considered as one of the fault scenarios in the thruster of the AUV.

The aforementioned faults are the most common faults in AUV’s thruster [179]. For

each fault scenario the proposed fault detection algorithm is performed to verify the

capability of our proposed fault detection algorithm in the AUVs.
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3.6 Fault Detection Logic

3.6.1 Agent-level Fault Detection Logic

The trained dynamic neural network is used to detect the thruster faults in the AUV.

The DNN is applied to generate the residual signals. The difference between the

actual torque of the thruster that is measured by torque sensors in AUV and the

estimated torque that is gained from DNN is called residual signal. In the proposed

fault detection scheme, the first moment that the residual exceeds the threshold lines

after the fault injection, is considered as the fault detection time. After injecting

the fault, the samples that exceed the threshold lines are considered as true faulty

detection and the samples that stay inside the threshold lines are considered as the

false healthy detection.

3.6.2 Formation-level Fault Detection Logic

The trained dynamic neural networks are used to detect the thruster faults in the

AUV. Two DNNs in fault detection unit of the AUV are applied to generate the resid-

ual signals. The difference between the actual torque of the thruster that is measured

by torque sensors in AUV and the estimated torques that are gained from DNNs is

called residual signals. In the proposed formation-level fault detection scheme, the

first moment that the residual signals exceed the threshold lines after the fault injec-

tion, is considered as the fault detection time. After injecting the fault, the samples

that exceed the threshold lines are considered as true faulty detection and the samples

that stay inside of the threshold lines are considered as the false healthy detection.
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3.7 Simulation Results

The simulations performed in this thesis have been implemented in Matlab and

Simulink. Using the mathematical model of the thruster that is presented in Chapter

2, we have simulated the thruster behavior for the generated torque in each AUVs.

In practical the torque sensor can be used in the AUV to measure the torque. Al-

though it increases system complexity and cost, but it provides most accurate and

stable results [173]. It is important to note that in our simulations all fault validation

results are obtained with a Gaussian random noise for all measurements. In addition,

the ocean currents are considered as the environmental disturbances which the effect

of it is inserted in the dynamic of the AUV which is fully explained in Chapter 2.

The formation consists of four AUVs that have the bi-directional ring topology are

controlled by using consensus-based virtual structure controller that is explained in

Chapter 2. In this work, the data exchange and communication links between the

AUVs are considered as bidirectional, which means that the DNNs in fault detection

unit of each AUV use the relative velocity measurements of the AUV with respect

to its two adjacent neighbors. In our simulations, we consider these four AUVs are

located on a rectangular in order to inspect the underwater pipelines. Figure 3.1

demonstrates the formation of 4 identical AUVs. In our simulation, two different

missions are considered for the AUVs. In the first mission (heading mission) it is

assumed that the four AUVs have the [φ, θ, ψ] = [0, 0, 0] as their initial attitude and

their desired attitude is [0, 0, 10]. The initial position, [x, y, z] of the 4 AUVs are, [0,

0, 30], [10, 0, 30], [10, 10, 30] and [0, 10, 30] respectively. Their desired position are

[17, 100, 30], [27, 100, 30], [27, 110, 30] and [17, 110, 30] respectively. Their initial

and desired angular velocity, [p, q, r], of 4 AUVs are [0 ,0 ,0]. The initial velocity of

them is 0.3 m/s and the desired velocity is 2.3 m/s.
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In the second mission (depth mission) it is assumed that the four AUVs have the

[φ, θ, ψ]= [0, 0, 0] as their initial attitude and their desired attitude is [0, 15, 0]. The

initial position, [x, y, z], of the 4 AUVs are, [0, 0, 30], [10, 0, 30], [10, 10, 30] and [0,

10, 30] respectively. Their desired position are [100, 0, 56], [110, 0, 56], [110, 10, 56]

and [100, 10, 56] respectively. Their initial and desired angular velocity, [p, q, r], of 4

AUVs are [0 ,0 ,0]. The initial velocity of them is 0.2 m/s and the desired velocity is

2.2 m/s. The process that AUV from its initial velocity reached its desired velocity

is called surge mission. From the control point of view, the goal of formation control

is that the the position, rotation, linear and angular velocities of each AUV track a

set of desired state of the formation. Table 3.8 shows the expected settling time and

tracking errors that are used to evaluate the performance of the formation control of

AUVs. The simulations are carried out for 3000 sec (60000 Samples) of the thruster

operations in AUVs. Furthermore, the gains and parameters of the controller that

are used in formation controller are indicated in Table 3.9. Furthermore, the gains

Table 3.8: Expected settling time and tracking error in each AUV.

Variable Settling time (sec) Tracking error

Vx 100 1e-2 m/s
Vy 100 1e-2 m/s
Vz 100 1e-2 m/s
rx 100 1e-3 m
ry 100 1e-3 m
rz 100 1e-3 m
q1 100 1e-3
q2 100 1e-3
q3 100 1e-3
ωx 100 1e-2 rad/s
ωy 100 1e-2 rad/s
ωz 100 1e-2 rad/s

and parameters of the controllers that are used in formation controller are indicated

in Table 3.9.

Moreover, the permanent fault are injected in to the system after the formation
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Table 3.9: Controller gains for each AUV and virtual structure.

Parameter Value

KG 20I3×3

DS 20I3×3

KS 20I3×3

KF 10I3×3

Kr 15I3×3

kv 15I3×3

kq 10I3×3

Kω 10I3×3

kG 10I3×3

kS 10I3×3

is held and they occur in the steady state condition of the AUV.

3.7.1 Agent-Level Fault Detection Analysis

3.7.1.1 Fault Detection Analysis under Thruster Blocking Fault Scenarios

In this fault scenario, low torque condition is considered as a fault in a thruster. In

order to simulate this fault scenario , thruster torque is dropped by 1% to 12% from

its nominal value. This permanent fault is injected to the thruster in the steady state

condition at t = 2300 sec (sample # 46000). The residual signals corresponding to

this fault scenario are illustrated in Figures 3.15 to 3.26.

According to the residual signals in Figures 3.15 to 3.26, it can be seen that:

• From 1% to 4% drop in thruster torque the residual does not pass the threshold,

which means the ALFD scheme does not detect the fault.

• From 5% to 11% drop in thruster torque the residual passes the threshold

which means according to proposed agent-level fault detection logic the fault is

detected. It has been seen that after detection of the fault, in some intervals

the samples do not exceed the threshold, these samples are considered as the

false healthy detection.
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• From 12% to larger percentages drop in thruster torque, the residual passes the

threshold and remains outside of the threshold. In these fault scenarios the

occurred fault is successfully detected.

In Table 3.10, the fault injection time and fault detection time corresponding to ALFD

scheme in thruster blocking fault scenario are expressed.

Table 3.10: Fault injection time and detection time in thruster blocking fault scenario
for ALFD scheme.

Percentage
drop in thruster
torque

Fault injection time(sec) Fault detection time(sec)

1% 2300 Not detected
2% 2300 Not detected
3% 2300 Not detected
4% 2300 Not detected
5% 2300 2480
6% 2300 2464
7% 2300 2440
8% 2300 2428
9% 2300 2406
10% 2300 2390
11% 2300 2317
12% 2300 2303

According to this table, it can be concluded that the proposed method is capable

of detecting at least 5% drop in thruster torque in a thruster blocking fault scenario

in a short and proper time period. In addition, it has been observed that the more

sever thruster blocking faults leads to the larger residuals and smaller fault detection

delays.

3.7.1.2 Fault Detection Analysis under Flooded Thruster Fault Scenarios

The Flooded Thruster fault causes an increasing in the blade rotation velocity; there-

fore in this fault scenario, high rotation velocity condition is considered as a fault in a
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thruster. In order to simulate this fault scenario, the rotation velocity is increased by

1% to 16% from its nominal value. These permanent faults are injected to a thruster

in the steady state condition at t = 2575 sec (sample # 51500). The residual signals

corresponding to this fault scenario are illustrated in Figures 3.27 to 3.42.

According to the residual signals in Figures 3.27 to 3.42, it can be seen that:

• From 1% to 8% increase in rotation velocity the residual does not pass the

threshold, which means the ALFD scheme does not detect the fault.

• From 9% to 12% increase in rotation velocity the residual passes the threshold

which means according to proposed agent-level fault detection logic the fault is

detected. It has been seen that after detection of the fault, in some intervals

the samples do not exceed the threshold, these samples are considered as the

false healthy detection.

• From 13% to larger percentages increase in rotation velocity the residual passes

the threshold an remains outside of the threshold. In these fault scenarios the

occurred fault is successfully detected.

In Table 3.11, the fault injection time and fault detection time corresponding to ALFD

scheme in flooded thruster fault scenario are expressed. According to this table, it can

be concluded that the proposed method is capable of detecting at least 9% increase

in rotation velocity in a flooded thruster fault scenario in a short and proper time

period. In addition, it has been observed that the more sever flooded thruster faults

leads to the larger residuals and smaller fault detection delays.
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Table 3.11: Fault injection time and detection time in flooded thruster fault scenario
for ALFD scheme.

Percentage
increase in rota-
tion velocity

Fault injection time(sec) Fault detection time(sec)

1% 2575 Not detected
2% 2575 Not detected
3% 2575 Not detected
4% 2575 Not detected
5% 2575 Not detected
6% 2575 Not detected
7% 2575 Not detected
8% 2575 Not detected
9% 2575 2642
10% 2575 2631
11% 2575 2624
12% 2575 2612
13% 2575 2606
14% 2575 2602
15% 2575 2596
16% 2575 2588

3.7.1.3 Fault Detection Analysis under Loss of Effectiveness in Rotor

Fault Scenarios

As it is mentioned previously, in this thesis the loss of effectiveness in rotor which is

decreasing in blade rotation, is considered as one of the fault scenarios in the thruster

of the AUV. Hence, in this fault scenario, low rotation velocity condition is considered

as a fault in a thruster. In order to simulate this fault scenario, the rotation velocity

is dropped by 1% to 16% from its nominal value. These permanent faults are injected

to a thruster in the steady state condition at t = 2390 sec (sample # 47800). The

residual signals corresponding to this fault scenario are illustrated in Figure 3.43 to

Figure 3.58.

According to the residual signals in Figures 3.43 to 3.58, it can be seen that:

• From 1% to 4% drop in rotation velocity the residual signals do not pass the
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threshold, which mean the ALFD scheme does not detect the fault.

• From 5% to 12% drop in rotation velocity the residual signals pass the threshold

which means according to proposed agent-level fault detection logic the fault is

detected. It has been seen that after detection of the fault, in some intervals

the samples do not exceed the threshold, these samples are considered as the

false healthy detection.

• From 13% to larger percentages drop in rotation velocity, the residual passes

the threshold and remains outside of the threshold. In these fault scenarios the

fault is successfully detected.

In Table 3.12, the fault injection time and fault detection time corresponding to ALFD

scheme in loss of effectiveness in rotor fault scenario are expressed.

Table 3.12: Fault injection and detection time in loss of effectiveness in rotor fault
scenario for ALFD scheme.

Percentage
drop in rotation
velocity

Fault injection time(sec) Fault detection time(sec)

1% 2390 Not detected
2% 2390 Not detected
3% 2390 Not detected
4% 2390 Not detected
5% 2390 2478
6% 2390 2468
7% 2390 2454
8% 2390 2440
9% 2390 2432
10% 2390 2429
11% 2390 2422
12% 2390 2416
13% 2390 2411
14% 2390 2404
15% 2390 2400
16% 2390 2394
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According to this table, it can be concluded that the proposed method is capable

of detecting at least 5% drop in rotation velocity in a loss of effectiveness in rotor

fault scenario in a short and proper time period. In addition, it has been observed

that the more sever loss of effectiveness in rotor faults leads to the larger residuals

and smaller fault detection delays.

3.7.2 Formation-Level Fault Detection Analysis

3.7.2.1 Fault Detection Analysis under Thruster Blocking Fault Scenarios

In this fault scenario, similar to agent-level fault detection scheme, low torque con-

dition is considered as a fault in a thruster. In order to simulate this fault scenario

, thruster torque is dropped by 1% to 8% . This permanent fault is injected to the

thruster in the steady state condition at t = 1735 sec (sample # 34700). The residuals

corresponding to this fault scenario are illustrated in Figures 3.59 to 3.65 when the

fault occurred in AUV1.

According to the residual signals in Figures 3.59 to 3.65, it can be seen that:

• From 1% to 2% drop in thruster torque both residual signals do not pass the

threshold, which means the FLFD scheme does not detect the fault.

• From 3% to 4% drop in thruster torque the residual signals pass the threshold

which means according to proposed formation-level fault detection logic the

fault is detected. It has been seen that after detection of the fault, in some

intervals the samples do not exceed the threshold, these samples are considered

as the false healthy detection.

• From 5% to larger percentages drop in thruster torque, the residuals pass the

threshold and the occurred fault can be successfully detected.
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In Table 3.13, the fault injection time and fault detection time corresponding to

FLFD scheme in thruster blocking fault scenario are expressed.

Table 3.13: Fault injection time and detection time in thruster blocking fault scenario
for FLFD scheme.

Percentage
drop in thruster
torque

Fault injection time(sec) Fault detection time(sec)

1% 1735 Not detected
2% 1735 Not detected
3% 1735 1938
4% 1735 1744
5% 1735 1740
6% 1735 1740
7% 1735 1740
8% 1735 1740

According to this table, it can be concluded that the proposed method is capable

of detecting at least 3% drop in thruster torque in a thruster blocking fault scenario

in a short and proper time period. In addition, it has been observed that the more

sever thruster blocking faults leads to the larger residuals and smaller fault detection

delays.

3.7.2.2 Fault Detection Analysis under Flooded Thruster Fault Scenarios

The Flooded Thruster fault causes an increasing in the blade rotation velocity; there-

fore in this fault scenario, high rotation velocity condition is considered as a fault in a

thruster. In order to simulate this fault scenario, the rotation velocity is increased by

1% to 8% from its nominal value. These faults are injected to a thruster in the steady

state condition at t = 1600 sec (sample # 32000). The residuals corresponding to

this fault scenario are illustrated in Figures 3.66 to 3.72 when the fault occurred in

AUV1.

According to the residual signals in Figures 3.66 to 3.72, it can be seen that:
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• From 1% to 3% increase in rotation velocity, both residual signals do not pass

the threshold, which means the FLFD scheme does not detect the fault.

• From 4% to 5% increase in rotation velocity the residual passes the threshold

which means according to proposed formation-level fault detection logic the

fault is detected. It has been seen that after detection of the fault, in some

intervals the samples do not exceed the threshold, these samples are considered

as the false healthy detection.

• From 6% to larger percentages increase in rotation velocity, the residuals pass

the threshold and the occurred fault can be successfully detected.

In Table 3.14, the fault injection time and fault detection time corresponding to

FLFD scheme in flooded thruster fault scenario are expressed.

Table 3.14: Fault injection and detection time in flooded thruster fault scenario for
FLFD scheme.

Percentage
increase in rota-
tion velocity

Fault injection time(sec) Fault detection time(sec)

1% 1600 Not detected
2% 1600 Not detected
3% 1600 Not detected
4% 1600 1667
5% 1600 1620
6% 1600 1604
7% 1600 1604
8% 1600 1604

According to this table, it can be concluded that the proposed method is capable of

detecting at least 4% increase in rotation velocity in a flooded thruster fault scenario

in a short and proper time period. In addition, it has been observed that the more

sever flooded thruster faults leads to the larger residuals and smaller fault detection

delays.
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3.7.2.3 Fault Detection Analysis under Loss of Effectiveness in Rotor

Fault Scenarios

The Rotor Failure fault is considered as zeroing the blade rotation, that cause the

thruster does not work. In this work, the loss of effectiveness in rotor is considered as

the fault. Hence, in this fault scenario, low rotation velocity condition is considered

as a fault in a thruster. In order to simulate this fault scenario, the rotation velocity

is dropped by 1% to 8% from its nominal value. These permanent faults are injected

to a thruster in the steady state condition at t = 1760 sec (sample # 35200). The

residuals corresponding to this fault scenario are illustrated in Figures 3.73 to 3.79

when the fault occurred in AUV1.

According to the residual signals in Figures 3.73 to 3.79, it can be seen that:

• From 1% to 2% drop in rotation velocity, both residual signals do not pass the

threshold, which means the FLFD scheme does not detect the fault.

• Form 3% to 5% drop in rotation velocity the residual signals pass the threshold

which means according to proposed formation-level fault detection logic the

fault is detected. It has been seen that after detection of the fault, in some

intervals the samples do not exceed the threshold, these samples are considered

as the false healthy detection.

• From 6% to larger percentages drop in rotation velocity, the residuals pass the

threshold and the occurred fault can be successfully detected.

In Table 3.15, the fault injection time and fault detection time corresponding to

FLFD scheme in loss of effectiveness in rotor fault scenario are expressed.

According to this table, it can be concluded that the proposed method is capable

of detecting at least 3% drop in rotation velocity fault scenario in a short and proper
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Table 3.15: Fault injection time and detection time in loss of effectiveness in rotor
fault scenario for FLFD scheme.

Percentage
drop in rotation
velocity

Fault injection time(sec) Fault detection time(sec)

1% 1760 Not detected
2% 1760 Not detected
3% 1760 2478
4% 1760 1873
5% 1760 1769
6% 1760 1765
7% 1760 1765
8% 1760 1765

time period. In addition, it has been observed that the more sever loss of effectiveness

in rotor faults leads to the larger residuals and smaller fault detection delays.

3.8 Confusion Matrix Analysis for Fault Detection

In order to evaluate the performance of the proposed fault detection algorithm, the

confusion matrix approach is used. A confusion matrix consists of four elements,

namely the true positive, the true negative, the false positive, and the false negative

which are depicted in Table 3.16.

Table 3.16: Table corresponding to confusion matrix [172].
Predicted

Faulty Healthy

Actual
Faulty TP FN
Healthy FP TN

The aforementioned elements of the confusion matrix are defined as follows:

• True positive (TP): The number of samples detected as faulty while the AUV

is operating in the faulty mode.
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• True negative (TN): The number of samples detected as healthy while the AUV

is operating in the healthy mode.

• False negative (FN): The number of samples detected as healthy while the AUV

is operating in the faulty mode.

• False positive (FP): The number of samples detected as faulty while the AUV

is operating in the healthy mode.

For each fault scenario a confusion matrix is calculated and the parameters named

as accuracy, precision, detection rate (True faulty rate) and false alarm rate (False

faulty rate) are calculated to evaluate the performance of the fault detection scheme.

These four parameters are defined as follows:

• Accuracy: It is the percentage of the prediction that are correct and it indicates

the overall effectiveness of the fault detection scheme. The accuracy is calculated

as follows:

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision: It is the percentage of the positive (faulty mode) prediction that are

correct. The precision is computed as follows:

Precision =
TP

TP + FP

• Detection rate (True faulty rate): It measures the portion of actual faulty modes

of the AUV which are correctly identified as faulty. The detection rate shows

the effectiveness of the fault detection scheme to identify the faulty mode of the

AUV and it is expressed as:

Detection rate (True faulty rate) =
TP

TP + FN
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• False alarm rate (False faulty rate): It reports the portion of the healthy samples

which are misclassified as the faulty. The false alarm rate is calculated according

to the following formula:

False alarm rate (False faulty rate) =
FP

TN + FP

The confusion matrix for each of the fault scenarios in ALFD and FLFD schemes

are calculated and the performances of these two methods are compared.

3.8.1 Confusion Matrix Analysis for Thruster Blocking Fault

Scenario

The confusion matrix for thruster blocking fault scenarios in ALFD and FLFD

schemes are illustrated in Tables 3.17 and 3.18 respectively.

Table 3.17: Confusion matrix for thruster blocking fault scenario in ALFD scheme

Percentage drop in thruster torque TP TN FN FP
1% N/A N/A N/A N/A
2% N/A N/A N/A N/A
3% N/A N/A N/A N/A
4% N/A N/A N/A N/A
5% 1468 45999 12533 0
6% 2055 45999 11946 0
7% 2801 45999 11200 0
8% 4241 45999 9760 0
9% 5881 45999 8120 0
10% 8468 45999 5533 0
11% 10995 45999 3006 0
12% 13941 45999 60 0
13% 13961 45999 40 0
14% 13961 45999 40 0
15% 13961 45999 40 0
16% 13961 45999 40 0

According to the confusion matrix elements, the accuracy, precision, detection
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Table 3.18: Confusion matrix for thruster blocking fault scenario in FLFD scheme

Percentage drop in thruster torque TP TN FN FP
1% N/A N/A N/A N/A
2% N/A N/A N/A N/A
3% 12469 34699 12831 0
4% 20033 34699 5267 0
5% 25200 34699 100 0
6% 25200 34699 100 0
7% 25200 34699 100 0
8% 25200 34699 100 0
9% 25220 34699 80 0
10% 25220 34699 80 0
11% 25240 34699 60 0
12% 25240 34699 60 0
13% 25240 34699 60 0
14% 25260 34699 40 0
15% 25260 34699 40 0
16% 25260 34699 40 0

rate and false alarm rate for ALFD and FLFD schemes are calculated in Tables 3.19

and 3.20.

As the results in Tables 3.19 and 3.20 show the proposed ALFD scheme is capable

of detecting 10% drop in the thruster torque with 90.77% accuracy, 100% precision,

78.53% detection rate and 0% false alarm rate, while the FLFD scheme is capable

of detecting 5% drop in the thruster torque with 99.83% accuracy, 100% precision,

99.60% detection rate and 0% of false alarm rate. According to theses parameters it

can be concluded that the our FLFD scheme is capable of detecting lower severity

thruster blocking faults in AUV’s thruster and it has higher accuracy and detection

rate comparing to agent-level fault detection scheme.
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Table 3.19: Accuracy and Precision for thruster blocking fault scenario.
Accuracy Precision

Percentage drop in
thruster torque

ALFD FLFD ALFD FLFD

1% N/A N/A N/A N/A
2% N/A N/A N/A N/A
3% N/A 78.61% N/A 100%
4% N/A 91.22% 100% 100%
5% 79.11% 99.83% 100% 100%
6% 80.09% 99.83% 100% 100%
7% 81.33% 99.83% 100% 100%
8% 83.73% 99.83% 100% 100%
9% 86.46% 99.86% 100% 100%
10% 90.77% 99.86% 100% 100%
11% 94.99% 99.89% 100% 100%
12% 99.90% 99.89% 100% 100%
13% 99.93% 99.89% 100% 100%
14% 99.93% 99.93% 100% 100%
15% 99.93% 99.93% 100% 100%
16% 99.93% 99.93% 100% 100%

Table 3.20: Detection rate and False alarm rate for thruster blocking fault scenario.
Detection rate False alarm rate

Percentage drop in
thruster torque

ALFD FLFD ALFD FLFD

1% N/A N/A N/A N/A
2% N/A N/A N/A N/A
3% N/A 49.28% N/A 0%
4% N/A 79.18% N/A 0%
5% 10.48% 99.60% 0% 0%
6% 14.67% 99.60% 0% 0%
7% 20% 99.60% 0% 0%
8% 30.29% 99.60% 0% 0%
9% 60.48% 99.68% 0% 0%
10% 78.53% 99.68% 0% 0%
11% 99.57% 99.76% 0% 0%
12% 99.71% 99.76% 0% 0%
13% 99.71% 99.76% 0% 0%
14% 99.71% 99.84% 0% 0%
15% 99.71% 99.84% 0% 0%
16% 99.71% 99.84% 0% 0%
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3.8.2 Confusion Matrix Analysis for Flooded Thruster Fault

Scenario

The confusion matrix for flooded thruster fault scenario in ALFD and FLFD scheme

are illustrated in Tables 3.21 and 3.22 respectively.

Table 3.21: Confusion matrix for flooded thruster fault scenario in ALFD scheme
Percentage increase in rotation velocity TP TN FN FP
1% N/A N/A N/A N/A
2% N/A N/A N/A N/A
3% N/A N/A N/A N/A
4% N/A N/A N/A N/A
5% N/A N/A N/A N/A
6% N/A N/A N/A N/A
7% N/A N/A N/A N/A
8% N/A N/A N/A N/A
9% 2628 51499 5873 0
10% 3915 51499 4586 0
11% 5921 51499 2580 0
12% 6828 51499 1673 0
13% 7881 51499 620 0
14% 7961 51499 540 0
15% 8081 51499 420 0
16% 8241 51499 260 0

According to confusion matrix elements, the accuracy, precision, detection rate

and false alarm rate for ALFD and FLFD scheme are calculated in Tables 3.23 and

3.24.

As the results in Tables 3.23 and 3.24 show the proposed ALFD scheme is capable

of detecting 12% increase in rotation velocity with 97.21% accuracy, 100% precision,

80.31% detection rate and 0% false alarm rate, while the FLFD scheme is capable

of detecting 5% increase in rotation velocity with 96.41% accuracy, 100% precision,

92.30% detection rate and 0% false alarm rate. According to theses parameters it

can be concluded that the our FLFD scheme is capable of detecting lower severity
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Table 3.22: Confusion matrix for flooded thruster fault scenario in FLFD scheme.
Percentage increase in rotation velocity TP TN FN FP
1% N/A N/A N/A N/A
2% N/A N/A N/A N/A
3% N/A N/A N/A N/A
4% 17132 31999 10869 0
5% 25847 31999 2154 0
6% 27921 31999 80 0
7% 27921 31999 80 0
8% 27921 31999 80 0
9% 27921 31999 80 0
10% 27941 31999 60 0
11% 27941 31999 60 0
12% 27941 31999 60 0
13% 27961 31999 40 0
14% 27961 31999 40 0
15% 27961 31999 40 0
16% 27961 31999 40 0

Table 3.23: Accuracy and Precision for flooded thruster fault scenario.
Accuracy Precision

Percentage increase
in rotation velocity

ALFD FLFD ALFD FLFD

1% N/A N/A N/A N/A
2% N/A N/A N/A N/A
3% N/A N/A N/A N/A
4% N/A 81.88% N/A 100%
5% N/A 96.41% N/A 100%
6% N/A 99.86% N/A 100%
7% N/A 99.86% N/A 100%
8% N/A 99.86% 100% 100%
9% 90.21% 99.86% 100% 100%
10% 92.35% 99.90% 100% 100%
11% 95.70% 99.90% 100% 100%
12% 97.21% 99.90% 100% 100%
13% 98.96% 99.93% 100% 100%
14% 99.10% 99.93% 100% 100%
15% 99.30% 99.93% 100% 100%
16% 99.56% 99.93% 100% 100%
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Table 3.24: Detection rate and false alarm rate for flooded thruster fault scenario.
Detection rate False alarm rate

Percentage increase
in rotation velocity

ALFD FLFD ALFD FLFD

1% N/A N/A N/A N/A
2% N/A N/A N/A N/A
3% N/A N/A N/A N/A
4% N/A 61.18% N/A 0%
5% N/A 92.30% N/A 0%
6% N/A 99.71% N/A 0%
7% N/A 99.71% N/A 0%
8% N/A 99.71% 0% 0%
9% 30.91% 99.71% 0% 0%
10% 46.05% 99.78% 0% 0%
11% 69.65% 99.78% 0% 0%
12% 80.31% 99.78% 0% 0%
13% 92.70% 99.85% 0% 0%
14% 93.64% 99.85% 0% 0%
15% 95.05% 99.85% 0% 0%
16% 96.94% 99.85% 0% 0%

flooded thruster faults in AUV’s thruster and it has higher accuracy and detection

rate comparing to agent-level fault detection scheme. .

3.8.3 Confusion Matrix Analysis for Loss of Effectiveness in

Rotor Fault Scenario

The confusion matrix for loss of effectiveness in ALFD and FLFD scheme are illus-

trated in Tables 3.25 and 3.26 respectively.

According to confusion matrix elements, the accuracy, precision, detection rate

and false alarm rate for ALFD and FLFD scheme are calculated in Tables 3.27 and

3.28.

As the results in Tables 3.27 and 3.28 show the proposed ALFD scheme is capable

of detecting 13% decrease in rotation velocity with 99.39% accuracy, 100% precision
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Table 3.25: Confusion matrix for loss of effectiveness in rotor fault scenario in ALFD
scheme

Percentage drop in rotation velocity TP TN FN FP
1% N/A N/A N/A N/A
2% N/A N/A N/A N/A
3% N/A N/A N/A N/A
4% N/A N/A N/A N/A
5% 1241 47799 10960 0
6% 1708 47799 10493 0
7% 2255 47799 9946 0
8% 2935 47799 9266 0
9% 4428 47799 7773 0
10% 5955 47799 6246 0
11% 7161 47799 5040 0
12% 8615 47799 3586 0
13% 11781 47799 420 0
14% 11921 47799 280 0
15% 12001 47799 200 0
16% 12121 47799 80 0

Table 3.26: Confusion matrix for loss of effectiveness in rotor fault scenario in FLFD
scheme

Percentage drop in rotation velocity TP TN FN FP
1% N/A N/A N/A N/A
2% N/A N/A N/A N/A
3% 1372 35199 23429 0
4% 4825 35199 19976 0
5% 23001 35199 1800 0
6% 24701 35199 100 0
7% 24701 35199 100 0
8% 24701 35199 100 0
9% 24721 35199 80 0
10% 24721 35199 80 0
11% 24721 35199 80 0
12% 24741 35199 60 0
13% 24741 35199 60 0
14% 24741 35199 60 0
15% 24761 35199 40 0
16% 24761 35199 40 0
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Table 3.27: Accuracy and Precision for loss of effectiveness in rotor fault scenario.
Accuracy Precision

Percentage drop in
rotation velocity

ALFD FLFD ALFD FLFD

1% N/A N/A N/A N/A
2% N/A N/A N/A N/A
3% N/A 60.95% N/A 20%
4% N/A 66.70% N/A 56.67%
5% 81.73% 97% 26.67% 100%
6% 82.51% 99.83% 43.34% 100%
7% 83.42% 99.83% 76.67% 100%
8% 84.55% 99.83% 93.34% 100%
9% 87.04% 99.86% 100% 100%
10% 89.59% 99.86% 100% 100%
11% 91.60% 99.86% 100% 100%
12% 94.02% 99.90% 100% 100%
13% 99.30% 99.90% 100% 100%
14% 99.53% 99.90% 100% 100%
15% 99.60% 99.93% 100% 100%
16% 99.86% 99.93% 100% 100%

Table 3.28: Detection rate and False alarm rate for loss of effectiveness in rotor fault
scenario.

Detection rate False alarm rate
Percentage drop in
rotation velocity

ALFD FLFD ALFD FLFD

1% N/A N/A N/A N/A
2% N/A N/A N/A N/A
3% N/A 5.53% N/A 0%
4% N/A 19.45% N/A 0%
5% 10.17% 92.74% 0% 0%
6% 13.99% 99.59% 0% 0%
7% 18.48% 99.59% 0% 0%
8% 24.05% 99.59% 0% 0%
9% 36.29% 99.67% 0% 0%
10% 48.80% 99.67% 0% 0%
11% 58.69% 99.67% 0% 0%
12% 70.60% 99.75% 0% 0%
13% 96.55% 99.75% 0% 0%
14% 97.70% 99.75% 0% 0%
15% 98.36% 99.83% 0% 0%
16% 99.34% 99.83% 0% 0%
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, 96.55% detection rate and 0% false alarm rate, while the FLFD scheme is capable

of detecting 5% decrease in rotation velocity with 97% accuracy, 100% precision,

92.74% detection rate and 0% false alarm rate. According to theses parameters it

can be concluded that the our FLFD scheme is capable of detecting lower severity

loss of effectiveness in rotor faults in AUV’s thruster and it has higher accuracy and

detection rate comparing to agent-level fault detection scheme. .

3.9 Conclusion

In this chapter, the agent-level fault detection (ALFD) and formation-level fault de-

tection (FLFD) schemes for detecting the faults in the thruster of the AUV is pro-

posed and explained. Our fault detection schemes are based on dynamic neural

network (DNN) that is trained with genetic algorithm (GA). In the proposed ALFD

scheme only absolute measurements are considered to use in DNN as a historic data

to train the DNN. However, in our FLFD we also use relative measurements between

each AUV and its neighbors to train the DNNs. The confusion matrix analysis is

performed for all of the fault scenarios. In thruster blocking fault scenario, the the

ALFD scheme is capable of detecting 10% drop in thruster torque with 90% accu-

racy and 78.30% detection rate, while the FLFD scheme is capable of detecting 5%

drop in thruster torque with 99.83% accuracy and 99.60% detection rate. In flooded

thruster fault scenario, the ALFD scheme is capable of detecting 12% increase in

rotation velocity with 97.21% accuracy and 80.31% detection rate, while the FLFD

scheme is capable of detecting 5% increase in rotation velocity with 96.41% accuracy

and 92.30% detection rate. In loss of effectiveness in rotor fault scenario, the ALFD

scheme is capable of detecting 13% decrease in rotation velocity with 99.39% accu-

racy and 96.55% detection rate, while the FLFD scheme is capable of detecting 5%
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decrease in rotation velocity with 97% accuracy and 92.74% detection rate. Accord-

ing to the aforementioned results it can be concluded that the FLFD can detect the

lower severity faults in thruster of the AUV with high level of accuracy and precision

and has better performance in comparison with ALFD scheme. Hence, utilizing the

relative information in each AUV to train the DNN, yields the better results in fault

detection comparing to ALFD scheme. In addition, our proposed FLFD scheme is

capable of detecting the faulty AUV in a formation by means of the fault detection

unit in the AUV.

The performance of the extended dynamic back-propagation (EDBP) and genetic

algorithm (GA) in training of the dynamic neural network is compared. The presented

results indicate that the GA approach converge faster in comparison with the EDBP,

in other word it provides better results in less number of iterations. In addition, based

on several experiments it has been seen that the GA requires less data for training the

DNN comparing to EDBP. Thus, this method can be applied for other applications

that the availability of data for training is a concern.

In next chapter, the fault isolation and identification problem will be discussed

and the results for fault isolation and identification will be provided as well.
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Chapter 4

Agent-Level and Formation-Level

Fault Isolation and Identification

Schemes

In Chapter 3, a fault detection scheme for formation of AUVs was developed. A fault

detection unit in each AUV including two dynamic neural networks is employed to

accomplish the fault detection. In the proposed method when a fault occurs in a

thruster of one of the AUVs in the formation, the fault detection unit in the faulty

AUV can detect the fault after a delay. When the fault is detected, in the next step

the type and severity of the fault should be determined. The objective of this chapter

is isolation and identification of the thruster faults. In this chapter the process of

determining the type of the fault in the thruster is considered as fault isolation and

indicating the severity of the fault is considered as the fault identification.
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4.1 Fault Isolation Schemes

As shown in previous chapter, various fault scenarios were injected into the thruster

of the AUV and the detection of the faults in both agent-level and formation-level

schemes has been successfully fulfilled. In the proposed fault isolation scheme, a

multi-layer perceptron neural network (MLPNN) is employed in each of the AUVs

after the neural observer to categorize the type of the fault into thruster blocking,

flooded thruster and loss of effectiveness in rotor. In this section the proposed fault

isolation schemes in agent-level and formation-level for determining the type of the

occurred thruster fault of the AUV are presented.

4.1.1 Agent-Level Fault Isolation Scheme

In proposed agent-level fault isolation scheme, the residual signals which are generated

in the agent-level fault detection scheme are processed and applied as an input to the

MLPNN. In this work processing of the residual signal is calculating the magnitudes of

the residual signal before and after the occurrence of the fault which are applied as the

two inputs for the MLPNN. According to several experiments, it has been observed

that the aforementioned inputs are valuable to fulfill the fault isolation. The output

of the proposed MLPNN is the fault label corresponding to the type of the occurred

fault in the thruster of the AUV. The structure of the proposed agent-level fault

isolation scheme is depicted in Figure 4.1.

As it is shown in Figure 4.1, in the first step the preprocessing unit evaluate the

residual signals and provides the numerical values for using as inputs for the MLPNN.

The output of the MLPNN indicates the class of the occurred fault. The assigned

classes for fault types in agent-level fault isolation scheme is expressed in Table 4.1.
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thruster fault scenarios and 1200 loss of effectiveness in rotor fault scenarios. The

input data set is randomly divided into three parts namely as, training set, validation

set and testing set. In this work, the 50% of the input data set is randomly chosen as

training set, the 25% of it is selected at random as validation set and the remaining

25% of it is the testing set. The training set is used to find the optimal weights for the

MLPNN, the validation set is utilized to determine the stopping point for training

and avoid over training and the testing set is used to estimate the error rate after

the final model of the MLPNN is selected. It has been observed that by using 3600

samples as input data set an acceptable result for fault isolation task can be achieved.

4.1.4 Training Phase

The MLPNNs in both agent-level and formation-level fault isolation schemes are

trained with genetic algorithm (GA). The GA is applied to adjust the connection

weights of the MLPNNs. The training procedure of the MLPNN with GA is fully

explained in the following steps.

• First step (Initial Population): In this step the initial population consists of Npop

chromosomes are chosen randomly. It should be considered that no replication

is allowed in the population, in other words all of the chromosomes should

be distinct. Each of the chromosomes includes Nvar which represent all the

connection weights of the MLPNN. If we assume that the MLPNN has the

total of N connection weights, then the lth chromosome of the population can

be written as:

Chromosomel = [w1l, w2l, · · · , wNl] (4.1.1)

In equation (4.1.1) the w denotes to the connection weight of the MLPNN.

• Second step (Fitness Function): In this step the training set is applied to the
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MLPNN and the value of the fitness function for each of the chromosomes in the

population is calculated. In this thesis the root mean squared error is considered

as the fitness function which is expressed as follows:

RMSE =

√√√√ 1

n

n∑

i=1

(ŷi − yi)2 (4.1.2)

The proposed fitness function is the error between the desired output and the

current output. In equation (4.1.2), ŷi and yi denote the estimated output and

desired output respectively and the n is the number of input data.

• Third step (Termination criterion): In this stage the termination criteria should

be checked, if it reaches the desired level the training stops and returns the

chromosomes which includes the optimal weights of the MLPNN and if it dose

not reach the desired level, the next step begins. In this work, the termination

criteria is related to the RMSE value. If the RMSE < Desired V alue then the

training stops and the optimal connection weights of the MLPNN returns.

• Forth step (Selection): In this step, firstly the chromosomes are ranked from

highest to lowest based on their RMSE value. Then only the 50% of the chromo-

somes with highest rank are survived to the next generation and the remaining

are eliminated. It should be considered that the size of the population is fixed,

therefore the eliminated chromosomes are replaced with the offsprings that are

produced in the next steps.

• Fifth step (Crossover): In this step, firstly two chromosomes from the popula-

tion are selected to produce the offsprings. It is assumed that the ith and jth

chromosome are selected. Secondly, a connection weight in both chromosomes

is selected to be the crossover point. The crossover point selection process is
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expressed as follows:

α = roundup

{
random ∗N

}
(4.1.3)

The α in equation (4.1.3) denotes the randomly selected connection weight

in both chromosomes. Therefore, the two chromosomes that are chosen for

generating new offsprings can be written as:

Chromosomei = [w1i, w2i · · · , wαi, · · · , wNi]

Chromosomej = [w1j, w2j · · · , wαj, · · · , wNj]

(4.1.4)

In the next step the selected connection weights in each chromosomes (i.e. wαi

and wαj) are replaced with the new values based on following equation.

wnewi = wαi − β[wαi − wαj]

wnewj = wαj − β[wαi − wαj]

(4.1.5)

where β is also a random value between 0 and 1. The final step is to pro-

duce the offsprings for the population by replacing the new connection weights

in the chromosomes and swapping the connection weights of the two selected

chromosomes at the crossover point. The generated offsprings are expressed as

follows:

offspring1 = [w1i, w2i, · · · , wnewi, · · ·wNj]

offspring2 = [w1j, w2j, · · · , wnewj, · · ·wNi]

(4.1.6)

• Sixth step (Mutation): In order to avoid trapping into the local minima areas,

the mutation is applied. For mutation at the first step the mutation rate is

chosen which is a number between 0 and 1. Secondly, at random the weight

connection of chromosomes are selected to be mutated. Finally, the chosen
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connection weights are replaced by a new random value.

• Seventh step: In this stage the new population is generated and the algorithm

returns to third step.

The flowchart of training the MLPNN with genetic algorithm is illustrated in

Figure 4.3. As it is shown in the Figure 4.3, before the training process of the

MLPNN with GA starts, the structure of the MLPNN including the number of layers

and the number of neurons in each layer should be determined.

4.1.4.1 Training Phase Results in Agent-Level

The MLPNN in agent-level fault isolation scheme is trained with 10 training sets

which are obtained through different faulty operating condition of the AUV. Each of

the training sets includes 1800 samples. The process of generating training sets is fully

explained in section 4.1.3. As it is mentioned, in the first step the structure of the

MLPNN has been selected. Structure of the MLPNN includes, the number of layers

and the number of neurons in each layer. In order to determine the structure of the

MLPNN, we start with a small network structure, then the number of neurons and

hidden layers are increased till the optimum structure of the network is achieved with

respect to the MLPNN performance. In this work, according to several experiments it

has been observed that utilizing two hidden layer for the MLPNN in agent-level fault

isolation scheme, provides an acceptable performance for the network. The optimum

structure of the MLPNN and its specifications for agent-level fault isolation scheme

is shown in Table 4.3.

In Table 4.3 the four successive numbers in the structure of the network are the

number of neurons in the input layer, first hidden layer, second hidden layer and

output layer respectively.

As it is mentioned in training phase the variables of each chromosomes in the

171



Figure 4.3: Flow chart of training MLPNN with GA.
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Table 4.3: MLPNN specifications in agent-level fault isolation scheme.

Structure of the Network 2-7-1-3
F (.) First Hidden Layer Hyperbolic Tangent Sigmoid
F (.) Second Hidden Layer Hyperbolic Tangent Sigmoid

F (.) Output Layer Linear

population includes the weights of the MLPNN. The total number of parameters for

the MLPNN in agent-level fault isolation scheme which are optimized by GA is 24

and are expressed in Table 4.4.

Table 4.4: Parameters of MLPNN in agent-level fault isolation scheme that are opti-
mized with GA.
Parameters Number of Parameters

Weights of the first hidden layer W1(N(1), K) = W1(7, 2) = 14
Weights of the second hidden layer W1(N(2), N(1)) = W1(1, 7) = 7
Weights of the output layer W3(N(3), N(2)) = W3(3, 1) = 3

K = Number of inputs
N(1) = Number of neurons in the first hidden layer 1
N(2) = Number of neurons in the second hidden layer 1
N(3) = Number of neurons in output layer

In addition, the genetic algorithm parameters which is applied in agent-level fault

isolation scheme are expressed in Table 4.5.

Table 4.5: Genetic algorithm parameters in agent-level fault isolation scheme.

Population size 15
Termination criterion RMSE < 0.04

Mutation rate 0.15
Selection type Natural Selection

The performance of the MLPNN in training phase for one of the training sets is

depicted in Figure 4.4.

The RMSE of the MLPNN in agent-level fault isolation scheme for 10 different

training sets are expressed in Table 4.6.
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Figure 4.4: Performance of the MLPNN in training phase of agent-level fault isolation
scheme.

Table 4.6: Training phase RMSE of the MLPNN in agent-level fault isolation scheme
for 10 different training sets.

Training set RMSE
1 0.039979
2 0.039366
3 0.038845
4 0.036954
5 0.039875
6 0.039432
7 0.039758
8 0.037412
9 0.038944
10 0.038236
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According to Table 4.6, the average RMSE and its standard deviation are 0.03888

and 0.00104 respectively, which means the performance of the MLPNN in agent-level

fault isolation scheme is quite acceptable.

4.1.4.2 Training Phase Results in Formation-Level

The MLPNN in formation-level fault isolation scheme is trained with 10 training sets

which are obtained through different faulty operating condition of the AUV. Each

of the training sets includes 1800 samples. The process of generating training sets

is fully explained in section 4.1.3. As it is mentioned, in the first step the structure

of the MLPNN has been selected. Structure of the MLPNN includes, the number of

layers and the number of neurons in each layer. In this work, according to several

experiments it has been observed that utilizing two hidden layer for the MLPNN

in formation-level fault isolation scheme, provides an acceptable performance for the

network. The optimum structure of the MLPNN its specifications for formation-level

fault isolation scheme is shown in Table 4.7.

Table 4.7: MLPNN specifications in formation-level fault isolation scheme.

Structure of the Network 2-5-1-3
F (.) First Hidden Layer Hyperbolic Tangent Sigmoid
F (.) Second Hidden Layer Hyperbolic Tangent Sigmoid

F (.) Output Layer Linear

In Table 4.7 the four successive numbers in the structure of the network are the

number of neurons in the input layer, first hidden layer, second hidden layer and

output layer respectively.

As it is mentioned in training phase the variables of each chromosomes in the

population includes the weights of the MLPNN. The total number of parameters for

the MLPNN in formation-level fault isolation scheme which are optimized by GA is

18 and are expressed in Table 4.8.
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Table 4.8: Parameters of MLP network in formation-level fault isolation scheme that
are optimized with GA.

Parameters Number of Parameters

Weights of the first hidden layer W1(N(1), K) = W1(5, 2) = 10
Weights of the second hidden layer W1(N(2), N(1)) = W1(1, 5) = 5
Weights of the output layer W3(N(3), N(2)) = W3(3, 1) = 3

K = Number of inputs
N(1) = Number of neurons in the first hidden layer
N(2) = Number of neurons in the second hidden layer
N(3) = Number of neurons in output layer

In addition, the genetic algorithm parameters which is applied in formation-level

fault isolation scheme are expressed in Table 4.9.

Table 4.9: Genetic algorithm parameters in formation-level fault isolation scheme.

Population size 15
Termination criterion RMSE < 0.04

Mutation rate 0.15
Selection type Natural Selection

The performance of the MLPNN in training phase for one of the training sets is

depicted in Figure 4.5.

The RMSE of the MLPNN in formation-level fault isolation scheme for 10 different

training sets are expressed in Table 4.10.

According to Table 4.10, the average RMSE and its standard deviation are 0.03717

and 0.00104 respectively, which means the performance of the MLPNN in formation-

level fault isolation scheme is quite acceptable.

4.1.5 Cross-Validation Phase

The cross-validation method is from statistics which is used to ensure the generaliza-

tion and to avoid overtraining. In this thesis the hold-out cross-validation method

is used. In this method, the MLPNN is trained with training set and meanwhile

176



Figure 4.5: Performance of the MLPNN in training phase of formation-level fault
isolation scheme.

Table 4.10: Training phase RMSE of the MLPNN in formation-level fault isolation
scheme for 10 different training sets.

Training set RMSE
1 0.038919
2 0.036423
3 0.038110
4 0.035439
5 0.037126
6 0.038432
7 0.036721
8 0.037119
9 0.036542
10 0.036922
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the RMSE is checked on the validation set to avoid overtraining. This procedure is

repeated and the training is stopped when the RMSE in cross-validation stops im-

proving. If the training continues, it result in overtraining on the training set and it

indicates that the MLPNN loses it generalization ability.

4.1.5.1 Cross-Validation Phase Results in Agent-Level

The RMSE of the MLPNN in agent-level fault isolation scheme for 10 different vali-

dation sets are expressed in Table 4.11

Table 4.11: Cross-validation phase RMSE of the MLPNN in agent-level fault isolation
scheme for 10 different cross-validation sets.

Validation set RMSE
1 0.039999
2 0.039741
3 0.038975
4 0.037931
5 0.039091
6 0.039532
7 0.039822
8 0.037920
9 0.038981
10 0.038440

According to Table 4.11, the average RMSE and its standard deviation are 0.03904

and 0.00075 respectively, which is quite acceptable.

4.1.5.2 Cross-Validation Results in Formation-Level

The RMSE of the MLPNN in formation-level fault isolation scheme for 10 different

validation sets are expressed in Table 4.12

According to Table 4.12, the average RMSE and its standard deviation are 0.03780

and 0.001 respectively, which is quite acceptable.
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Table 4.12: cross-validation phase RMSE of the MLPNN in formation-level fault
isolation scheme for 10 different cross-validation sets.

Validation set RMSE
1 0.039811
2 0.037113
3 0.038760
4 0.036837
5 0.038222
6 0.038672
7 0.036952
8 0.037437
9 0.037001
10 0.037213

4.1.6 Testing Phase

In order to present the capability of the MLPNNs in agent-level and formation-level

fault isolation schemes, they are evaluated with 10 testing sets which are not formerly

seen by the networks. As it is mentioned before, each of the testing sets contains 1200

samples.

4.1.6.1 Testing Phase Results in Agent-Level

The RMSE of the MLPNN in agent-level fault isolation scheme for 10 different testing

sets are expressed in Table 4.13

According to Table 4.13, the average RMSE and its standard deviation are 0.03952

and 0.00083 respectively, which is quite acceptable.

4.1.6.2 Testing Phase Results in Formation-Level

The RMSE of the MLPNN in formation-level fault isolation scheme for 10 different

testing sets are expressed in Table 4.14

According to Table 4.14, the average RMSE and its standard deviation are 0.03881

and 0.00077 respectively, which is quite acceptable.
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Table 4.13: Testing phase RMSE of the MLPNN in agent-level fault isolation scheme
for 10 different testing sets.

Testing set RMSE
1 0.041002
2 0.040111
3 0.039522
4 0.038318
5 0.039621
6 0.039892
7 0.040221
8 0.038441
9 0.039112
10 0.038993

Table 4.14: Testing phase RMSE of the MLPNN in formation-level fault isolation
scheme for 10 different testing sets.

Testing set RMSE
1 0.040111
2 0.038541
3 0.039642
4 0.038531
5 0.039101
6 0.038992
7 0.037503
8 0.039198
9 0.037867
10 0.038655
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4.1.7 Analysis of Fault Isolation Scheme

In order to investigate the performance of the proposed fault isolation algorithm, the

confusion matrix approach for multi-class classification is used. A confusion matrix

for classification of three classes (i.e. Thruster blocking, Flooded thruster and Loss

of effectiveness in rotor) is is shown in Table 4.15.

Table 4.15: Table corresponding to confusion matrix [174].
Predicted

C1 C2 C3

Actual
C1 N1,1 N1,2 N1,3

C2 N2,1 N2,2 N2,3

C3 N3,1 N3,2 N3,3

In Table 4.15, C1, C2 and C3 denote to thruster blocking, flooded thruster and

loss of effectiveness in rotor respectively and the elements of the confusion matrix are

defined as follows:

• N1,1 is the true positive (TP) value for the thruster blocking class. This value

indicates the number of samples that are correctly classified as thruster blocking

fault.

• N2,1 is the number of samples that are misclassified as thruster blocking fault

while the type of the occurred fault is flooded thruster.

• N3,1 is the number of samples that are misclassified as thruster blocking fault

while the type of the occurred fault is loss of effectiveness in rotor.

• The sum of N2,1 and N3,1 values is the false negative (FN) value for the thruster

blocking class and named as FN1. This value indicates the number of samples

that are incorrectly classified as thruster blocking fault.
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• N2,2 is the true positive (TP) value for the flooded thruster class. This value

indicates the number of samples that are correctly classified as flooded thruster

fault.

• N1,2 is the number of samples that are misclassified as flooded thruster fault

while the type of the occurred fault is thruster blocking.

• N3,2 is the number of samples that are misclassified as flooded thruster fault

while the type of the occurred fault is loss of effectiveness in rotor.

• The sum of N1,2 and N3,2 values is the false negative (FN) value for the flooded

thruster class and named as FN2. This value indicates the number of samples

that are incorrectly classified as flooded thruster fault.

• N3,3 is the true positive (TP) value for the loss of effectiveness in rotor class.

This value indicates the number of samples that are correctly classified as loss

of effectiveness in rotor fault.

• N1,3 is the number of samples that are misclassified as loss of effectiveness in

rotor fault while the type of the occurred fault is thruster blocking.

• N2,3 is the number of samples that are misclassified as loss of effectiveness in

rotor fault while the type of the occurred fault is flooded thruster.

• The sum of N1,3 and N2,3 values is the false negative (FN) value for the loss of

effectiveness in rotor class and named as FN3. This value indicates the number

of samples that are incorrectly classified as loss of effectiveness in rotor fault.

According to the elements of the confusion matrix the accuracy and the error rate

which is considered as the complement of the accuracy are calculated in following
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equations:

Accuracy =
N1,1 +N2,2 +N3,3∑3

i=1

∑3
j=1 Ni,j

(4.1.7)

Error rate = (1− Accuracy) (4.1.8)

The accuracy presents the overall correctness of the proposed method.

In order to measure the accuracy for each of the classes, the precision is defined

for each of the aforementioned classes as follows:

PrecisionC1
=

N1,1

N1,1 + FN1

(4.1.9)

PrecisionC2
=

N2,2

N2,2 + FN2

(4.1.10)

PrecisionC3
=

N3,3

N3,3 + FN3

(4.1.11)

In this thesis the confusion matrix is obtained for a total of 270 faulty samples,

including 90 samples corresponding to thruster blocking fault scenarios, 90 samples

corresponding to flooded thruster fault scenarios and 90 samples corresponding to

loss of effectiveness in rotor fault scenarios.

4.1.7.1 Confusion Matrix Analysis for Agent-Level Fault Isolation scheme

The confusion matrix for the agent-level fault isolation scheme indicated in Table 4.16

and the accuracy, error rate and precision for each classes are mentioned in Table 4.17.

According to the measurements in Table 4.17, it can be seen that the performance

of the proposed fault isolation is quite well.
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Table 4.16: Table corresponding to confusion matrix for agent-level fault isolation
scheme.

Predicted
C1 C2 C3

Actual
C1 65 0 25
C2 0 90 0
C3 27 0 63

Table 4.17: Accuracy, error rate and precision of each class for agent-level fault
isolation scheme.

Class Precision Accuracy Error rate
Thruster blocking

C1
70.65%

Flooded Thruster
C2

100% 80.74% 19.26%

Loss of effectiveness in rotor
C3

71.59%

4.1.7.2 Confusion Matrix Analysis for Formation-Level Fault Isolation

Scheme

The confusion matrix for the formation-level fault isolation scheme indicated in Table

4.18 and the accuracy, error rate and precision for each classes are mentioned in Table

4.19.

Table 4.18: Table corresponding to confusion matrix for formation-level fault isolation
scheme.

Predicted
C1 C2 C3

Actual
C1 70 0 20
C2 0 90 0
C3 22 0 68

According to the measurements in Table 4.19, it can be seen that the performance

of the proposed fault isolation is quite well.

As the Tables 4.17 and 4.19 indicate, the formation-level fault isolation scheme has

a higher accuracy and precision, in other words the performance of the formation-level
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Table 4.19: Accuracy, error rate and precision of each class for formation-level fault
isolation scheme.

Class Precision Accuracy Error rate
Thruster blocking

C1
76.08%

Flooded Thruster
C2

100% 84.44% 15.56%

Loss of effectiveness in rotor
C3

77.27%

fault isolation scheme is better comparing to agent-level fault isolation scheme.

4.2 Fault Identification Schemes

In the proposed fault identification scheme, a multi-layer perceptron neural network

(MLPNN) is employed in each of the AUVs to categorize the severity of the occurred

thruster fault into low, medium and high. In this section the proposed fault identifi-

cation schemes in agent-level and formation-level for determining the severity of the

occurred thruster fault of the AUV are presented.

The fault percentage intervals for different severity of faults corresponding to low,

medium and high severity levels are determined based on the results from the fault

detection scheme. These intervals are expressed in Table 4.20.

Table 4.20: Fault percentage intervals for different type of faults corresponding to
low, medium and high severity levels.

Fault Type Fault Percentage Interval

Thruster blocking low severity Thruster torque is dropped by 1% to 7%
Thruster blocking medium severity Thruster torque is dropped by 7% to 15%
Thruster blocking high severity Thruster torque is dropped by 16% and larger
Flooded thruster low severity Rotation velocity is increased by 1% to 7%
Flooded thruster medium severity Rotation velocity is increased by 7% to 15%
Flooded thruster high severity Rotation velocity is increased by 16% and larger
Loss of effectiveness in rotor low severity Rotation velocity is dropped by 1% to 7%
Loss of effectiveness in rotor medium severity Rotation velocity is dropped by 7% to 15%
Loss of effectiveness in rotor high severity Rotation velocity is dropped by 16% and larger
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Table 4.22: Assigned classes for fault severities in formation-level fault identification
scheme.

Fault Class (Severity) Assigned Label

Class 1 (Low severity) 0 0 1
Class 2 (Medium severity) 0 1 0
Class 3 (High severity) 1 0 0

4.2.3 Data Preprocessing

In agent-level and formation-level fault identification schemes, providing the data for

training the MLPNNs is divided into different steps. Firstly, the residual signals which

are generated through the agent-level and formation-level fault detection schemes un-

der various faulty operating condition of the AUV are collected. Secondly, these

residuals are processed and the magnitudes of them before and after the fault occur-

rence is calculated and the ratio of them is considered as the input of the MLPNNs.

Finally, these magnitudes which are the inputs for the MLPNN are normalized in

the range of [0,1] before the training process begins. In order to have a reliable per-

formance, 10 different input data sets are provided. Each data sets includes 2700

samples including 900 thruster blocking fault scenarios, 900 flooded thruster fault

scenarios and 900 loss of effectiveness in rotor fault scenarios. The input data set is

randomly divided into three parts namely as, training set, validation set and testing

set. In this work, the 50% of the input data set is randomly chosen as training set,

the 25% of it is selected at random as validation set and the remaining 25% of it is

the testing set. It has been observed that by using 2700 samples as input data set an

acceptable result for fault identification task can be accomplished.

4.2.4 Training Phase

The MLPNNs in both agent-level and formation-level fault identification schemes are

trained with genetic algorithm (GA). The GA is applied to adjust the connection
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weights of the MLPNNs. The training procedure of the MLPNNs in the fault iden-

tification schemes is same as the fault isolation scheme which is fully explained in

section 4.1.4.

4.2.4.1 Training Phase Results in Agent-Level

The MLPNN in agent-level fault identification scheme is trained with 10 training

sets which are obtained through different faulty operating condition of the AUV.

Each of the training sets includes 900 samples. The process of generating training

sets is fully explained in section 4.2.3. As it is mentioned, in the first step the

structure of the MLPNN has been selected. Structure of the MLPNN includes, the

number of layers and the number of neurons in each layer. In order to determine the

structure of the MLPNN, we start with a small network structure, then the number of

neurons and hidden layers are increased till the optimum structure of the network is

achieved with respect to the MLPNN performance. In this work, according to several

experiments it has been observed that utilizing one hidden layer for the MLPNN in

agent-level fault identification scheme, provides an acceptable performance for the

network. The optimum structure of the MLPNN and its specifications for agent-level

fault identification scheme is shown in Table 4.23.

Table 4.23: MLPNN specifications in agent-level fault identification scheme.

Structure of the Network 1-6-3
F (.) Hidden Layer Hyperbolic Tangent Sigmoid
F (.) Output Layer Linear

In Table 4.23 the three successive numbers in the structure of the network are the

number of neurons in the input layer, hidden layer and output layer respectively.

As it is mentioned in training phase the variables of each chromosomes in the

population includes the weights of the MLPNN. The total number of parameters for
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the MLPNN in agent-level fault identification scheme which are optimized by GA is

9 and are expressed in Table 4.24.

Table 4.24: Parameters of MLPNN in agent-level fault identification scheme that are
optimized with GA.

Parameters Number of Parameters

Weights of the hidden layer 1 W1(N(1), K) = W1(6, 1) = 6
Weights of the output layer W3(N(3), N(2)) = W3(3, 1) = 3

K = Number of inputs
N(1) = Number of neurons in the hidden layer 1
N(3) = Number of neurons in output layer

In addition, the genetic algorithm parameters which is applied in agent-level fault

identification scheme are expressed in Table 4.25.

Table 4.25: Genetic algorithm parameters in agent-level fault identification scheme.

Population size 20
Termination criterion RMSE < 0.04

Mutation rate 0.25
Selection type Natural Selection

The performance of the MLPNN in training phase for one of the training sets is

depicted in Figure 4.8.

The RMSE of the MLPNN in agent-level fault identification scheme for 10 different

training sets are expressed in Table 4.26.

According to Table 4.26, the average RMSE and its standard deviation are 0.03856

and 0.00095 respectively, which means the performance of the MLPNN in agent-level

fault identification scheme is quite acceptable.

4.2.4.2 Training Phase Results in Formation-Level

The MLPNN in formation-level fault identification scheme is trained with 10 training

sets which are obtained through different faulty operating condition of the AUV. Each
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Figure 4.8: Performance of the MLPNN in training phase of agent-level fault identi-
fication scheme.

Table 4.26: Training phase RMSE of the MLPNN in agent-level fault identification
scheme for 10 different training sets.

Training set RMSE
1 0.038771
2 0.039101
3 0.036705
4 0.038342
5 0.039743
6 0.038521
7 0.037654
8 0.039967
9 0.038201
10 0.038640
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of the training sets includes 900 samples. The process of generating training sets is

fully explained in section 4.2.3. As it is mentioned, in the first step the structure of

the MLPNN has been selected. Structure of the MLPNN includes, the number of

layers and the number of neurons in each layer. In this work, according to several

experiments it has been observed that utilizing one hidden layer for the MLPNN

in formation-level fault identification scheme, provides an acceptable performance

for the network. The optimum structure of the MLPNN and its specifications for

formation-level fault identification scheme is shown in Table 4.27. In Table 4.27 the

Table 4.27: MLPNN specifications in formation-level fault identification scheme.

Structure of the Network 1-4-3
F (.) Hidden Layer Hyperbolic Tangent Sigmoid
F (.) Output Layer Linear

three successive numbers in the structure of the network are the number of neurons

in the input layer, hidden layer and output layer respectively.

As it is mentioned in training phase the variables of each chromosomes in the

population includes the weights of the MLPNN. The total number of parameters for

the MLPNN in formation-level fault identification scheme which are optimized by GA

is 7 and are expressed in Table 4.28.

Table 4.28: Parameters of MLPNN in formation-level fault identification scheme that
are optimized with GA.

Parameters Number of Parameters

Weights of the hidden layer 1 W1(N(1), K) = W1(4, 1) = 4
Weights of the output layer W3(N(3), N(2)) = W3(3, 1) = 3

K = Number of inputs
N(1) = Number of neurons in the hidden layer 1
N(3) = Number of neurons in output layer

In addition, the genetic algorithm parameters which is applied in formation-level

fault identification scheme are expressed in Table 4.29.
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Table 4.29: Genetic algorithm parameters in formation-level fault identification
scheme.

Population size 20
Termination criterion RMSE < 0.04

Mutation rate 0.25
Selection type Natural Selection

The performance of the MLPNN in training phase for one of the training sets is

depicted in Figure 4.9.

Figure 4.9: Performance of the MLPNN in training phase of formation-level fault
identification scheme.

The RMSE of the MLPNN in formation-level fault identification scheme for 10

different training sets are expressed in Table 4.30.

According to Table 4.30 the average RMSE and its standard deviation are 0.03810

and 0.00096 respectively, which means the performance of the MLPNN in formation-

level fault identification scheme is quite acceptable.
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Table 4.30: Training phase RMSE of the MLPNN in formation-level fault identifica-
tion scheme for 10 different training sets.

Training set RMSE
1 0.038231
2 0.038795
3 0.036004
4 0.037987
5 0.038965
6 0.038108
7 0.037321
8 0.039409
9 0.037679
10 0.038519

4.2.5 Cross-Validation Phase

The process of cross-validation phase for the MLPNNs in both agent-level and formation-

level fault identification schemes are same as the fault isolation scheme which if fully

explained in section 4.1.5.

4.2.5.1 Cross-Validation Phase Results in Agent-Level

The RMSE of the MLPNN in agent-level fault identification scheme for 10 different

validation sets are expressed in Table 4.31.

Table 4.31: Cross-validation phase RMSE of the MLPNN in agent-level fault identi-
fication scheme for 10 different validation sets.

Validation set RMSE
1 0.039322
2 0.039765
3 0.037312
4 0.038899
5 0.039934
6 0.039012
7 0.037989
8 0.039990
9 0.038456
10 0.039103
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According to Table 4.31, the average RMSE and its standard deviation are 0.03897

and 0.00086 respectively, which is quite acceptable.

4.2.5.2 Cross-Validation Phase Results in Formation-Level

The RMSE of the MLPNN in formation-level fault identification scheme for 10 dif-

ferent validation sets are expressed in Table 4.32.

Table 4.32: Cross-validation phase RMSE of the MLPNN in formation-level fault
identification scheme for 10 different validation sets.

Validation set RMSE
1 0.038446
2 0.038905
3 0.037211
4 0.038031
5 0.039021
6 0.038865
7 0.037981
8 0.039807
9 0.038006
10 0.038834

According to Table 4.32 the average RMSE and its standard deviation are 0.03852

and 0.00072 respectively, which is quite acceptable.

4.2.6 Testing Phase

In order to present the capability of the MLPNNs in agent-level and formation-level

fault identification schemes, they are evaluated with 10 testing sets which are not

formerly seen by the networks. As it is mentioned before, each of the testing sets

contains 900 samples.
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4.2.6.1 Testing Phase Results in Agent-Level

The RMSE of the MLPNN in agent-level fault identification scheme for 10 different

testing sets are expressed in Table 4.33

Table 4.33: Testing phase RMSE of the MLPNN in agent-level fault identification
scheme for 10 different testing sets.

Testing set RMSE
1 0.042102
2 0.039989
3 0.038401
4 0.039219
5 0.040005
6 0.039631
7 0.038043
8 0.039995
9 0.038567
10 0.039789

According to Table 4.33 the average RMSE and its standard deviation are 0.03957

and 0.0011 respectively. Thus, it can be concluded that the performance of the

proposed MLPNN is quite acceptable.

4.2.6.2 Testing Phase Results in Formation-Level

The RMSE of the MLPNN in formation-level fault identification scheme for 10 dif-

ferent testing sets are expressed in Table 4.34

According to Table 4.34 the average RMSE and its standard deviation are 0.0388

and 0.00064 respectively. Thus, it can be concluded that the performance of the

proposed MLPNN is quite acceptable.
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Table 4.34: Testing phase RMSE of the MLPNN in formation-level fault identification
scheme for 10 different testing sets.

Testing set RMSE
1 0.038897
2 0.039102
3 0.037865
4 0.038432
5 0.039512
6 0.039309
7 0.038308
8 0.039934
9 0.038398
10 0.038987

4.2.7 Analysis of Fault Identification Scheme

In order to investigate the performance of the proposed fault identification algorithm,

the confusion matrix approach for multi-class classification is used. A confusion

matrix for classification of three classes (i.e. Low severity, Medium severity and High

severity) is shown in Table 4.35.

Table 4.35: Table corresponding to confusion matrix [174].
Predicted

C1 C2 C3

Actual
C1 N1,1 N1,2 N1,3

C2 N2,1 N2,2 N2,3

C3 N3,1 N3,2 N3,3

In Table 4.35, C1, C2 and C3 denote to low severity, medium severity and high

severity respectively and the elements of the confusion matrix are defined as follows:

• N1,1 is the true positive (TP) value for the low severity class. This value indi-

cates the number of samples that are correctly classified as low severity fault.

• N2,1 is the number of samples that are misclassified as low severity fault while

the severity of the occurred fault is medium.
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• N3,1 is the number of samples that are misclassified as low severity fault while

the severity of the occurred fault is high.

• The sum of N2,1 and N3,1 values is the false negative (FN) value for the low

severity class and named as FN1. This value indicates the number of samples

that are incorrectly classified as low severity fault.

• N2,2 is the true positive (TP) value for the medium severity class. This value

indicates the number of samples that are correctly classified as medium severity

fault.

• N1,2 is the number of samples that are misclassified as medium severity fault

while the severity of the occurred fault is low.

• N3,2 is the number of samples that are misclassified as medium severity fault

while the severity of the occurred fault is high.

• The sum of N1,2 and N3,2 values is the false negative (FN) value for the medium

severity class and named as FN2. This value indicates the number of samples

that are incorrectly classified as medium severity fault.

• N3,3 is the true positive (TP) value for the high severity class. This value

indicates the number of samples that are correctly classified as high severity

fault.

• N1,3 is the number of samples that are misclassified as high severity fault while

the severity of the occurred fault is low.

• N2,3 is the number of samples that are misclassified as high severity fault while

the severity of the occurred fault is medium.
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• The sum of N1,3 and N2,3 values is the false negative (FN) value for high severity

class and named as FN3. This value indicates the number of samples that are

incorrectly classified as high severity fault.

The accuracy, error rate and precision for each of the classes in fault identification

scheme are calculated based on equations (4.1.7) to (4.1.11) respectively.

In this work the confusion matrix is obtained for 270 faulty samples, including 90

samples corresponding to thruster blocking fault scenarios, 90 samples corresponding

to flooded thruster fault scenarios and 90 samples corresponding to loss of effectiveness

in rotor fault scenarios.

4.2.7.1 Confusion Matrix Analysis for Agent-Level Fault Identification

Scheme

The confusion matrix for the agent-level fault identification scheme is indicated in

Table 4.36 and the accuracy, error rate and precision for each classes are mentioned

in Table 4.37.

Table 4.36: Table corresponding to confusion matrix for agent-level fault identification
scheme.

Predicted
C1 C2 C3

Actual
C1 53 37 0
C2 29 51 10
C3 0 27 63

According to the accuracy measurement in Table 4.37 it can be concluded that

the over all performance of the proposed agent-level fault identification scheme is not

quite acceptable.
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Table 4.37: Accuracy, error rate and precision of each class for agent-level fault
identification scheme.

Class Precision Accuracy Error rate
Low severity

C1
58.88%

Medium severity
C2

56.66% 61.85% 38.15%

High severity
C3

70%

4.2.7.2 Confusion Matrix Analysis for Formation-Level Fault Identifica-

tion Scheme

The confusion matrix for the formation-level fault identification scheme is indicated

in Table 4.38 and the accuracy, error rate and precision for each classes are mentioned

in Table 4.39.

Table 4.38: Table corresponding to confusion matrix for formation-level fault identi-
fication scheme.

Predicted
C1 C2 C3

Actual
C1 74 16 0
C2 8 82 0
C3 0 14 76

Table 4.39: Accuracy, error rate and precision of each class for formation-level fault
identification scheme.

Class Precision Accuracy Error rate
Low severity

C1
82.22%

Medium severity
C2

91.11% 85.92% 14.08%

High severity
C3

84.44%

According to the measurements in Table 4.39 it can be concluded that the per-

formance of the proposed formation-level fault identification scheme is quit well.
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As the Tables 4.37 and 4.39 indicate, the formation-level fault identification scheme

has a higher accuracy and precision comparing to agent-level fault identification, in

other words the performance of the formation-level fault identification scheme is bet-

ter in comparison with the agent-level fault identification scheme.

4.3 Conclusion

In this chapter, the agent-level and formation-level fault isolation and identification

schemes based on neural networks are proposed. In agent-level fault isolation scheme

and formation-level fault isolation scheme, the residual signals generated in the agent-

level fault detection scheme are processed and their magnitudes before and after the

occurrence of the fault are considered as the inputs to the MLPNN. The proposed

MLPNNs in agent-level and formation-level fault isolation schemes are trained based

on genetic algorithm in order to classify the type of the fault into thruster block-

ing, flooded thruster and loss of effectiveness in rotor. In order to investigate the

performance of the proposed fault isolation schemes the confusion matrix analysis

is applied. According to the confusion matrix elements the accuracy and precision

of the proposed methods are calculated. The results indicate that the agent-level

fault isolation scheme has the 80.74% accuracy while the formation-level fault isola-

tion scheme has the 84.44% accuracy. Thus, it can be concluded the formation-level

performance is better comparing to agent-level.

In agent-level fault identification scheme and formation-level fault identification

scheme, the residual signals generated in the agent-level fault detection scheme are

processed and the ratio of their magnitudes before and after the occurrence of the fault

is considered as the input to the MLPNN. The proposed MLPNNs in agent-level and

formation-level fault identification schemes are trained based on genetic algorithm in

order to classify the severity of the fault into low, medium and high severities. In
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order to investigate the performance of the proposed fault identification schemes the

confusion matrix analysis is applied. According to the confusion matrix elements the

accuracy and precision of the proposed methods are calculated. The results indicate

that the agent-level fault identification scheme has the 61.85% accuracy while the

formation-level fault identification scheme has the 85.92% accuracy. Thus, it can

be concluded the formation-level fault identification scheme has a better and more

reliable performance comparing to agent-level fault identification scheme.
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Chapter 5

Conclusions and Future Work

5.1 Thesis Summary

In this thesis the problem of fault detection, isolation and identification (FDII) scheme

for formation of AUVs is investigated. The proposed intelligent fault diagnosis scheme

for formation of AUVs is based on dynamic neural networks (DNNs) training with

genetic algorithm.

For detecting the faults, two levels of fault detection are proposed named as:

agent-level fault detection (ALFD) and formation-level fault detection (FLFD). In

the ALFD scheme the absolute measurements are used to train the DNN while in

the FLFD both absolute measurements and relative measurements of the AUV with

respects to its adjacent neighbors are utilized for training of the network.

The performance of the ALFD and FLFD scheme are evaluated and compared

for 3 faulty scenarios (i.e. Thruster blocking, Flooded thruster, Loss of effectiveness

in rotor) with different severities through confusion matrix analysis. The confusion

matrix analysis indicates that the FLFD scheme is capable of detecting the low,

medium and high severity faults with high accuracy and precision while the ALFD

scheme detects only the medium and high severity faults and is not able to detect
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low severity faults.

In addition, the performances of the dynamic network during the training phase

based on two different methods named as genetic algorithm and extended dynamic

back-propagation are compared. The results indicated that the GA approach converge

faster, in other words it provides better results in less number of iterations.

In order to isolate the occurred fault, two different approaches namely as, agent-

level and formation-level fault isolation schemes are developed. In both agent-level

fault isolation scheme a MLPNN is employed which is trained based on GA. The

residual signals are generated in the agent-level and formation-level fault detection

scheme are processed and applied as an input to the MLPNNs respectively. In this

work processing of the residual signal is calculating the magnitudes of the residual

signal before and after the occurrence of the fault which are applied as the two inputs

for the MLPNNs. The output of the proposed MLPNNs is the label corresponding

to the type of the fault. The confusion matrix analysis indicate that the performance

of the proposed formation-level fault isolation scheme in determining the type of the

occurred fault is better in comparison with the agent-level fault isolation scheme.

In order to identify the severity of the occurred fault, two different fault identifica-

tion approaches are applied namely as, agent-level and formation-level fault identifi-

cation schemes. In both agent-level fault identification scheme a MLPNN is employed

which is trained based on GA. The residual signals are generated in the agent-level

and formation-level fault detection scheme are processed and applied as an input to

the MLPNNs respectively. In this work processing of the residual signal is calculating

the magnitudes of the residual signal before and after the occurrence of the fault and

the ratio of the magnitudes is applied as an input for the MLPNNs. The output of

the proposed MLPNNs is the label corresponding to the severity of the fault. The
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confusion matrix analysis indicate that the performance of the proposed formation-

level fault identification scheme is better comparing to agent-level fault identification

scheme and it has higher accuracy and precision in determining the severity of the

occurred fault.

5.2 Suggestions for Future Work

• Firstly, in this work the genetic algorithm is used to train the dynamic neural

network. Further research studies can be done on determining the optimal

architecture for the DNN by utilizing the genetic algorithm.

• Secondly, development and testing a hybrid method which utilize a combination

of genetic algorithm (GA) and extended dynamic back-propagation(EDBP) can

be consider as a future study.

• Thirdly, in this thesis the problem of fault detection, isolation and identification

for the thruster of the AUV has been addressed. Developing a fault diagnosis

system for the sensors of the AUV can be investigated in future studies.

• Fourthly, another suggestion for future work can be focused on development

of the more advanced FDII system for the faulty situation that contains more

than one type of fault or combination of faults occur.
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