3,504 research outputs found

    Dynamic flow distortion investigation in an S-duct using DDES and SPIV data

    Get PDF
    The dynamic flow distortion generated within convoluted aero-engine intakes can affect the performance and operability of the engine. There is a need for a better understanding of the main flow mechanisms which promote flow distortion at the exit of S-shaped intakes. This paper presents a detailed analysis of the main coherent structures in an S-duct flow field based on a Delayed Detached Eddy Simulation (DDES). The DDES capability to capture the characteristics of the highly unsteady flow field is demonstrated against high resolution, synchronous Stereoscopic Particle Image Velocimetry (SPIV) measurements at the Aerodynamic Interface Plane (AIP). The flow field mechanisms responsible for the main AIP perturbations are identified. Clockwise and counter-clockwise stream-wise vortices are alternately generated around the separation region at a frequency of St=0.53, which promotes the swirl switching at the AIP. Spanwise vortices are also shed from the separation region at a frequency of St=1.06, and convect downstream along the separated centreline shear layer. This results in a vertical modulation of the main loss region and a fluctuation of the velocity gradient between the high and low velocity flow at the AIP

    A Detailed Modeling Study of Radiative Heat Transfer in A Heavy-Duty Diesel Engine

    Get PDF
    In recent years, the importance of radiative heat transfer in combustion has been increasingly recognized. Detailed models have become available that accurately represent the complex spectral radiative properties of reacting gas mixtures and soot particles, and new methods have been developed to solve the radiative transfer equation (RTE). At the same time, the trends toward higher operating pressures and higher levels of exhaust-gas recirculation in compression-ignition engines, together with the demand for higher quantitative accuracy from in-cylinder CFD models, has led to renewed interest in radiative transfer in engines. Here an in-depth investigation of radiative heat transfer is performed for a heavy-duty diesel truck engine over a range of operating conditions. Results from 10 different combinations of turbulent combustion models, spectral radiation property models, and RTE solvers are compared to provide insight into the global influences of radiation on energy redistribution in the combustion chamber, heat losses, and engine-out pollutant emissions (NO and soot). Also, the relative importance of the individual contributions of molecular gas versus soot radiation, the spectral model, the RTE solver, and unresolved turbulent fluctuations in composition and temperature (turbulence–radiation interactions – TRI) are investigated. Local instantaneous temperatures change by as much as 100 K with consideration of radiation, but the global influences of radiation on heat losses and engine-out emissions are relatively small (in the 5–10% range). Molecular gas radiation dominates over soot radiation, consideration of spectral properties is essential for accurate predictions of reabsorption, a simple RTE solver (a first-order spherical harmonics – P1 – method) is sufficient for the conditions investigated, and TRI effects are small (less than 10%). While the global influences of radiation are relatively small, it is nevertheless desirable to explicitly account for radiation in in-cylinder CFD. To that end, a simplified CFD radiation model has been proposed, based on the findings reported here

    Numerical aeroacoustic analysis of propeller designs

    Get PDF
    As propeller-driven aircraft are the best choice for short/middle-haul flights but their acoustic emissions may require improvements to comply with future noise certification standards, this work aims to numerically evaluate the acoustics of different modern propeller designs. Overall sound pressure level and noise spectra of various blade geometries and hub configurations are compared on a surface representing the exterior fuselage of a typical large turboprop aircraft. Interior cabin noise is also evaluated using the transfer function of a Fokker 50 aircraft. A blade design operating at lower RPM and with the span-wise loading moved inboard is shown to be significantly quieter without severe performance penalties. The employed Computational Fluid Dynamics (CFD) method is able to reproduce the tonal content of all blades and its dependence on hub and blade design features

    Aeroacoustics of Supersonic Jet Interacting with Solid Surfaces and its Suppression

    Get PDF
    The noise generated by supersonic jet is of primary interest in the high-speed flight. In several flight conditions jet exhaust of the propulsion system interacts with solid surfaces. For example, jet impingement on ground for a rocket lift-off, or interactions influenced by the integration of the engine with the airframe. Such complex applications require consideration of the role of acoustic-surface interactions on the noise generation of the jet and its radiation. Numerical analysis of supersonic jet noise involved in these scenarios is investigated by employing Hybrid Large Eddy Simulation – Unsteady Reynolds Averaged Simulation approach to model turbulence. First, the supersonic impinging jet noise reduction using aqueous injectors is investigated. The technique employed to suppress impingement noise, involves injecting liquid water from the ground surface. The Volume of Fluid model is adopted to simulate the two phase flow. The flow field and acoustic results agree well with the existing experimental data. The possible mechanisms of noise reduction by water injection are investigated. Second, supersonic jet noise reduction by employing the shielding effect of a flat plate parallel to the jet is investigated. The numerical simulations model the shielding effect of the flat plate on the acoustics of supersonic jet, and results agree with the corresponding experimental data. The physical mechanisms involved in the flow-surface interactions are investigated. With understanding these mechanisms, a slightly wavy plate is proposed including theoretical background to determine the parameters needed for the way wall to provide acoustic reduction efficiently. Results show that the proposed wavy shield can effectively reduce both the level and extent of the jet noise source as compared to that of a flat shield

    Experimental aeroacoustics study on jet noise reduction using tangential air injection

    Get PDF
    PhDAircraft jet exhausts are a source of undesirable noise and continue to be an area of investigation driven by increasingly stringent regulation. The noise is produced by the unsteady mixing of the jet with the surrounding air and is dominated by the effects of the shear layer. In this study, the mechanisms of noise suppression are investigated on an unheated Mach 1.3 jet through three distinct control techniques. The first consists of tangential steady flow injectors located upstream of the nozzle exit whereas the second involves an equal number of control jets spaced further downstream around the nozzle exit. The third technique pulses air tangential into the shear layer at a frequency coinciding with the preferred modes of the jet (St~0.17, f~2kHz). Near and far-field acoustic measurements were made in anechoic chamber with an array of 10 free-field microphones. All three forms of tangential air injection induced reductions in overall sound pressure levels (OASPL) across a range of observer angles. External tangential injection was found to be the most efficient technique, as it produced comparably similar noise reductions at only a fraction of the injection mass flow ratio. The most significant acoustic benefit was an 8dB SPL reduction at the sideline observer angle, subsequently eliminating both screech and broadband shock noise at Strouhal numbers of St~0.74 (f~9.6kHz) and St~1(f~13kHz) respectively. An OASPL reduction of up to 5dB was also recorded at a downstream angle of 15º. However, the low-frequency noise benefits from these control jets came at the expense of increased high frequency noise beyond St>2 (f~26kHz). The flow-fields of the jet were observed using stereoscopic Particle Image Velocimetry (PIV). The introduction of a swirling component of velocity downstream of the nozzle exit was found to have a stabilizing effect on the jet shear layer. Reductions in turbulence intensity and Reynolds stress were recorded towards the end of the potential core by up to 18% and 25% respectively. The ultimate objective of this study was to develop an injection configuration that is effective at reducing jet noise whilst minimising penalties in weight and thrust
    • …
    corecore