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Summary

Recent years have seen massive breakthroughs in the observations of gamma-ray bursts
and other high-energy astrophysical transients. Dynamical jet simulations have pro-
gressed to a point where it is now becoming possible to fully numerically resolve gamma-
ray burst (GRB) jet evolution across scales. However, the modeling of radiative emis-
sion is currently lagging behind and makes for a bottleneck severely limiting our efforts
to fully interpret the physics of GRBs in the multi-messenger era. In this thesis, I
present new numerical developments to resolve this discrepancy and focus on providing
insights into GRB afterglow physics. Using numerical simulations, I set out to under-
stand the impact of the presence of multiple emission sites on afterglow light curves.
I also investigate the trans-relativistic evolution of the jet and poorly understood be-
haviour of the spectral breaks in the radiation as the jet decelerates. In order to do this,
I develop a new method for the local numerical calculation of non-thermal emission in
relativistic shocks. This method combines a moving mesh finite-volume code with the a
local description of particle acceleration and corresponding Synchrotron process. In or-
der to inform the theoretical models to simulate, I investigate the GRB X-ray afterglow
sample variability using Machine-Learning-based data visualisation techniques.

In more details, I first investigate the mechanism responsible for flares in the early X-
ray afterglow. Using a one-dimensional Lagrangian relativistic dynamics code, I carry
out simulations to show that an erratic shutdown of the central engine in the first few
hundred seconds after the burst can produce flares at arbitrarily late times. This erratic
shutdown leads to stratification in the ejecta. The radiative flux of the external reverse
shock increases when it encounters this stratification. We show that the limitation in
the angular extent of the perturbations from transverse causal connection is directly
responsible for the observed flare timescale in this scenario. These findings rely on the
ability to locally evolve the non-thermal particle populations responsible for emission
which is made possible by the increased spatial resolution resulting from the behaviour
of the moving mesh.

Summary continues on next page...
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Secondly, I apply the same methods to the study of the trans-relativistic phase of jet
evolution. For this multi-dimensional problem, I develop a massively parallel code,
GAMMA, in which hydrodynamics are computed on discrete tracks that follow the fluid
motion. This code can accurately capture the jet spreading with very high computa-
tional efficiency. Thanks to the local particle evolution calculation, it can accurately
simulate the afterglow spectral evolution from early to late times. We show that the
spectral cooling break shifts by a factor of ∼ 40 compared to previous approaches. The
evolution of this break during jet deceleration is also different as it does not shift with
time between the relativistic and Newtonian asymptotes when computed from our local
algorithm

Finally, I investigate the question whether differences in features between events can be
explained by the same model or it is a marker of differences in the phenomenology, and
thus separates distinct populations. I explore prospects for acquiring physical inference
from Machine Learning models by clustering light curves in an unsupervised manner,
and investigate the resulting level of segregation in the Swift X-ray afterglow dataset.
We find that the data creates over-densities in the encoded latent space suggesting the
presence of dominant light curve types. However, the observed gradual transition in
between unifies the prevalent classification of GRBs based on their X-ray data into a
single continuum, supporting the idea that light curves of different types should be
unified under a single model.
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Figure 1: Artist’s impression of a gamma-ray burst jetted outflow (credits
NASA/Dana Berry/Skyworks Digital1).
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1

Introduction

In this world, there are things you can only do alone, and things you can only do with
somebody else. It’s important to combine the two in just the right amount.

— Haruki Murakami, After Dark

15
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1.1 Motivation and outline

1.1.1 General context

Gamma-ray bursts (GRBs) are the most powerful explosions ever observed in the Uni-
verse. An artist’s impression of a GRB event is shown in figure 1. They are the result of
the collapse of a rapidly rotating massive star (Woosley, 1993; MacFadyen & Woosley,
1999) or of a binary neutron star (BNS) or neutron star - black hole (NS-BH) merger
(Eichler et al., 1989; Mochkovitch et al., 1995), a scenario very recently confirmed (Ab-
bott et al., 2017; Goldstein et al., 2017; Hallinan et al., 2017; Savchenko et al., 2017;
Troja et al., 2017) with the joint detection of GW170817 and GRB170817a1. Both these
scenarios are linked to the formation of a compact object, either a BH or a NS. These
explosions produce an extremely powerful ultra-relativistic jetted outflow best observed
(and consequently most often only detected) when pointing towards the observer. In
the first milliseconds to a few seconds, an initial burst of gamma rays (the prompt
emission) can be measured, followed after a few hundred seconds by an afterglow (at
lower wavelengths). The afterglow, originally peaking at X-ray energies, decreases in
luminosity and increases in wavelength with time until it disappears. Depending on
the energy of the GRB, the radio emission can be observed from days up to years after
the initial burst. Internal dissipation processes are thought to be responsible for the
prompt emission (Rees & Meszaros, 1994), though this is still debated, whereas the af-
terglow is produced by a forward shock - reverse shock (FS-RS) system created by the
interaction of the outflow, or blast-wave (BW), with the external medium surround-
ing the burster (the circumburst medium, CSM) (Rees & Meszaros, 1992; Meszaros &
Rees, 1997). At the shock fronts, accelerated electrons, interacting with tangled mag-
netic fields generated in shock instabilities, are responsible for synchrotron emission.
A schematic view of basic GRB phenomenology is given in figure 1.1 and the FS-RS
system is represented in figure 1.2, along with typical distance scales for such events.
The GRB phenomenon is described in more details in the rest of this chapter (§1.2).

GRB research benefits to various fields of astrophysics, as well as theoretical physics. In
observational cosmology, GRBs can be used as cosmic probes, since their very powerful
radiation imprints the absorption properties of the intergalactic medium at very early
cosmic times (see e.g. Schady, 2017, for a recent review). They also are natural large-
scale high-energy physics laboratories where fundamental physics can be put to the

1Gravitational wave (GW) events and GRBs follow the same name attribution convention. GW
events are named GW<YYMMDD> and GRBs are named GRB<YYMMDD>. If two events of the
same nature happen on the same day, a letter is added at the end of the name in alphabetical order.
GRB170817A hence was the first (of two) GRB detected on August 17th 2017. Since 2009, GRBs
automatically have the ’A’ suffix added even if they are the only burst on this day.
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Figure 1.1: Schematic view of the phenomenology of a GRB. The prompt emis-
sion is produced by internal shocks appearing when faster regions of the flow catch
up with slower regions ahead. The afterglow is the result of the collision with the
external medium. All the radiation is produced by non-thermal synchrotron pro-
cesses, observable at all wavelengths throughout GRB evolution. (credits: NASA
GSFC)

Figure 1.2: Schematic representation of the propagation of a GRB blast wave.
With this orientation, the reverse shock moves leftwards in the fluid frame, but
rightwards in the lab frame as it is carried outwards by the ejecta. The reverse
shock forms as soon as the material is launched, but it takes the shell several
orders of magnitude in space before the reverse shock traverses a significant frac-
tion of the ejecta. The spatial dynamics range covered is immense. In addition,
the spatial scales that have to be resolved inside the shell are as small as 105

times smaller than the radial location.
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test.

Today, the basic phenomenology of these events is mainly understood. Analytical and
numerical modeling of the dynamical and emission processes of both in the prompt
emission (see e.g. Zhang, 2014, for a review) and afterglow phases (see e.g. van Eerten,
2018, for a review) have been carried out. However, many questions still remain unan-
swered. The exact nature of the progenitor, usually investigated by studying the impact
of the CSM structure on the afterglow light curve (observed electro-magnetic flux as
a function of time), is still unclear in many cases. The nature of the remnant (BH,
magnetar2, NS) is also often debated as features such as flares and re-brigthenings ap-
pear in the light curve and need to be explained. More importantly, the micro-physics
involved in the emission processes associated with GRB afterglows are still poorly un-
derstood. Involved quantities such as the amount of energy injected in the population
of accelerated electrons at a shock front, or the amplification factor of the magnetic
field in the shocked regions are still very loosely constrained today and can vary by up
to several orders of magnitude depending on the level of detail of the modeling carried
out (Granot & Sari, 2002; van Eerten et al., 2010b; Guidorzi et al., 2014). With new
spectral windows opening in the near future (e.g. CTA - Acharya et al. (2013), SKA
- Carilli et al. (2003)), understanding of the radiative contribution of the RS in radio,
as well as Compton upscattering processes at high energies, becomes urgent. More
recently, observations of GW170817/GRB170817A unearthed a large number of ques-
tions: what is the nature, origin and influence of the jet structure on the early and
late-time dynamics and emission? What spectral contributions can we expect from the
different geometrical components present in a BNS merger, and how do they interact
with one another?

The use of over-simplistic dynamics and emission models are responsible for our current
difficulty in pinning down the workings of all these processes. Improved accuracy and
precision of synthetic afterglow light curves, when compared to observations, would
significantly reduce the uncertainty around the behavior of the radiative micro-physical
quantities. In light of the recent observations of the aftermath of 170817, where we
anticipate the contribution from the associated kilonova (KN) afterglow to dominate
the signal that is still visible almost 4 years later (Hajela et al., 2019; Troja et al., 2020)
and where the contribution from the GRB afterglow has to be accurately subtracted,
such improvements actually become vital.

2Magnetars are a class of young neutron stars with extremely powerful magnetic fields (1013 to 1015

G). They display bursts of X-ray activity with a wide dynamic range in temporal variability. They
are candidates as the central engine powering gamma-ray burst jets.
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1.1.2 Numerical modeling challenges

The dynamics and radiative transfer involved in the afterglow phenomenon exhibit
complex behaviors that are extremely challenging to model, both analytically and nu-
merically. Historically, semi-analytical approaches have been very successful in mod-
eling the ultra-relativistic and non-relativistic limits, assuming radial flows and simple
central engine activity (the physical mechanism powering the base of the jets) (Rees &
Meszaros, 1992; Frail et al., 2000). Various approaches to simulating the evolution of
the jet across time-scales from early to late times have been proposed (Rhoads, 1999a;
van Eerten et al., 2010b; Wygoda et al., 2011; van Eerten & MacFadyen, 2012; Granot
& Piran, 2012; van Eerten & Macfadyen, 2013; Duffell & Laskar, 2017; Ryan et al.,
2020). However, these approaches fail to accurately capture the features of the trans-
relativistic evolution, and the associated lateral spreading of the jet as it decelerates.
They are also ill-suited to identifying and modeling flux from multiple emission sites,
which is crucial to understand light curve features induced by erratic central engine
activity.

In turn, numerical simulations offer better chances at improving our understanding
the complex multi-scale behavior of the blast wave. There is thus a need for efficient,
accurate and precise numerical schemes to produce synthetic light curves for compar-
ison with observations. Current simulation methods however have yet to overcome
challenges seriously crippling their computational efficiency and level of accuracy (van
Eerten, 2018). Indeed, the dynamical setup of a GRB afterglow mostly consists in fol-
lowing the evolution of a conical shell of ejected material of radial width ∆R ∼ R/Γ2

where R is the distance of the shell from the burster, propagating with a Lorentz factor3

Γ. Since the values of Γ are contained between 100 and 1000, this already highlights
the need for a grid of effective resolution of at least 10−4R0, where R0 is the radius at
which the blast-wave is launched. Moreover, this shell has to be followed for distances
spanning up to 9 orders of magnitude, with the best possible resolution in order to
resolve shocks, where particle acceleration and emission takes place. This brings the
resolution to at least 13 orders of magnitude lower than the total grid size, not account-
ing for the additional constraints associated with a local calculation of radiation which
we described later in this chapter. Finally, propagation happens inside an non-moving
external medium of mass density as much as 14 orders of magnitude lower than that
of the ejecta, responsible for the need of efficient highly conservative schemes, due to
the high discrepancy in velocity and density between neighboring parts of the flow.

3The Lorentz factor Γ measures how relativistic the motion of an object of velocity v is. It is given
by Γ = 1/

√
1− v2/c2, with c the speed of light in a vacuum. For non-relativistic motion, Γ approaches

1.
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This extreme resolution leads to enormous memory requirements. Additionally, such
refinement of the grid contracts time-steps in the simulation to such an extent that ac-
curate simulations can simply not be run in reasonable time using common numerical
hydrodynamics techniques.

Today, the most widely adopted approach to modeling the dynamical evolution is to use
finite-volume methods with Adaptive Mesh Refinement (AMR) techniques on a fixed
grid, such as in the codes RAMSES (Teyssier, 2001), AMRVAC (Nool & Keppens, 2002;
Meliani et al., 2007), RAM (Zhang & MacFadyen, 2006), and more recently PLUTO
(Mignone et al., 2012), all benefiting from relativistic hydrodynamics extensions. These
techniques have been applied to the modeling of GRB afterglows with relative success
(Kumar & Granot, 2003; Cannizzo et al., 2004; Zhang & MacFadyen, 2009; van Eerten
et al., 2010a; Meliani & Keppens, 2010; De Colle et al., 2011; Wygoda et al., 2011; van
Eerten et al., 2012) but still display some difficulties in resolving the extreme sharpness
of the shocks satisfyingly, even with very long computation times and many levels of
refinement, as shown in figure 1.3. This figure shows the maximum fluid Lorentz factor
Γ in the blast wave as a function of time, for various levels of spatial refinement, in
simulations from De Colle et al. (2012). The numerical method only converges on
the analytical solution for very low Γ values. Keeping in line with these methods,
significant improvement was introduced by switching the computation to a boosted
frame moving along with the fluid (van Eerten & Macfadyen, 2013). This approach
relaxed the constraints arising from relativistic length contraction and allowed for lower
resolution and increased time-steps. The boosted frame approach (fig. 1.4) improves
precision but still needs half the spreading time (where sudden deceleration occurs) to
converge properly. Getting an accurate value for this maximum fluid Lorentz factor is
crucial to accurately compute synchrotron emission, and vital to simulate the correct
lateral expansion of the jet when it decelerates.

From this boosted frame setup, it is a logical step to full moving-mesh approaches. As
gains from arbitrary Lagrangian-Eulerian (ALE) methods had already been demon-
strated in the context of Newtonian astrophysical flows with e.g. AREPO (Springel,
2010; Weinberger et al., 2020), this approach was implemented for relativistic hydro-
dynamics by Duffell & MacFadyen (2011) in their ALE Voronoi-tesselation-based code
TESS. These methods provide a range of benefits when the mesh is set up to follow
the motion of the flow. Firstly, they directly enhance shock resolution as the mesh nat-
urally contracts with increasing fluid density. Secondly, the time-step is significantly
increased when the flow is dominated by motion in one direction. In this particular
case, additional improvement in terms of computational efficiency can be found by
limiting the expensive re-gridding operations normally associated with moving meshes.
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Figure 1.3: (from De Colle et al. (2012))
Maximum fluid Lorentz factor Γ in the blast
wave as a function of time for simulations with
various levels of AMR for the code Mezcal-
SRHD. BMK stands for "Blandford-Mckee"
(also written BM), the analytical solution for
a point-like explosion (Blandford & McKee,
1976) which corresponds to the simulations
setup. ZMF09 is the same setup from Zhang
& MacFadyen (2009) using their code RAM
(Zhang & MacFadyen, 2006).

Figure 1.4: (from van Eerten & Macfadyen
(2013)) Maximum fluid four-velocity βγ (β is
the fluid velocity in units of c the speed of
light, γ is the fluid Lorentz factor) as a func-
tion of time. The dotted line is the BM so-
lution. The simulations are carried out using
RAM (Zhang & MacFadyen, 2006). The solid
line is the boosted frame solution. The dashed
line is the fixed frame solution. The BM solu-
tion is not valid after ∼300 s and the simula-
tions converge together.

By only allowing the mesh to move in one direction (say the main direction of mo-
tion), mesh entanglement is suppressed and AMR operations can be run independently
along tracks moving in this direction. This is the approach implemented in JET (Duf-
fell & MacFadyen, 2013) and DISCO (Duffell, 2016) for radial and azimuthal flows,
respectively.

These recent improvements on the treatment of the dynamics mean that the current
bottleneck lies in the radiative prescriptions used so far. This bottleneck severely limits
our ability to interpret broadband emission from GRB afterglows using numerical sim-
ulations. As previously mentioned, the afterglow is produced by synchrotron emission
directly downstream of the shock fronts formed by the blast wave as it collides with the
CSM. The modeling done by the community of the evolution of the micro-physical fluid
state (parameters describing the local characteristics of the emission) downstream of
the shocks relies on approximations (usually the "global cooling" approximation) that
significantly impact the spectral flux density computed by current simulations by up
to a decade (van Eerten et al., 2010a; Guidorzi et al., 2014). Ideally, one would want
to locally numerically compute the evolution of the electron population downstream
of shocks to accurately account for cooling from adiabatic expansion and synchrotron
losses. This second approach requires extreme resolution as the particle population (as
well as the fluid quantities) evolve on very short time-scales downstream of the shock.
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For high frequencies, the region contributing to the flux is so small that reconstructing
the total flux from local emissivity requires us to capture this evolution precisely (van
Eerten & Wijers, 2009). Local and global cooling are described in more detail in §1.3.2.

1.1.3 Thesis objectives and outline

We set out, in this Ph.D. project, to tackle two major aspects of GRB afterglow re-
search. The first one concerns the consequences of the presence of multiple emission
sites, with the objective of explaining some of the short time-scale variability observed
in X-ray afterglow light curves. This will help us to better understand the origin of
flares and re-brightenings, and put constraints on energy injection processes and central
engine activity. The second aspect is the detailed study of the evolution of afterglow
radiation as a whole, in order to unearth the underlying complex processes re-
sponsible for its spectral properties, and currently hindering our ability to properly
analyse observations. Like other GRB afterglows, recent observations of GRB170817A
suggest that the radiative processes are more complex than what state-of-the-art mod-
els currently account for, with e.g. an influence from the evolution of the shock strength
on the particle injection index (Troja et al., 2020). The afterglow remaining on a single
spectral regime from radio to X-ray is also surprising and needs to be investigated.
This thesis takes the first steps towards explaining the deviations of GRB afterglows
from the current models and investigates these processes. It also paves the way towards
future observations at very high energies (MAGIC Barrio et al. (1998), CTA Acharya
et al. (2013)) as it explores local descriptions of radiative processes essential to the
study of inverse Compton processes in GRBs.

The questions reported above all rely on local modeling of the synchrotron pro-
cess. In this thesis I present the combination of the recent moving-mesh developments
in relativistic hydrodynamics with the local calculation of the emissivity from high-
energy relativistic outflows. The moving mesh naturally provides the increase in res-
olution needed by the local cooling prescription and allows fast, accurate and precise
calculation of broadband time-dependent emission. There are different ways of imple-
menting such calculation. One could focus on developing an extension for a pre-existing
ALE code like TESS or JET, or even update a purely Eulerian code such as PLUTO,
RAM or AMRVAC to an ALE description. However, considering the versatility in
terms of geometries and applications we want from such code, and the full control we
require over the interfacing between the dynamical radiative modules, the numerical
code presented in this thesis, GAMMA, is developed from scratch. This approach allows
complete freedom in the algorithmic choices and total independence from other soft-
ware. It also provides the community with a full independent code that can be used in



24 Chapter 1. Introduction

a wide range of contexts involving radiative emission from relativistic flows, and allows
cross-checking of results from other similar dynamics code. In this thesis, GAMMA is
applied to the modeling of GRB afterglows.

As such, GAMMA allows one to experiment with various GRB afterglow theoretical mod-
els. However, these models need to be informed by observational data. As more and
more data is collected, physical inference can now be obtained by making use of the
recent advances in machine learning and data visualisation. State-of-the-art dimension-
ality reduction techniques allow one to finally assess the relevance of unified theories
(or separation in classes) of a given phenomenon, in a data-driven approach that does
not introduce model biases. They also extract the most discriminatory characters of
such phenomenon in order to explain the observed variability. While the work pre-
sented in this thesis mostly focuses on developing an accurate and efficient tool for the
numerical modeling of the dynamics and emission from high-energy relativistic astro-
physical transients, we also set out to investigate the intrinsic structure of the current
GRB X-ray afterglow sample. This complementary angle we adopt for the study of the
mechanisms underpinning the behavior of these events completes our comprehensive
approach to the modeling of the GRB afterglow phenomenon.

In the rest of this first chapter, I present an overview of current state of GRB afterglow
research, focusing on the aspects that will be of interest in the rest of the thesis. In
chapter 2, I introduce the theoretical framework of numerical relativistic hydrodynamics
on a moving mesh, local emissivity calculation for synchrotron radiation, as well as
time-dependent flux reconstruction for synthetic light curve production. I also present
the implementation of these aspects in the code GAMMA I developed as part of this
project. Chapter 3 puts forward a first application of this code to the study of the
flaring behavior in the early X-ray afterglow for a scenario in which complex dynamics
and multiple emission sites are responsible for the features observed in the light curve.
In the published journal article reported there, we confirm the validity of the scenario
involving the interaction of the reverse shock with a stratified ejecta and show that it
can produce flares at arbitrary late times with the expected duration. Chapter 4 is
devoted to the work submitted for publication and in review at this time (July 2021),
in which GAMMA is used for 2D simulations of trans-relativistic blast-waves and the
calculation of associated emission. I report on the results from this work in which we
observe a significant difference in the behavior of one of the characteristic frequencies
of the time-dependent spectrum between our approach and previous works. I choose
to present chapters 3 and 4 unchanged from their journal form, since it allows the
experienced reader to tackle them independently, and include and introductory and
concluding section to explain in more detail how they fit in the general argument
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of this thesis. In chapter 5, I present the draft manuscript of an ongoing machine-
learning project in which we use advanced unsupervised data visualisation techniques
in order to gain physical insight into the cause of the wide range of GRB afterglow
light curve morphologies, and question whether the physics responsible for differing
temporal behaviours signal a difference in phenomenology or a simple gradual change
of regime.

1.2 Gamma-ray Bursts

1.2.1 Historical context

The story of Gamma-Ray Bursts (GRB) begins during the cold war, in the late 1960’s.
In the context of the race for nuclear weapons, the Nuclear Test Ban Treaty was signed
in 1963. Consequently, the United States military developed a nuclear test monitoring
program: the fleet of Vela spacecrafts, specifically designed to detect radiation produced
by atmospheric nuclear tests. In 1967 two of the few satellites in operation at the time
detected a flash of gamma-rays of cosmic origin (Klebesadel et al., 1973). Following this
event, the Vela spacecrafts’ detector sensitivity was improved and led to the detection
of 16 gamma-ray bursts of cosmic origin in 3 years, between 1969 and 1972, opening a
whole new field of research in high-energy astrophysics.

1.2.2 Observational features

Over the following decades, as detector sensitivity was improved, and as more dedicated
missions were launched, the number of detections increased significantly. Follow-up
campaigns were carried out in order to cover the whole time-scale and spectral features
of these events.

Distance scale

One of the first questions about these events is to determine the distance at which
they occur. Measuring this distance allows one to estimate the intrinsic power of the
source. The debate between the galactic and extra-galactic models was settled in the
1990’s. The the distribution of these events was first shown to be isotropic (Hartmann &
Blumenthal 1989; Hartmann et al. 1991; Meegan et al. 1992; Briggs et al. 1996; Tegmark
et al. 1996; more recently Andrade et al. 2019). A recent all-sky distribution of GRBs
from the Fermi Gamma-ray Burst Monitor Burst catalogue (Gruber et al., 2014; von
Kienlin et al., 2014; Bhat et al., 2016) is shown in figure 1.5. The gradual growth of the
sample slowly started confirming the extra-galactic origin until the first observation of
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Figure 1.5: Mollweide projection of the GRB sky positions of the FER-
MIGBRST catalogue (figure from Andrade et al., 2019). Their recent analysis
suggests there is no significant deviation from an isotropic distribution.

afterglows enabling redshift measurements (Costa et al., 1997; van Paradijs et al., 1997),
confirming the vast distance at which GRBs are produced. Today, the increased sample
of redshift measurements from GRB afterglows has a median of z ∼ 2 (Jakobsson
et al., 2006; Fynbo et al., 2009; Perley et al., 2016). The redshift distribution of various
afterglow samples is shown in figure 1.6. Nevertheless, even at such large distances, the
flux observed still implied an unprecedented intrinsic isotropic energy for these events
at 1051erg to 1053erg, which we now know is explained by the collimated character of
the cataclysmic explosion.

Long/Short GRB

Another characteristic statistical feature of the GRB population is the bimodal distri-
bution of the duration of the events, with a clear separation at ∼ 2s. This led to divide
the population of GRBs into two types: the short (shorter than 2s) and long (longer
than 2s) GRBs (Kouveliotou et al., 1993). While well identified on the BATSE sample,
The position and significance of this divide varies with the observing band, and is less
visible for narrower/softer energy bandpass instruments such as the Neil Gehrels Swift
space telescope. However, the validity of the bimodal distribution is further supported
by larger BATSE samples and identification with other instruments such, as Fermi
GBM (e.g. Bissaldi et al., 2011; Zhang et al., 2012; Qin et al., 2013). Moreover, recent
work has been able to show an unambiguous separation between the two populations
by using the complete prompt emission information (Jespersen et al., 2020). We will
see later that this can be explained by a different phenomenology for these two types.

Measuring the duration of an event is actually not as straightforward as one might
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Figure 1.6: Redshift distribution for various afterglow surveys (figure from
Perley et al., 2016).

expect. Indeed there is a great complexity in the light curve with multiple showers of
photons arriving at various times. The time of duration, T90, is thus defined as the
time elapsed between when 5% and 95% of the total energy above the background level
was received. Even though the temporal evolution is really complex, the spectral fea-
tures are much simpler, showing a decreasing power-law, characteristic of non-thermal
emission. The physical origin of this non-thermal emission is however still debated.
While some bursts can be fit using a synchrotron shock model, a majority display a
low-energy power-law photon number spectral index that exceeds the "line of death"
(Preece et al., 1998) over which the synchrotron model can be ruled out. Additionally,
new components have been identified: a most-likely thermal component at low energies,
and a separate component at very high energies (most likely the result of a scatter-
ing process) showing a different temporal evolution (for a review see e.g. Pe’er, 2015).
While having been able to separate these contributions allows for easier interpretation
of each component, the models now have to explain the variability observed accross the
GRB population.

GRB Afterglow

In 1997, the picture about GRBs changed completely with the first discovery of an
optical counterpart for GRB970228 (van Paradijs et al., 1997). These counterparts,
called afterglows, had been predicted by a class of models (the fireball model) (Rees
& Meszaros, 1992; Meszaros & Rees, 1997). The discovery was made possible by the
launch the preceding year of the Beppo-SAX gamma-ray and X-ray space observatory
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(Boella et al., 1997). This instrument both benefited from the improved localization
information from X-ray measurements, and the ability to broadcast this information to
the Earth in only a couple of hours for rapid follow-up. The afterglow flux decreased
following a power-law to disappear within a few weeks (Wijers et al., 1997), revealing
the presence of a host galaxy. Later detections of afterglows, and measurements of
their redshifts confirmed the cosmological origin of these objects (Djorgovski et al.,
1997; Metzger et al., 1997). Observations of these afterglows, as well as the study of
the host galaxies eventually proved to be a gold mine of information used to constrain
our understanding of GRBs.

The high variability of the early X-ray afterglow

The launch of the NASA-led Neil Gehrels (Swift) space observatory (Gehrels et al.,
2004) in 2004, dedicated to GRB detection and early X-ray/optical afterglow observa-
tions, disrupted our earlier understanding of the afterglow phenomenon by revealing
the great variability present in the light curve at early times. Indeed, previous obser-
vations at later stages of the afterglow appeared to suggest that the radiated power
decreased with time as a power-law with parameter 1 < α < 1.5. After the launch
of Swift, the picture changed radically with the discovery of new regimes of the after-
glow, with a canonical behaviour showing a steep decay (3 < α1 < 5) before ∼300s, a
plateau (0.2 < α2 < 0.8) until 103s to 104s, eventually followed by the "normal" decay
(1 < α3 < 1.5) observed before Swift (Nousek et al., 2006). All the questions that arose
from the observations of Swift are summarized in figure 1.7. These questions include
e.g. finding the underlying physical explanation for these new regimes and explaining
the statistical occurrence of some features such as the jet break (see §1.2.3).

For 17 years now, Swift has been detecting GRBs and measuring the properties and
spectra of their early X-ray afterglow at a rate of around 90 detections a year (Evans
et al., 2009), revealing even more features of the light curves, such as flaring and re-
brightening behaviors. These flares are detected in about a third of GRBs (Burrows
et al., 2005b; Falcone et al., 2007; Chincarini et al., 2010; Margutti et al., 2011)and
display a characteristic shape with a sharp jump in luminosity followed by a smoother
decay, eventually going back to the original luminosity level (Chincarini et al., 2007).
They can happen at any time during the afterglow, growing longer with time following
∆tflare/tflare = 0.1−0.3 (e.g. Burrows et al., 2005b). We will see in chapter 3 that being
able to explain the features of these flares in detail can help to strongly constrain GRB
phenomenology, and we will show that flares can be the result of an erratic shutdown
of the central engine.
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Figure 1.7: The pending questions about the high variability of early X-ray
afterglow light curves. (credits: van Eerten (2018))

Host galaxy type and progenitor association

The study of GRB host galaxies can provide a lot of information about the GRB
itself. A striking characteristic is the association of long GRBs with young star-forming
galaxies (Fruchter et al., 2006) (for a recent review see e.g. Schady, 2017). Moreover,
these GRBs are generally located inside or close to the star-forming regions of these
galaxies, gathered towards the center. This supports the idea of the association of long
GRBs with type Ic supernovae, corresponding to the core-collapse of a massive star.
This was later confirmed by observations (Galama et al., 1998; Hjorth et al., 2003).

On the other hand, short GRBs appear to occur in any galaxy type, with no predomi-
nance in any particular region of their galaxy, favoring a mechanism happening on much
longer time-scales (e.g. Berger, 2013, for a review). Moreover there is no correlation be-
tween the rate of short GRBs and the star formation rate in their vicinity. Thus, short
GRBs could be explained by the merger of a neutron star (NS) with another compact
object (NS or BH) (Paczynski, 1986; Eichler et al., 1989). Indeed, the long time-scale
of the mechanism could be well explained by the length of the inspiraling phase be-
fore the merger. This scenario was amazingly confirmed in 2017 by the simultaneous
detection of a gravitational wave event GW170817 originating from the merger of two
NS by the LIGO-Virgo collaboration (Abbott et al., 2017a) and a short gamma-ray
burst GRB170817a by the Fermi and INTEGRAL satellites (Goldstein et al., 2017;
Savchenko et al., 2017; Abbott et al., 2017). However, GRB170817a was abnormally
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dim compared to the population of short GRBs at cosmological distances (d’Avanzo
et al., 2014), and it was unclear whether the two events were related. Eventually, the
discovery of an optical counterpart, AT2017gfo, in the direction of the GRB and its
identification as a kilonova resulting from a binary neutron star merger, followed by
the late apparition of the GRB afterglow (because of an off-axis structured jet), left
no doubt as to the connection between the two events (e.g. Troja et al., 2017; Hallinan
et al., 2017).

1.2.3 Phenomenology and currently accepted paradigm

Today, the main evolutionary scenario corresponding to GRBs is generally agreed upon
and will be described in the following section. Simple considerations on the orders of
magnitude involved can already strongly constrain the phenomenology of the event.

General constraints: a massive explosion

By first considering the variability time-scale of the prompt emission as small as a few
ms, associated with emitted isotropic energies of up to 1053erg, corresponding to a
large fraction of stellar rest-mass energy, it is clear that the source has to involve a
compact object of stellar mass. Long GRBs are thus associated with the core-collapse
of a massive star in what is called the collapsar model (Woosley, 1993; MacFadyen &
Woosley, 1999). This is also able to explain the correlation with star-forming regions,
and thus massive stars. Indeed, the collapse of the core of a massive star at the end of
its life leads to the birth of a black hole. Some of the surrounding matter can create
an accretion disc, swallowed at a very high rate. This type of system is already known
to be able to give rise to radiation at very high energies, such as in jets produced by
Active Galactic Nuclei (AGN) (see e.g. Blandford et al., 2019, for a review of AGN
jets). The very short duration of short GRBs entails the need to think of another way
of creating a compact object with very fast accretion of matter. This can be achieved
with the merger of two neutron stars (Paczynski, 1986), for which the time-scale of the
burst is going to be smaller.

Another strong constraint is the necessity of a relativistic ejection responsible for the
gamma-ray emission, arising from the compactness problem (Piran, 1996). This problem
comes from the ability of high energy photons to pair-annihilate, creating an electron-
positron pair following the reaction γγ → e+e−. Moreover, computing the cross-
section of this reaction shows that MeV photons can annihilate together for angles of
interactions that are not too small (which is not unrealistic in the case of isotropic
emission). Moreover, the intrinsic variability (and deducted very small size) of the
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source associated with the very high energy of the emission suggests that the density
of photons in the source is extremely high. All of these aspects should cause MeV
photons to annihilate thus leading to a discrepancy between the expected and the
observed spectrum. The solution lies in a relativistic ejection at very high Lorentz
factor Γ. This causes the size of the source deduced from variability to be increased
by a factor Γ2, decreasing the photon density estimate by a factor Γ4. Additionally,
blue-shifting of the emitted photons leads to an over-estimate of photon energy by a
factor Γ, leading to a change in the fraction of electrons participating in pair production
by a factor Γ−2α, where α is the photon energy distribution power-law index. Overall,
the optical depth decreases by a factor Γ4+2α. For α = 2, both effects eventually allow
for MeV gamma-ray production for Lorentz factors Γ & 100.

Evidence for a jetted outflow

We will see later that this explosion can be modeled in the early stages assuming
spherical symmetry. However, some observational features hint at the fact the the
observed outflows are actually collimated into jets. We will see in chapter 4 that this
collimation hinders our ability to interpret and accurately model the electro-magnetic
flux at late times. Since GRBs are located at vast distances, it is impossible to resolve
them observationally. As a result, any indication about their geometry has to come
from indirect measurements. Luckily the observation of a jet break (see fig. 1.7 for
schematic representation) in the afterglow emission of these objects is a clear signature
of a collimated ejection (Rhoads, 1999b; Sari et al., 1999; Panaitescu & Kumar, 2003).

Indeed, since the outflow propagates at relativistic speeds with very high Lorentz factor
Γ, any radiation moving towards the observer will be beamed into a solid angle of
opening ∼ 1

Γ . As a result, it is impossible for an observer to distinguish a spherical
from a jetted outflow, as they can only see fraction 1

Γ2 of the surface of the ejected
shell. However, as the shell decelerates, the opening angle increases. For a jetted
outflow of opening angle θ0, the received flux displays a break when 1

Γ > θ0, as the
deceleration (and thus the Doppler beaming) is not counteracted by the increase of
observable emitting surface area anymore.

On top of the the Doppler effect, the jet starts to spread sideways at around the same
time as the causal contact across the jet is reinstated (Sari et al., 1999). This causes
Γ to decrease even faster, sharpening the observed jet break. Sari et al. calculate that
the jet break is expected to happen at:

tjet = 6.2(E52/n1)1/3(θ0/0.1)8/3hrs, (1.1)
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where E52 is the burst equivalent isotropic energy in units of 1052erg, n1 is the sur-
rounding homogeneous interstellar medium (ISM) number density in cm−3 and θ0 is
the jet opening angle in radians. It is thus possible to derive the jet opening angle from
the measurement of the jet break time. A standard value is usually θ0 ∼ 0.1rad.

As predicted, these jet breaks have now been observed in a fraction of GRBs, at times
ranging from a few hours to a few days (depending on the energy of the burst), proving
the jetted character of the ejected outflows (e.g. Evans et al., 2009; Racusin et al.,
2009; Kann et al., 2010). As a result the required intrinsic energy of GRBs can be
significantly decreased to more reasonable values clustered around 1051erg (Frail et al.,
2001; Bloom et al., 2003).

Step by step scenario

Initial burst and the fireball model: As mentioned earlier, a GRB involves the
creation of a compact object (BH or NS). During the system’s collapse, some of the
matter forms a very hot accretion disk around the newly created compact object. This
matter is accreted at a super-Eddington4 rate and can give rise to relativistic outflows.
This system is thus referred to as the central engine (for a review see e.g. Piran, 2005).

Even though these outflows are collimated into jets (with opening angles as narrow as
θ0 ∼ 0.1rad) (see e.g. Ghirlanda et al., 2013), assuming spherical symmetry in the early
stages of their evolution is a very good approximation, as there is no causality across
the jet due to the very high velocities. Their expansion can thus be modeled with a
very simple approach where the initial system is a sphere of radius R0 of the same scale
as the central engine, containing a mass M0 and an initial amount of thermal energy
E0. This is the fireball model first proposed and described by Paczynski (1986) for a
fireball of pure energy. Goodman (1986) argues that the fireball has to originally be
optically thick in order to model GRB behavior. Eventually, Shemi & Piran (1990)
describe the first consistent acceleration model for a GRB by considering a fireball of
completely ionized hydrogen plasma.

If the fireball remains optically thick for long enough, all the thermal energy will even-
tually be converted into kinetic energy. The flow then accelerates to a final bulk Lorentz

4The Eddington limit is the maximum power that can be radiated by a source with a static photo-
sphere, and is set to LEdd ' 3.4×104

(
M
M�

)
L�, with M the mass of the object, M� and L� the mass

and luminosity of the Sun. A source is accreting at super-Eddington rate if the accretion luminosity
is above the Eddington limit.
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factor given by:

Γ0 '
E0

M0c2
. (1.2)

In reality, the acceleration processes are much more complex and involve the under-
standing of the behavior of the magnetic fields around the central engine (e.g. Piran,
2005). However, the relation derived in equation 1.2 is very helpful in understanding
the later dynamical evolution of the ejecta.

Prompt emission: Once the flow has been accelerated and eventually becomes opti-
cally thin again, radiation can eventually escape and produce the actual GRB observed.
Rees & Meszaros (1994) first proposed the internal shocks model for the production
of gamma-rays. Considering that the central engine can display variability on very
small time-scales, the power injected in the ejecta is certainly not constant, leading to
a variable profile of velocity. Faster regions of the flow will eventually catch up with
slower regions, eventually leading to the formation of shocks (see §2.1.5). In the case
of highly magnetized flows, these shocks are good candidates for the production of ra-
diation (see §1.3.2). Some of the kinetic energy is converted into thermal and magnetic
energy, which is characterized by an accelerated non-thermal population of electrons
injected in the flow, and an amplification of the magnetic field. In turn, these elec-
trons are able to produce synchrotron emission and inverse-Compton scattering. This
Doppler boosted emission corresponds to the gamma-ray prompt emission produced in
the observer’s rest-frame.

Afterglow: Eventually, the outflow is going to be influenced by the external medium
it propagates into. Typically, in what is called the thin shell case (initially small fireball
with large baryon loading, see §1.3.1), this happens when the amount of matter swept
up by the blast wave has an effective mass energy including internal energy Γ0Mswc

2 in
the frame comoving with the ejecta comparable to the total energy of the blast wave E0,
which eventually givesMsw ∼M0/Γ0. In the thick shell case (initially large fireball and
low baryon loading) however, the ejecta has only marginally slowed down at this stage
and deceleration of the ejecta happens later (see §1.3.1). At this point, a forward shock
/ reverse shock system forms at the head of the ejecta (Rees & Meszaros, 1992). The
forward shock (FS) propagates in the external medium, and its dynamics are described
analytically by Blandford & McKee (1976) in the relativistic case, until it slows down
and adopts the self-similar solution independently described by Sedov&Taylor (Sedov,
1946). In the commonly accepted paradigm, the emission processes usually observed in
shocks occur in the FS and are responsible for the emission of the afterglow (Meszaros
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& Rees, 1993). The reverse shock (RS) propagates back in the ejecta. In the case of
weakly magnetised ejecta, its contribution to the total radiation is visible from optical
to radio at early times (Kobayashi, 2000; Zhang & Kobayashi, 2005) and has been
shown to be able to dominate (Uhm & Beloborodov, 2007) in X-ray when the FS
is radiatively inefficient. We will analyse the competition between FS and RS when
studying the flaring mechanism in chapter 3.

1.3 Modeling GRB afterglows

1.3.1 Relativistic blast-wave hydrodynamics

One last aspect of the theory of relativistic hydrodynamics to address is the analytical
dynamical evolution of a relativistic blast-wave (or fireball). This will indeed be of cru-
cial importance in order to interpret the numerical results we get from our simulations.
We will report here the most important aspects of such evolution, referring the reader
to the excellent review by Kobayashi et al. (1999) for more information.

As explained in §1.2.3, Shemi & Piran (1990) developed a model for fireballs with
baryonic component, showing that the acceleration of such fireballs under their own
pressure eventually leads to a relativistic, freely propagating, expanding, baryonic shell.
The evolution involves an acceleration phase where thermal energy is converted into ki-
netic energy carried by the baryons, followed by a coasting phase when this conversion
has been completed (Mészáros et al., 1993). Eventually, the blast-wave will feel the
influence of the external medium (Rees & Meszaros, 1992), leading to the formation of
a FS/RS system separated by a contact discontinuity (CD). This CD stands between
the regions of shocked ejecta and shocked ISM. Once the shell has lost most of its
energy to the shocked ISM, the FS eventually converges towards the self-similar rela-
tivistic Blandford&Mckee (BM) solution (Blandford & McKee, 1976). When that shock
has decelerated enough, the solution moves towards the non-relativistic self-similar Se-
dov&Taylor solution (Sedov, 1946).

In the following paragraphs of this section, we describe the adiabatic evolution of a
baryonic shell of initial energy E0, mass M0 and radius R0. For the sake of simplicity,
we consider an homogeneous fireball. Inhomogeneous fireballs (such as the setups
presented in chapter 3) will lead to the formation of internal shocks. However, these
shocks are not capable of converting a significant part of the total kinetic energy of
the blast-wave (Kobayashi et al., 1997; Daigne & Mochkovitch, 1998), and can thus be
neglected as a first approach. The quantities r, ρ, p and Γ are naturally the radius,
rest-mass density, pressure (in the comoving frame) and Lorentz factor, respectively,
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of a fluid element belonging to this shell. We should recall here that the final Lorentz
factor after acceleration Γ0 is given by equation 1.2. We will refer to the position of
the narrow shell with R. Finally, we still have c = 1 in this section, as in the rest of
the chapter.

Free acceleration and coasting
During the acceleration phase, the fluid variables in the shell scale as follows (Kobayashi
et al., 1999):

Γ ∝ r, ρ ∝ r−3, p ∝ r−4. (1.3)

When the shell reaches the coasting radius RL ≡ Γ0R0, it stops accelerating and
transitions to the coasting phase for which:

Γ = constant, ρ ∝ r−2, p ∝ r−8/3. (1.4)

In this phase, the shell behaves like a frozen pulse of energy of width ∆ = R0 (in
the central engine rest-frame) with a constant radial profile, propagating at almost the
speed of light.

Spreading and Influence of the ISM
As all fluid elements in the shell move at slightly different velocities, the frozen pulse
approximation that enabled the derivation of the scalings for the acceleration and the
coasting phase starts to break down (Piran et al., 1993). This happens when the shell
reaches the spreading radius Rs ≡ R0Γ2 where the width ∆R of the shell starts to
increase such that ∆R ∝ R/Γ2.

As the shell sweeps up ISM material, a RS starts propagating inside the ejecta. Several
important transitions happen throughout the evolution for this RS (Sari & Piran,
1995). One of these transitions occurs when the RS becomes relativistic with regard
to the unshocked ejecta, which causes it to convert a significant fraction of the kinetic
energy of the shell into thermal energy and radiation, eventually slowing it down. This
transition happens for a radius RN ≡ l3/2/∆1/2Γ2

0 , where l = (E/n0mp)
1/3 is the Sedov

length, with n0 the ISM number density and mp the proton mass5. Another transition
happens when the reverse shock has entirely crossed the ejecta. This occurs at a radius
R∆ ≡ l3/4∆1/4. Finally, another critical radius is crossed when the mass of the shocked
ISM reaches M0/Γ0 and is given by RΓ ≡ l/Γ2/3

0 .

5The rest-mass energy of the ISM contained in l3 is E.
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The question is now to identify when each transition occurs relative to the others.
Thankfully, all these radii can actually be linked together using the dimensionless
variable ξ ≡ (l/∆)1/2Γ

−4/3
0 :

ξ2Rs = ξ1/2R∆ = RΓ = ξ−1RN . (1.5)

This allows to distinguish two different cases depending on the value of ξ. If ξ < 1

initially, then RN < RΓ < R∆ < Rs. The RS quickly becomes relativistic and is able
to substantially slow down the ejecta. However, only a fraction of the energy will have
been transferred to the ISM at RΓ, and the blast-wave only decelerates (has transferred
most of its energy to the external medium) at R∆, before spreading at Rs. In this case,
this deceleration can actually occur before the coasting phase (and so before all of the
thermal energy of the fireball has been converted into kinetic energy). This is called
the thick shell model. The cases simulated in chapter 3 correspond instead to the thin
shell model where ξ > 1 initially. This entails that Rs < R∆ < RΓ < RN . In this
case, the RS is initially Newtonian, before gradually becoming mildly relativistic. The
shell starts spreading first and the width now satisfies ∆ = r/γ2. This causes ξ to
decrease towards unity. When ξ = 1, all remaining critical radii coincide such that
R∆ = RΓ = RN , which is the deceleration radius in this case. As the blast wave
decelarates, the forward shock transitions to the Blandford&McKee (BM) self-similar
solution (see next paragraph). Simulations in the thin shell limit are shown in §4.3.5.

The Blandford&Mckee self-similar solution

Blandford & McKee (1976) derived an analytical self-similar solution for the dynamics
of an ultra-relativistic spherical blast-wave enclosed by a strong shock. It describes the
evolution of a point explosion, where a given amount of energy is inserted at a point
location in the CSM. The solution is based on the shock-jump conditions presented in
§2.1.5. In the simulations presented in this thesis, we will assume a homogeneous ISM
(the Blandford-Mckee (BM) solution can also be derived for stellar wind environments).
Assuming that the evolution of the blast-wave is adiabatic, one can write the Lorentz
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factor, density and pressure downstream of the shock as follows:

Γ(t, r) =
1√
2

Γshχ
−1/2, (1.6)

ρ(t, r) = 2
√

2ρ0Γshχ
−5/4, (1.7)

p(t, r) =
2

3
ρ0Γ2

shχ
−17/12, (1.8)

χ(t, r) ≡ 1 + 8Γ2
sh(1− r/R) the similarity variable, (1.9)

with Γsh(t) ≡ (17/8π)1/2(R/l)−3/2 the Lorentz factor of the shock itself, R(t) = (1 −
1/8Γsh)t its radius and ρ0 the rest-mass density of the ISM. A solution in this form
also exists for non-homogeneous external medium (e.g. stellar wind).

In the fireball model, as the initial mass and radius of the initial fireball become negligi-
ble in comparison with the swept-up mass, the evolution naturally transitions towards
the solution of a point-like explosion i.e. the BM solution. Eventually, at radius l the
blast-waves becomes non-relativistic and the evolution then follows the Sedov&Taylor
solution.

1.3.2 Synchrotron emission in shocks

As mentioned earlier, the emission observed from GRB afterglows is interpreted as
synchrotron radiation produced at shock fronts propagating in the fluid (for a recent
review see e.g. van Eerten, 2018). Indeed, looking from the shock co-moving frame,
an observer will see some of the kinetic energy upstream of the shock converted into
internal energy at the shock front. Some of this energy is non=thermal and manifests
in an accelerated non-thermal population of electrons. These electrons can radiate by
interacting with a locally generated magnetic field (see Rybicki & Lightman (1979) for
synchrotron emission theory).

In order to compute the overall spectrum of radiation emitted behind a shock, one
needs to know, at any point downstream of the shock front, the information related to
the hydrodynamics and the micro-physical state: the strength of the magnetic field,
and the distribution in energy of accelerated electrons. Assuming no influence of the
radiation on the hydrodynamics is a good approximation, as a very small fraction of
the total energy of the fluid is eventually radiated. However, when running simulations,
the effect of cooling on the dynamics can be implemented straightforwardly at runtime
if the medium is optically thin. With this information, the synchrotron emissivity can
thus be calculated at any point of the fluid.

While we can compute the emissivity at shock locations (where particles are acceler-
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ated) directly from the fluid states, the emissivity downstream of these shocks requires
that we compute the evolution of the micro-physical state with time. In the approach
synchrotron emission from shocks is usually modeled by, the shock-accelerated popu-
lation of electrons is parametrized by a truncated power-law in energy of slope p (the
spectral index), such that ne(γe) ∝ γ−pe , with p ∼ 2.−2.5 (e.g. van Eerten, 2015), where
γe is the electron Lorentz factor expressed in the comoving frame of the fluid. From the
shock-jump conditions that we will present in §2.1.5, one can derive the variation of
internal energy between the upstream and downstream regions of the fluid. A fraction
εe (order of magnitude εe ∼ 0.1, Beniamini & van der Horst (2017)) of this energy
will be transfered to a fraction ζ of the total population of electrons. Based on this
parametrization, one can derive the lower cut-off γmin for the distribution by equating
the integrated electron population energy with the energy available for emission. The
higher cut-off is originally fixed to γmax → ∞, before decreasing with cooling, but its
precise initial value is immaterial when p > 2 as long as it is sufficiently high. The last
needed piece of information is the magnetic energy B2/8π coming from the tangled
shock-generated magnetic field, that is usually modeled as a fraction εB of the internal
energy of the fluid. These parameters allow the calculation of the synchrotron spectrum
from a single-location power law electron distribution, as first derived by Gleeson et al.
(1974), that features a broken power-law with an exponential drop for ν(γmax) (with
ν(γ) ∝ γ2B the synchrotron frequency corresponding to energy γ).

Behind the shock, the evolution of the Lorentz factor of a single electron is driven by
the following equation (Granot & Sari, 2002):

dγe
dt′

= −4σTγ
2
e

3mec
εBqe︸ ︷︷ ︸

synchrotron cooling

+
γe
3n

dn

dt′︸ ︷︷ ︸
adiabatic cooling

, (1.10)

where σT is the Thomson cross-section, n the number density in the fluid frame, t′

the time in the fluid frame, me the electron mass and qe its electric charge. This
equation involves losses from the emitted radiation, as well as cooling from the adiabatic
spherical expansion of the fluid (the blast-wave in our case) and allows access to the
local population of accelerated electrons downstream of the shock. It also shows that
γmax is going to decrease with time for the population of a given fluid particle. This
implies an evolution of the single-location synchrotron spectrum as the electrons cool
down behind the shock.

The evolution of the particle population in a region of fluid is driven by the following
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continuity equation:

∂

∂t′
N(γe, t

′) +
∂

∂γe

[
N(γe, t

′)
dγe
dt′

]
= I(γe, t

′), (1.11)

where N(γe, t
′) is the particle distribution function and I(γe, t

′) is the particle injection
term modeling particle acceleration at the shock front if the considered region contains
one. Different approaches to solving this equation can be considered. The global cooling
approach assumes a single zone with a steady state for equation 1.11, no internal
structure and a single cooling time in the plasma. Integrating the equation leads to
two different asymptotic behaviors on both sides a critical electron Lorentz factor; the
cooling break particle Lorentz factor γc is computed by equating the electron energy
with the time-integrated emitted synchrotron power from this electron in the observer
frame (Granot et al., 2000):

Γγcmec
2 = Psyn(γc)t, (1.12)

with Γ the fluid Lorentz factor, Psyn(γe) the bolometric synchrotron power from an
electron of Lorentz factor γe and t the time since the shock appeared. γc is the Lorentz
factor above which electrons have lost all of their energy to radiation at a given time
t. This approach leads to the following expression for γc:

γc =
6πmec

σTΓB′2t
=

3mec

4σTΓεBe′t
, (1.13)

with e′ the internal energy density in the fluid frame (and B′ the magnetic field in the
fluid frame). The full spectrum can be computed making use of the steady state as-
sumption. This method presents the advantage of being very efficient, while preserving
the shape of the light curve and spectrum (van Eerten et al., 2010a). The observed flux
at a given observer time consists in a broken smoothly connected power-law schemati-
cally represented in figure 1.8, with breaks positionned at νm = ν(γmin) and νc = ν(γc).
The obtained global cooling spectra for a single time tobs, in the fast-cooling (νc < νm)
and slow-cooling (νm < νc) regimes give a good idea of the spectrum that can be
expected from a blast-wave. The peak flux of emission Fpeak happens for νm in the
slow-cooling regime, and νc, the cooling break, in the fast-cooling regime. However, in
the slow-cooling case, most of the energy is radiated at νc and not νm for the typical
values of p ∼ 2.5. For emission from the forward shock of an afterglow blast-wave
propagating into a uniform interstellar environment, these two frequencies evolve with
observer time as νm ∝ t−3/2

obs and νc ∝ t−1/2
obs (the scalings can also be derived for a wind

environment following the same method). This leads to a transition from fast-cooling
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to slow-cooling eventually, but the most important is that the peak frequency νpeak

decreases with time. As a result, one will expect different behaviors when observing
in a high or low-frequency band6. When observing at high frequencies, and when the
blast wave already started following the BM solution, the power in the observing band
can only decrease, leading to a monotone light curve (before deceleration, the light
curve can rise due to continuous energy injection into the forward shock). At lower
frequencies however, the flux will first increase before dropping after reaching the peak.
Both evolutions are reported in figure 1.9.

Building on numerical hydrodynamical simulations, hybrid approaches have also been
used in which γc is computed globally, but the rest of the emissivity quantities (e.g. νm,
peak flux) are calculated locally (van Eerten, 2015). The resulting observed spectrum
is going to be the superposition of the spectra from all the points in the flow with
the same photon arrival time tobs = t − r/c, t being the time in the lab frame, and r
the radius at which the emitting region considered is located. This hybrid approach
also recovers the correct spectral shape and scalings, however, multi-band analysis is
jeopardized by the change offset introduced on the value of νc (Guidorzi et al., 2014).

A more accurate approach involves local cooling. We will discuss local cooling in details
in chapters 2, 3 and 4. However with this approach, equation 1.10 is re-cast into an
advection equation for γmin and γmax. The electron population is then initialized right
behind the shock and can evolve with the fluid. In numerical simulations however, this
approach requires extreme resolutions (van Eerten et al., 2010b). Combining a moving
mesh with local cooling is thus a way to improve this resolution limitation.

Eventually, once one is able to model the evolution of both γmin and γmax, they can
integrate over the whole fluid evolution taking into account beaming effects and arrival
times in the relativistic context.

6Frequencies are compares to the critical frequency n0 = νm(t0) = νc(t0) where t0 is the time for
which νm = νc.
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(a) (b)

Figure 1.8: Expected instantaneous snapshot of the integrated synchrotron
spectrum of a modeled GRB. (a) Slow-cooling regime. (b) fast-cooling regime.
(credits: van Eerten (2015))

Figure 1.9: Light curve scalings for high and low frequencies. t is the observer
time. The scalings without brackets are the ones describing an adiabatic expan-
sion. The scalings in between brackets describe a radiation dominated expansion.
(credits: Sari et al. (1998))
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2

Numerical Methods: from
Dynamics to Radiation

What I cannot create, I cannot understand
— Richard Feynman

43



44



45

Preamble

As explained in the previous chapter, understanding of the underlying dynamical evo-
lution explaining the various features observed in GRB afterglows lies in the ability
to run accurate, precise and efficient numerical simulations of the outflow ejected by
these events. These simulations can be carried out in a purely hydrodynamical setup
as they will follow the evolution of collisionless shocks in propagating in a barely mag-
netized external medium (Rees & Meszaros, 1992). In that regard, we will introduce in
this chapter the theoretical context and notation of special relativistic hydrodynamics
(SRHD), before presenting the specificities of the numerical approach that we used
to model the dynamics. We also introduce the formalism and present the numerical
methods used to model the non-thermal emission and calculate the received flux from
these dynamical simulations.
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2.1 Special Relativistic Hydrodynamics theory

2.1.1 Hydrodynamics equations

The special relativistic hydrodynamics (SRHD) theory describes the dynamics of rela-
tivistic fluids moving with relativistic speeds in a flat space-time. We will carry out sim-
ulations far enough from the central engine that the curvature is negligible. Throughout
the rest of this thesis, space-time will thus be described by a flat Minkowski metric ten-
sor g = η = diag(−1, 1, 1, 1). We will also consider perfect fluids for which any viscous
effects and heat conduction can be neglected, leading to a diagonal pressure tensor.
The speed of light will be set to c = 1.

We can start from the general relativistic description of the evolution of an arbitrary
fluid, which is constrained by the conservation of only two quantities: rest-mass and
energy-momentum. These conditions can be cast into two differential equations:

∇µDµ = 0, (2.1)

∇νTµν = 0, (2.2)

where D is the rest-mass density flux (which can also be written as Dµ = ρuµ with ρ
the rest mass density and u the 4-velocity of the fluid) and T is the energy-momentum
tensor. Deriving the expression of the energy-momentum tensor in the case of prefect
fluids in Minkowski’s metric is the key to establishing the set of scalar conservation
equations describing the evolution of the fluid. In the case of perfect fluids, T can be
expressed as follows:

Tµν = (e+ p)uµuν + pgµν , (2.3)

where p is the isotropic pressure in the comoving frame and e the total internal energy1.
g is the metric tensor, equal to η in the case of special relativity. This gives for the
conservation equations:

∇µDµ = ∇µ(ρuµ) = uµ∇µρ+ ρ∇µuµ = 0, (2.4)

∇νTµν = ∇µ[(e+ p)uµν + pηµν ] = 0. (2.5)

1The total internal energy e includes the rest mass energy ρ (since c = 1) as well as the (thermal,
magnetic...) internal energy usually written per unit of mass as ε.
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2.1.2 Conservative formulation

Equations 2.4 and 2.5 can be cast in the generic first-order-in-time form:

∂tU +A ·∇U +B = 0, (2.6)

where U is the state vector of the fluid2. Wilson (1972) first derived the expression of
the conservation equations by introducing the following dynamical variables:

D ≡ ρut, (2.7)

Sµ ≡ ρhutuµ, (2.8)

E ≡ ρutε, (2.9)

where h = (e + p)/ρ is the specific enthalpy and ε the specific internal energy. These
variables are the components of U = (D,Sµ, E)T .

In the case of relativistic hydrodynamics, equation 2.6 is hyperbolic, and A(U) can be
seen as the Jacobian of a flux vector F (U) with respect to the state vector U . The
homogeneous version of the conservation equations can hence be written in conservative
form:

∂tU +∇F (U) = 0. (2.10)

This formulation is crucial in the case of discontinuous flows (as reviewed in LeVeque,
1992, 1998), and hence in the case of shock propagation, as non-conservative numerical
formulations will lead to incorrect solutions, with inaccurate shock-propagation veloci-
ties, if a discontinuity is present in the flow (Hou & Le Floch, 1994). On the other hand,
Lax & Wendroff (1960) showed that any convergent conservative numerical scheme will
converge towards a solution of the problem.

In the case of SRHD, this requirement will lead to establish the 3+1 Valencia formu-
lation (Martí et al., 1991) of the equations of relativistic hydrodynamics (§2.1.3).

2.1.3 The 3+1 Valencia formulation of SRHD equations

General formulation

Stepping away from the Wilson formulation, the fluid can more intuitively be described
by a state vector of primitive variables V = (ρ,~v, p)T , where ρ and p are the rest-mass

2A bold font will be used throughout the rest of this thesis to refer to any vector in state-variables-
space (D,Sµ, E).
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density and pressure in the co-moving frame, and ~v is the fluid velocity in the lab
frame. Using the 3+1 decomposition of space-time3 (Misner et al., 1973), the Valencia
formulation enables the derivation of a conservative form, in three dimensions (x, y, z)
by using a set of conserved variables U , and corresponding flux vector F (U) (Banyuls
et al., 1997):

U =

D~m
τ

 ≡
 ρΓ

ρhΓ2~v

ρhΓ2 − p−D

 (Rest-mass density)
(Momentum)
(Energy)

, (2.11)

Fi(U) =

 Dvi

~mvi + p̂i

mi −Dvi,

 , ∀i ∈ {x, y, z}, (2.12)

where î is the unit vector in the i-direction, h is the specific enthalpy including rest-
mass energy in the co-moving frame, Γ is the Lorentz factor, and the speed of light is
set to c = 1. Using the conserved variables, the relativistic hydrodynamics equation
can be cast into the compact form:

∂t(U) + ∂x(F ) = S, (2.13)

where x is the spatial dimension and S is the source term.

Angular momentum conserving formulation

Unfortunately, the previous expression in conservative form is only correct in Cartesian
coordinates, and obtaining a conservative expression in cylindrical (r, θ, z) and spher-
ical (r, θ, φ) coordinates needs a bit more work, leading to a non-zero (geometrical)
source term. However, the expression can be greatly simplified by not considering the
conservation of linear momentum (as done in eq. 2.11) but instead the conservation
of angular momentum in the θ-direction (Mignone & McKinney, 2007). In this new

3The distinction of the time coordinate from the spatial ones is the most natural in describing
physical processes. This is possible within the formulation of General Relativity by foliating space-
time into a set of non-intersecting space-like hypersurfaces. Each hypersurface is thus parametrized
by a constant value of t.
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formulation:

~m = ρhΓ2

 vr

rvθ

vz/φ

 . (2.14)

The expression of the flux of momentum in the θ-direction, Fiθ also changes, as we are
now advecting angular momentum instead of linear momentum, and becomes:

Fiθ = r(mθvi + pδiθ), ∀i ∈ (r, θ, z/φ). (2.15)

With this form of the equations, the following source terms appear in 2D:

cylindrical S = (0 , p/r , 0 , 0)T , (2.16)

spherical S = (0 , (ρhΓ2v2
θ + 2p)/r, p/ tan θ , 0)T , (2.17)

where the pressure terms compensate our inclusion of p in the divergence and the other
term is a "geometrical" source term. In the rest of this thesis, whenever presenting
results in cylindrical or spherical coordinates, this angular momentum conserving for-
mulation will have been used. However, the linear momentum conserving form can
also be expanded to any set of curvilinear coordinates, albeit with more complex ge-
ometrical source terms, as presented in the appendix of Mignone et al. (2005). The
corresponding derivation for spherical and cylindrical coordinates in the case of SRHD
is reported in the appendix of Zhang & MacFadyen (2006), which is equivalent to the
approach we just described. The full conservation equations can also be derived in any
curved metric using the "Valencia formulation" directly (Banyuls et al., 1997), but the
calculation is more complex there.

2.1.4 Equation of State

In order to close the hyperbolic system of equations 4.1, one has to provide a clo-
sure equation in the form of an Equation of State (EoS). This equation describes the
evolution of the fluid on a microscopic level and links the state variables to one an-
other, without having to rely on the microscopic distribution function of the particles
forming the fluid. As a result, there are as many EoS as fluid systems that can exist.
Choosing the right EoS is thus crucial in order to accurately describe the evolution of
a hydrodynamical system.

In the case of GRB outflows, since the energy is mostly carried by the baryons (Rees
& Meszaros, 1992), the ejecta can be considered as an ideal, monoatomic, ultra-
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relativistic, non-degenerate fluid4. The EoS giving the expression of the pressure p
as a function of rest-mass density ρ and specific internal energy ε is written as follows:

p(ρ, ε) = ρε(γ − 1), (2.18)

where γ is the adiabatic index of the fluid. This equation can be rewritten in terms of
the specific enthalpy such that:

h = 1 + γε. (2.19)

The advantage of using this description is that it can be applicable to non-relativistic,
relativistic and ultra-relativistic non-degenerate monoatomic fluids by simply adjusting
the value of γ. In the non-relativistic case, γ = 5/3. In the case of GRB ejecta and
before the fluid cools down, the gas is ultra-relativistic with γ = 4/3.

Eventually, the trans-relativistic case can be captured with a Synge-like ideal mono-
atomic fluid equation of state (EOS). Careful however, in situations involving a sub-
relativistic shock with efficient induced particle acceleration, the electron temperature
can become much higher than the proton temperature, which will have a direct influence
on the pressure inside the shock. The fluid would then need to be described by a
multi-temperature EOS. However, in keeping with the common approach seen in the
literature, we keep the monoatomic description and keep the multi-fluid implementation
for future work. We use the formulation from Meliani et al. (2004) based on the
relativistic perfect gas law (Synge, 1957; Mathews, 1971):

p(ρ, ε) = ρε(γeff − 1), (2.20)

where ε is the specific internal energy and γeff the effective polytropic index of the fluid
given by:

γeff = γ − γ − 1

2

(
1− 1

e2

)
. (2.21)

4The state of degeneracy of a fluid is indicated by the fugacity αf ≡ m
kBT

( e+p
ρ
− Ts) where e =

ρ(c2 + ε) is the total energy density and s ≡ S
Nm

is the specific entropy. The value of αf gives an idea
of the importance of the quantum corrections that have to be applied to the EoS. If αf � 1 then the
fluid is non-degenerate. If αf � 1 the fluid is degenerate.
The importance of the relativistic corrections to the EoS are quantified by the coldness ζc ≡ mc2

kBT

that measures the thermal energy of the fluid. ζc � 1 will designate a relativistic fluid, where the
thermal energy is much greater than the rest-mass energy. On the other hand, ζc � 1 designates a
non-relativistic fluid.
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e is the proton mass and specific internal energy including rest-mass. γ = 5/3 is the
fixed adiabatic index for a non-relativistic (cold) fluid. We can verify that we have
γeff = γ = 5/3 for a cold fluid and γeff = 4/3 in the ultra-relativistic case. This
description is a very good approximation to the Synge gas equation. It avoids having
to tabulate the Bessel functions that are costly to evaluate and that would have to be
used otherwise.

2.1.5 Rankine-Hugoniot jump conditions

The equations of relativistic hydrodynamics form a hyperbolic system that thus features
both wave motion and advective transport. This can give rise to different types of
waves involving linear acoustic waves, as well as non-linear simple (compression and
rarefaction) waves, and discontinuous waves (generally referred to as shock waves)
(see e.g. Rezzolla & Zanotti, 2013). A good description of the latter is crucial in
understanding both the dynamics of blast-waves involved in GRBs (see §1.3.1), but
also for understanding the Godunov numerical scheme for hydrodynamics (see §2.2).
Understanding the physics of shocks is also vital to accurately modeling the resulting
Synchrotron emission.

A discontinuous wave is, unsurprisingly, an infinitesimally thin interface across which at
least one of the fluid properties is discontinuous (it can also be said that it experiences
a jump, hence the name jump conditions). They can be divided into contact waves
separating two parts of the fluid with no flow through the interface, and shock fronts
when the fluid does flow across the interface. Physically, the variables involved in the
jump do not actually display a discontinuity, but rather a very steep gradient on the
length-scale of the mean free path `mfp of the particles forming the fluid (in the case of
a non-viscous perfect fluid). When `mfp is small compared to the typical length-scale
of the evolution of the fluid properties, the jump can be mathematically modeled as a
discontinuity, which actually provides a very handy simplification to the treatment of
these features, by the use of the aforementioned jump conditions.

These Rankine-Hugoniot jump conditions simply state the conservation of rest-mass,
energy and momentum across the surface. They are written as follows in the disconti-
nuity rest-frame:

JρuµKnµ = 0, (2.22)

JTµνKnν = 0, (2.23)

with the double-bracket notation JXK ≡ Xb −Xa describing the jump of an arbitrary
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quantity X across the discontinuity (with a and b denoting the side of the discontinuity
X refers to).

This eventually translates to the set of following conditions:

ρaΓava = ρbΓbvb, (2.24)

ρahaΓ
2
av

2
a + pa = ρbhbΓ

2
bv

2
b + pb, (2.25)

ρahaΓ
2
ava = ρbhbΓ

2
bvb, (2.26)

where v is the velocity perpendicular to the shock front. This relativistic version of
the Rankine-Hugoniot jump conditions is also called the Taub adiabat, after Abraham
Taub who first derived it (Taub, 1948). These conditions represent the starting point
of the derivation of a solution to a Riemann problem which will be introduced in the
next section.

2.1.6 Riemann problem

A Riemann problem is the study of the decay of an interface between two fluid states in
differing thermodynamical states (or more specifically, with different values of (ρ, v, p)).
We will see later that the commonly used Godunov scheme solves this exact problem
at each interface in the computational grid for each time-step. Mathematically, it is
written as follows:

U(x, 0) =

UL if x < 0,

UR if x > 0,
(2.27)

where L stands for left state and R for right state. The solutions of the Riemann prob-
lem in SRHD have been investigated by Martí & Müller (1994) (1D analytical solution),
Pons et al. (2000) (tangential velocities), and Rezzolla et al. (2003a) (multidimensional
solution). Phenomenologically, the solution gives rise to a self-similar 3-wave pattern,
with the propagation of 3 non-linear waves on either side of the original discontinuity.
The center wave is a contact discontinuity C , showing a jump in density only, whereas
the left and right waves (respectively W← and W→) can be rarefaction waves or shock
waves (written R and S respectively) indifferently, with a change in all 3 primitive
variables in the relativistic case. The waves delimit 4 regions of space in various ther-
modynamical states (L,L∗, R∗, R, with L and R equal to the original left and right
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Figure 2.1: Space-time diagram of the 1D general Riemann problem in the x
direction. Two non-linear waves and a contact wave separating 4 thermodynam-
ical states propagate on either side of the original discontinuity. The velocities of
all waves can be negative or positive (depending on the initial state) such that
they can be on either side of the original discontinuity position.

states respectively) such that the Riemann problem is written as follows:

LR at t = 0, (2.28)

LW←L∗CR∗W→R at t > 0. (2.29)

This evolution is reported in a space-time diagram in figure 2.1 for one dimension in
the general case.

The Riemann problem can be solved iteratively to any desired degree of precision
(Rezzolla & Zanotti, 2013) (the so-called exact solution). We will see however that
numerical simulations requiring a Riemann problem to be solved will make extensive
use of approximate solvers rather than exact solutions, mostly in order to optimize
algorithmic complexity. This will be developed in §2.2.2.

2.2 Numerical Hydrodynamics with finite volumes - The
Godunov Scheme

In the previous section, we derived the analytical tools necessary to model the dynamics
of relativistic fluid flows. As explained in chapter 1 however, analytical models fail to
capture the full details of multidimensional flows, and numerical approaches are thus
needed. There are two major approaches for numerically describing the evolution of a
fluid. The smoothed particle hydrodynamics method (SPH), is a Lagrangian scheme
similar to N-body approaches, where interacting fluid particles evolve freely. This
approach is particularly well suited for multi-dimensional situations with no obvious
symmetries. However, they do not allow precise capturing of shocks as they rely on
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a smoothing kernel in order to compute field gradients. As a result, we will favor for
our work grid-based methods. A discussion on the advantages and drawbacks of SPH
compared to grid-based methods is given in Bodenheimer et al. (2007).

The grid-based numerical approaches rely on a discretization of space and time into
a finite number of points (finite-differences approach), or volumes (finite-volumes ap-
proach). The normally continuous fields describing the dynamics of a fluid flow are then
only defined at the location of these elements/volumes in space. A good aspect of the
3+1 space-time description (see §2.1.3) is that it allows us to globally evolve a whole
spatial grid from one time increment to the next. Any numerical simulation built like
this thus consists in a collection of space-like grids (Ui)

n
i∈J1,NK of size N ∈ N at various

time increments (tn)n∈N. Again, the system we propose to study involves shocks that
lead to deviation from total conservation when using finite-difference methods. Inter-
faces between volumes in the finite-volumes approach, on the other hand, represent a
perfect setup to modeling discontinuities, provided that they can track the motion of
these discontinuities. We will thus develop a finite-volume scheme based on the Go-
dunov approach (Godunov, 1959) which has proven to be very efficient, accurate and
is very well documented in the literature. As introduced in §1.1.3, we will adapt this
method to a multi-dimensional ALE approach.

This section focuses on explaining the basics of the Godunov numerical method, and
dives into the details of the associated schemes we favored for our work. Any chosen
method will have to be conservative and keep sufficient resolution in order to model
shock fronts appearing in the flow as accurately as possible.

2.2.1 First order scheme

As stated earlier, the Godunov scheme is a finite-volume method that can be used
in order to solve second order hyperbolic problems. In an orthonormal system of
coordinates, the simulated domain is divided into a series of cells (Ci)i∈J1,NK for which all
intensive hydrodynamical quantities have been averaged over their volume (fig. 2.2b),
enabling us to thus refer to cell-averaged values, written Un

i . For the rest of this section,
and for the sake of clarity, we will consider a 1D grid (but multi-dimensional velocity).
However, all the concepts introduced can be easily extended to higher dimension as
we will see at the end the chapter, since the algorithms described here are unchanged
regardless of the direction considered. As a result, cells are separated by a set of N − 1

interfaces designated by half space indexes Ii+1/2 (staggered grid). These interfaces
are orthogonal to the chosen dimension (aligned with the coordinate system, and can
be chosen to remain so even when considering a multi-dimensional moving mesh). In
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F n
i+1/2

i i+ 1

×Un
i+1/2,L ×Un

i+1/2,RUn
i Un

i+1

(a)

x

U

i− 1 i i+ 1

(b)

Figure 2.2: 1-D representation of a Godunov scheme. The left and right state
at interface Ii+1/2 are noted Un

i+1/2,L and Un
i+1/2,R. The arrow indicates the flux

through the interface, as computed by the Riemann solver using these states as
an input.

the rest of the thesis, let us use i to refer to an integer index and j to refer to a half
integer index (j = i+ (2k+ 1)/2, k ∈ N). This way, we can refer to interfaces with the
notation Ij or Ii+1/2 depending on whether we focus on the interface itself, or define
it with respect to one of its neighboring cells. Whenever unambiguous, we will allow
ourselves to drop the indexes i, j or n.

For every time-step ∆tn, cell Ci is updated by computing the inter-cell fluxes F n
i−1/2

and F n
i+1/2 (eq. 2.30), that is, the amount of every physical quantity crossing from

one cell to another. This operation is repeated for every cell in the grid. The clever
idea in the Godunov scheme is to notice that every cell interface Ij is a discontinuity
whose evolution is directed by a Riemann problem. Solving this Riemann problem
allows to compute the corresponding flux across the interface. The scheme thus can be
summarized in the following three simple steps:

1. Reconstruct: the left and right interface states Un
i+1/2,L and Un

i+1/2,R are com-
puted from the neighboring cell-averages (fig. 2.2a). In the first order scheme,
these are calculated in a piece-wise constant manner, setting their value to the
cell-average value of the cell they belong to (Un

i+1/2,L = Un
i and Un

i+1/2,R = Un
i+1

respectively, see fig. 2.2b). Higher-order reconstruction is described in §2.2.5.

2. Solve: The Riemann problem is solved (exactly or approximatively) at the in-
terface, allowing to compute the flux across the interface F n

i+1/2. The Riemann
solvers used are described in §2.2.2.

3. Update: The new cells are updated using the fluxes calculated in the previous
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step following equation 2.30:

Un+1
i = Un

i +
∆tn

dV n
i

(F n
i−1/2dAni−1/2 − F n

i+1/2dAni+1/2), (2.30)

where dAnj is the surface area of interface Ij5, and dV n
i is the volume of cell Ci,

both at time tn6.

This approach ensure that the scheme is conservative and upwind. It also guarantees
monotone evolution, and thus non-oscillatory behavior (for piece-wise constant interface
reconstruction, see §2.2.5). These aspects make of the Godunov approach a very good
starting point for trying to develop more elaborate numerical schemes.

2.2.2 Riemann solvers

The phenomenology of the Riemann problem has already been described in §2.1.6.
Here we focus on the numerical approaches based on the Riemann problem in order
to compute inter-cell fluxes. These solvers compute a so-called "Riemann fan" (recall
figure 2.1). As mentioned earlier, exact solutions are rather computationally expensive
to obtain, this to a particularly prohibitive extent as soon as one moves towards mul-
tidimensional problems. Approximate solvers achieve better computational efficiency.
Complete solvers (as opposed to incomplete) will compute velocities and intermediate
states for all three waves emerging from the discontinuity (in the case of the SRHD
equations), giving a solution in the following form:

U(x, t) =



UL if x/t < λL,

UL∗ if λL < x/t < λ∗,

UR∗ if λ∗ < x/t < λR,

UR if x/t > λR.

(2.31)

where λL, λ∗ and λR are the velocities (normal to the disontinuity) of W←, C and W→,
respectively. The incomplete solvers on the other hand will generally only focus on the
fastest waves in the Riemann fan, overlooking the intermediate waves (C in our case).

The HLLC solver for SRHD

As our main objective is to be able to model blast-waves and capture shocks, we need a
5Depending on the dimension of the grid, dA can be 1D in the 2D case, and 2D in the 3D case. In

the special case of 1D Cartesian coordinates, we arbitrarily choose dA = 1.
6In a fixed mesh approach, dAj and dVi are constant with time, and we can drop the n exponent.
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complete solver able to model the contact discontinuity accurately. Most importantly,
building pseudo-lagrangian approaches require us to move mesh interfaces at the con-
tact discontinuity velocity. A pseudo-lagrangian approach maximises mass conservation
and minimises diffusion around shocks. We focus especially on the relativistic HLLC
solver for relativistic hydrodynamics developed by Mignone & Bodo (2006) which has
the advantage of accurately describing the contact discontinuity (CD). This is partic-
ularly important as we will combine the scheme with a moving mesh following the
motion of these contact waves when in the purely Lagrangian configuration(see §2.3).

The HLLC Riemann solver for relativistic hydrodynamics is based on the incomplete
HLL solver first presented by Harten, Lax, & van Leer 1983. This solver considers only
3 states (UL,Uhll and UR) in the fan, delimited by two waves. By using estimated
velocities for these waves, one can apply the Rankine-Hugoniot conditions across them
and thus reconstruct the values of these states. The corresponding interface numerical
flux is given by:

F =


FL if λL ≥ 0,

F hll if λL ≤ 0 ≤ λR,
FR if λR ≤ 0,

(2.32)

with FL = F (UL), FL = F (UL) (see eq. 4.3) and:

F hll =
λRFL − λLFR + λRλL(UR −UL)

λR − λL
. (2.33)

It should be noted that there are various ways of estimating the wave velocities, some
relying on direct estimates, and others on the estimation of the pressure in the hll
region (Toro, 2009). For the sake of simplicity, we use in our setup the wave speed
estimates from Mignone & Bodo (2006). These are direct estimates of the upper and
lower bounds of the signal velocities first derived for the relativistic gas dynamics case
by Davis (1988) and have since then been the popular choice for SRHD numerical
simulations.

As mentioned earlier, the HLLC solver is a modification of the HLL solver that restores
the contact discontinuity in the Riemann fan. The fluxes corresponding to the * states
given in equation 2.31 are derived using the Rankine-Hugoniot jump conditions:

FL∗ − FL = λL(UL∗ −UL), (2.34)

FR∗ − FR = λR(UR∗ −UR). (2.35)



2.2. The Godunov Scheme 59

After imposing that FL∗ = F (UL∗) and FR∗ = F (UR∗) (see eq. 2.11 for the expression
of F (U)) this becomes a system of 2n equations (where n is the number of components
of U) with 2n + 3 unknowns λ∗, D∗, v⊥,∗, ~m//,∗, E∗, p∗, where v⊥,∗ is the velocity
normal to the interface, ~m//,∗ the momentum aligned with the interface, and all starred
quantities are duplicated to describe both L and R sides of the interface. Note that we
have made use of the relation m = (E+p)v (eq. 2.11) such that the normal component
of the momentum is not an unknown. By imposing v⊥,L∗ = v⊥,R∗ = v⊥,∗ = λ∗ and
pL∗ = pR∗ = p∗ across the contact discontinuity, and rewriting the equations in terms
of λ∗ and p∗, we get the 3 necessary relations to close the system. The method to solve
this system is well described in Mignone & Bodo (2006) and Toro (2009).

As explained earlier in the case of the HLL solver, the interface numerical flux will be
the one corresponding to the region that contains the interface (x/t = 0 in the case of
a fixed mesh).

2.2.3 Recovering primitive variables

The computation of the numerical inter-cell fluxes by the Riemann solvers presented
earlier requires the knowledge of the values of the vector of primitive variables V . These
fluxes allow for the update of the values of the conserved variables U for every cell. It
is then necessary to recover the values of V from U between each update. Martí &
Müller (2003) dedicate a whole section to the various ways this can be done. In the
case of SRHD, the main issue is that this involves solving a non-linear equation for p:

E + p−DΓ− γ

γ − 1
pΓ2 = 0, (2.36)

where Γ = (1−m2/(E + p)2)−1/2. In order to do this, we chose to implement a simple
iterative Newton-Raphson method.

Sometimes however, unphysical results for U can be produced for ultra-relativistic
flows. A solution to this is to decrease the value of the CFL factor (see §2.2.4), but this
causes the computation to slow down, which cannot be allowed past a given extent. A
fall-back procedure, such as the one described in Zhang & MacFadyen (2006), moving
the evolution for the problematic time-step to more diffusive solvers has proved to be
an efficient method to deal with this issue, and is used in the work presented in chapter
3. A more straightforward approach however is setting a floor value for pressure,
depending on the setup that we are simulating. This is equivalent to injecting energy
in the problematic cells, and requires monitoring of the total energy of the system to
ensure that the simulation is not too affected by this solution.



60 Chapter 2. Numerical Methods: from Dynamics to Radiation

x

t

tn

tn+1

∆tn

i− 1/2 i+ 1/2

Ci−1 Ci Ci+1

Figure 2.3: The value of the CFL factor aCFL is chosen in such a way that
waves emerging from two adjacent interfaces (in red) do not interact over one
time-step ∆tn. As a result we have aCFL < 0.5 in general.

2.2.4 Time-integration - the CFL condition

Time integration is driven by the Courant-Friedrichs-Lewy (CFL) condition (Courant
et al., 1928). This condition guarantees that the numerical domain of dependence of a
cell Cn+1

i is wider than its physical domain of dependence. A schematic representation
of the condition is given in figure 2.3. As inter-cell fluxes are computed only between
direct neighbors (numerical dependence), the time-step has to be small enough such
that any wave emerging from an interface does not hop over to the next cell within
∆tn. Mathematically, the condition writes:

∆tn = aCFL min
i

(∆tni ) with ∆tni =
∆xni

max(|λnR,i−1/2|, |λnL,i+1/2|)
, (2.37)

where, aCFL ∈ [0, 1] is the CFL factor. We give the updated expression for a moving
mesh in §2.3.1. In practice aCFL ∈ [0.2, 0.5] to ensure that waves emerging from
neighboring interfaces do not interact either. When working with multiple dimensions,
the time-step can simply be chosen as the minimum value obtained from the application
of this criterion in each dimension independently. The lower the value of the CFL
factor, the more conservative and stable the scheme is. Moreover, being able to choose
a time-step as small as possible ensures that the order of precision of the simulation is
limited by the spatial order of precision only. Higher order time-integration employing
Runge-Kutta approaches is still possible and increases the scheme’s stability, but is
very expensive in terms of memory as intermediate states of the simulated grid need
to be stored before the final grid update.

2.2.5 HRSC method

The Godunov scheme has it has been presented is only of first order in space (and thus
referred to as only first-order accurate). As a result, the shock fronts expected to appear
in simulations of blast-waves are smeared out over multiple cells. This constitutes a
problem as the light emitted by GRBs is directly produced in these shocks via the
acceleration of particles. An impossibility to resolve the shock fronts with sufficient
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Figure 2.4: Schematic representation of the piece-wise linear reconstruction
with the minmod slope limiter. Interface states are reconstructed using linear
interpolation between neighboring cells. Since there are two neighboring cells,
the slope with minimum gradient is chosen, in order to limit spurious oscillations.
For cell Ci, the minimum gradient with a neighboring cell is ∆U

∆x
|i,i−1/2 (in blue).

The red slope is not used for the computation of Ui−1/2,R and Ui+1/2,L.

precision would represent a double obstacle to the production of synthetic light curves
as, on top of the difficulty of computing the injected power accurately, the ability to
detect these shocks would itself become challenging.

Hence, we need a way to increase the spatial order of precision of our numerical scheme
and devise a high-resolution shock-capturing (HRSC) method. One strategy for doing
so is to include a reconstruction step in the calculation of the fluid states on both
sides of an interface between two cells (step 1 in §2.2.1). In the first order scheme,
this reconstruction step is simply done using a piece-wise constant function for U (fig.
2.2b). However, this discretization is not representative of the physical continuous
state of the fluid and introduces errors in the treatment of the fluid evolution. In
modern Godunov schemes, more accurate methods such as the piece-wise parabolic
reconstruction or the piece-wise linear reconstruction are used. These methods are
accurate as long as they remain conservative, meaning that cell-averages before and
after reconstruction are conserved. In this process, one also, needs to be careful about
introducing spurious oscillation and instability in the scheme. This will be done by
ensuring that the scheme is Total-Variation Diminishing (TVD)7, using what is called
flux-limiters or slope-limiters.

7The total variation of a differentiable function f of several variables on a domain Ω is: TV (f,Ω) =∫
Ω
|∇f(x)|dx. A scheme is TVD if the total variation decreases with each iteration. In practice this

means that oscillations and spurious features around discontinuities cannot appear.
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Piece-wise linear reconstruction
Even though this method is not the most commonly used in the literature, with the
piecewise parabolic method usually favored, it is the most computationally efficient and
most straightforward to implement. It is also a good example in order to explain the
principles of higher order reconstruction. To this date, it is thus the method we have
chosen to use in the simulations presented in chapters 3 and 4. It works by following a
linear interpolation in a given cell from the cell-centered value to any position x within
that cell such that:

Un
i (x) = Un

i + σni (x− xi), with xi−1/2 ≤ x ≤ xi+1/2, (2.38)

where σni is the slope of the interpolation. The advantage of this description is that it
is clearly conservative and that it only requires to specify the slope to use. As several
choices exist for these slopes, it is important to make sure that the choice of slope
conserves the TVD aspect of the elected scheme. This the reason why slopes are also
often directly referred to as slope limiters. These slope limiters are mathematically
equivalent to the flux limiters, the difference in denomination only coming from the
stage at which these limiters intervene (reconstruction for slope limiters, update for
flux limiters). Again, for the sake of simplicity, we describe and implement in our work
the minmod slope limiter.

Minmod slope limiter
The minmod slope limiter is given by the following equation:

σni ≡ minmod

(
Un
i −Un

i−1

xni − xni−1

,
Un
i+1 −Un

i

xni+1 − xni

)
, (2.39)

where minmod() is applied to every component of its arguments individually and writes:

minmod(α, β) ≡


α if |α| < |β| and αβ > 0,

β if |β| < |α| and αβ > 0,

0 if αβ ≤ 0.

(2.40)

This guarantees that the scheme stays TVD and reaches 2nd order accuracy (however
reduced to 1st order at local extrema). This allows for a better resolution of non-linear
waves, such as shock fronts. An example of interface reconstruction using a piece-wise
linear approach with a minmod slope limiter is shown in figure 2.4. In this sketch,
interface Ii−1/2 and Ii+1/2 are reconstructed in blue and red, respectively, and the
slope is constrained by the left interface for which the interacting cells have the lowest
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gradient. At this point, it is crucial to point out that the reconstruction on all faces of
a single cell (not to confuse with left and right states of a single interface) should use
the same slope in order to fulfill the conservative criterion of reconstruction.

2.3 Moving mesh

2.3.1 Advantages and drawbacks

Thus far, we have described the mathematics of HRSC finite-volume methods but have
not mentioned moving meshes. This is because all the methods introduced in the
previous sections of this chapter usually are applied to fixed meshes. However, the
extension to moving meshes is surprisingly straightforward provided that one is ready
to tackle the associated mesh distortion.

As briefly mentioned in chapter 1, moving meshes provide a range of advantages. Let
us consider in this section a setup in which the mesh follows the fluid motion. First, for
similar grid resolutions, the time-step for every fluid update will increase in comparison
with a fixed mesh. The performance will at worst as bad as the fixed mesh (in the
presence of high-velocity gradients), and at best limited by the speed of sound. Let’s
examine how the CFL condition (see §2.2.4) changes for a moving mesh. A schematic
representation is given in figure 2.5. Instead of using the cell size to compute the
maximum time-step allowed for each wave in the Riemann fan, we instead evaluate
the distance each wave can travel before it hits the moving opposite boundary. The
expression for the time-step becomes:

∆tn = aCFL min
i

(∆tni ) with ∆tni = max

(
∆xCFL

R,i−1/2

|λnR,i−1/2|
,
∆xCFL

L,i+1/2

|λnL,i+1/2|

)
(2.41)

where ∆xCFL is the distance a given wave can travel before interacting with its opposite
interface. This upwinding approach works in all directions and all interface velocities.
For a flow with small velocity gradients but high bulk velocity, the time-step will, with
this new condition, be limited by the speed of sound in the co-moving frame, instead
of by the speed of the bulk motion.

Another significant advantage is that a mesh moving at the fluid velocity will cause
the resolution to increase when subjected to compression waves, leading a naturally
shock-capturing method. There will be plenty of opportunities to highlight and take
advantage of this behavior in the applications presented in chapters 3 and 4.

Finally, setting interface velocities to the CD velocity in the Riemann fan ensures that
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Figure 2.5: CFL condition schematic representation for a moving mesh. Nota-
tion is identical to fig. 2.3 and we have added the cell width in blue. The moving
interfaces translate to oblique dashed lines now. We consider each wave subse-
quently and compute a maximum time-step based using not the cell width, but
the distance between the original wave position and the position of the opposite
interface after time ∆tn. We report this distance ∆xCFL for the orange wave.

there is no mass flux across the interface, making the code pseudo-Lagrangian8. This
minimises numerical errors in mass conservation and reduces diffusion in regions of large
gradients, provided that the gradient is aligned with the direction of mesh motion. As
we will see later, the calculation of the local synchrotron emissivity directly relies on
our ability to accurately enforce mass conservation which makes this advantage from
the moving mesh very attractive.

However, these improvements come at the cost of mesh complexity. Mesh entanglement
is a well known issue which is usually solved by very expensive re-gridding operations.
However, entanglement itself can be circumvented in highly directional flows in which
motion is dominant in one direction. JET (Duffell & MacFadyen, 2013) and DISCO
(Duffell, 2016) take advantage of this for radial and polar flows, respectively, and allow
the mesh to move along tracks oriented following these directions only in each of these
cases. This means that the only re-gridding needed is done inside individual tracks.
We will tackle adaptive mesh refinement (AMR) in §4.2.5. Another challenged is that
we lose mesh regularity. This means that bookkeeping operations become much more
intensive as we now need to keep track of cell position and geometry as well as their
varying number of neighbours and associated inter-cell interfaces. We explain how to
overcome this challenge in the next section.

2.3.2 New fluid update

In two dimensions we follow the same approach as JET and DISCO in which we allow
the mesh to move only in one direction. This means that the simulation domain is a
set of tracks along which cells are allowed to move. Let us call x the moving direction

8We can talk of pseudo-Lagrangian character in a given direction if we allow the mesh to move only
in one direction, resulting in mass flux in the transverse directions (see next paragraph).
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Figure 2.6: Low-resolution snapshot
from the code JET of a blast-wave prop-
agating in a diffuse medium. The mesh
is only allowed to move along tracks
in the radial direction. The resolution
naturally increases downstream of the
shock. Figure from Duffell & MacFadyen
(2013). Figure 4.2 shows a similar setup
for GAMMA.

and y any non-moving dimension (the treatment stays the same in 2D or 3D). Figure
2.6 shows an example of such a mesh with radial tracks. Already, one notices that, for
a given cell, while the number of neighbours stays identical in x, it is variable in y.
This means that while the expression of the flux for each x-interface will change, it is
the number of y-interfaces and not the expression of their flux that will be modified in
the y direction. However, while spatial reconstruction for x-interfaces follows the same
procedure as before, the loss of regularity in the y direction means that we are going
to need to update the spatial reconstruction process for y-interfaces. In the rest of
this section we describe the updates that need to be done to the procedures described
earlier in the chapter. Methods not mentioned here remain unchanged from a fixed
mesh approach.

Geometry update

We follow the movement of interfaces on a given track. For an interface at position
~xni moving at velocity ~vni and for time-step ∆tn, the new position with first order time
integration is simply:

~xn+1
i = ~xnu + ~vni ∆tn. (2.42)

For each iteration we first move the interfaces and then re-compute the cell centers,
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x

t

0

W← C W→

UL, FL UL∗ , FL∗ UR∗ , FR∗ UR, FR

x/t = wni

Figure 2.7: Example of flux correction determination in the case of a moving
interface with velocity wni . In this case, the interface will travel in the (R∗)
region during the n update, as shown in this representation of the Riemann fan
(see §2.1.6). The values used in the flux correction presented in eq. 2.43 are thus
UR∗ and FR∗ .

the cell centroids, volumes and corresponding cell neighbours in adjacent tracks.

Spatial reconstruction across tracks (y-direction)

Interface spatial reconstruction is not as straightforward in the y-direction (direction
transverse to mesh movement) as in the x-direction (moving dimension), for the simple
reason that cells have multiple neighbours on each side in y. To solve this, one must bear
in mind that the gradient used in a piecewise-linear approach as described in §2.2.5
must be set at the cell level to ensure conservation of fluid quantities. A thorough
description of how to carry out such reconstruction is given in §4.2.4.

Cell update

Once the new kinematics of the mesh have been updated, the cell values can be updated
by taking into account the velocity of their interfaces. Figure 2.7 gives an example of
the organization of the Riemann fan and interface movement. The fluxes used for cell
update will be corrected for the advection across the interface of the quantities in the
region of the fan that the it propagates into. Mathematically, this writes:

Fcorr,j = Fj −Ucorrwj , (2.43)

with Ucorr ∈ {UL,UL∗ ,UR∗ ,UR} set to the state the interface propagates into (UR∗ in
the case of figure 2.7). The cells are then updated like in equation 2.30 but their values
are also multiplied by the ratio between the former and the new volume of the cell.
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2.3.3 Adaptive mesh refinement

The introduction of the ability for cells to change size means that their dimensions need
to be capped. The bounds can be respected by introducing adaptive mesh refinement
(AMR) methods that will merge and split cells to meet the target size. If not doing
so, two main issues may arise. First, the time-step can find itself limited by cells of
unreasonably small size in comparison to the rest of the fluid and the computation can
grind to a halt because of the compression in strong shocks. In this situation, merging
cells on the same track can restore higher time-step values. Second, regions where the
fluid expands can become insufficiently resolved. In this case, splitting cells increases
the resolution without impacting the time-step as it will be limited by other regions of
the flow. The criteria for merging and splitting depend on the geometry of the problem,
the dynamic range of the features to capture, as well as the chosen resolution in the y
dimension. For example, chapters 3 and 4 introduce two different sets of criteria and
we refer the reader to them to get an understanding of how these AMR criteria are
chosen in practice.

The simpler operation is merging. There, the two neighbouring cells selected for merg-
ing, C− and C+, see their conserved variables volume-averaged in the new cell:

Unew = (U−dV − +U+dV +)/(dV − + dV +) (2.44)

For splitting, we can carry out a linear interpolation from the mother cell centroid to
the new daughter cells centroid positions. To enforce conservation, we choose the same
gradient for both sides of the interpolation using the same procedure at that used for
interface state spatial reconstruction (see §2.2.5 and make use of the minmod slope
limiter.

2.4 Numerical radiative transfer for non-thermal processes

In §1.3.2 I briefly introduced the processes involved in modeling synchrotron emission
from astrophysical shocks. Here I describe in more detail our approach to numerically
capture the synchrotron process and accurately compute the emissivity downstream of
the shocks present in moving-mesh SRHD simulations.

2.4.1 Shock detection and particle injection

Accurate shock detection is essential to the computation of non-thermal emission. van
Eerten et al. (2010b) show that the region around the shock contributing to the emission
is extremely narrow. As a result, inaccurate shock position measurement can lead to
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a high degree of error in the computed emission when using a local cooling approach,
as described later in this section. While in Ayache et al. (2020) (chap. 3) make use
of a shock detector based on the calculation of the limiting relative velocities at cell
interfaces in 1D from Rezzolla et al. (2003b) and Zanotti et al. (2010), we use in chapter
4 the more complex multi-dimensional version of this detector, introduced by the same
authors. Both chapters 3 and 4 give the details of the calculation. We introduce here
basic the philosophy behind these shock detectors in order to be able to present the
particle injection process in the rest of the section.

Historically, shock detection methods have relied on measurements of the gradients of
the fluid quantities in the simulation domain. One such method involves measuring
the spatial gradients of the rest-mass density. When this gradient overshoots a certain
threshold the jump in density can be interpreted as a shock. the most widely used
method, improving on the density gradient approach, checks for negative divergence of
the velocity in a given cell: ~∇ · ~v < 0. This cell is marked as shocked if the difference
in pressure with at least one of its neighbours is greater than the difference prescribed
by the Rankine-Hugoniot shock jump conditions (see §2.1.5) for an arbitrarily decided
shock Mach Number. These approaches have shown relatively satisfying results in
detecting very strong shocks. However, complex dynamics such as that that studied in
chapter 3 require us to detect shocks of all strengths and we must implement a more
robust approach.

The calculation of limiting relative velocities at cell interfaces takes advantage of the
Godunov scheme by measuring the threshold on relative velocities between adjacent
fluid states for the formation of a shock in the Riemann fan. Let us consider a candidate
discontinuity in fluid quantities in which we observe a jump in density, pressure and
velocity between two regions denoted 1 and 2. The relative velocity orthogonal to the
discontinuity is v12 ≡ (v1− v2)/(1− v1v2). Chapters 3 and 4 give the expression of the
threshold for the formation of one shock and one rarefaction (SR), or two shocks (2S)
in the resulting Riemann fan, in the 1D and multi-D cases, respectively. By checking
for this criterion on all the interfaces of the grid we can map the location of the shocks
in all directions.

This procedure can be run for every iteration on all the interfaces in the simulation
domain. Once the shocks have been mapped, initialisation of the accelerated particle
population can be done in the cells on the downstream side of these shocks. As men-
tioned in §1.3.2, this population is modeled by a power-law distribution in energy of
spectral index p bounded by γmin (lower bound) and γmax (higher bound). Particle-in-
cell simulations have shown that p directly downstream of the shock varies with shock
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Figure 2.8: Analytically and numerically calcu-
lated spectral index s = p + 2 as a function of
upstream four-velocity in the shock frame of ref-
erence for three different types of shocks: a strong
shock with the Jüttner-Synge EOS (solid curve and
crosses), a strong shock with fixed adiabatic in-
dex γ = 4/3 (dashed curve and x marks) and a
shock in a relativistic gas where βuβd = 1/3 (dash-
dotted and circles). Figure from Keshet &Waxman
(2005).

strength (for recent reviews see e.g. Sironi et al., 2015; Marcowith et al., 2020). Kirk
et al. (2000) and Keshet & Waxman (2005) measure the evolution of p for a strong
shock (fig. 2.8)with a trans-relativistic equation of state similar to the one described
earlier in §2.1.4. As long as one can measure the upstream velocity in the shock frame
it is possible to initialise p directly downstream of the shock following their result.
In chapter 4 however, we resort to an approximation to facilitate this calculation and
equate the upstream velocity in the shock frame to the fluid velocity in the lab frame
directly downstream of the shock. Even though this approach over-estimates the value
of p we will still observe the trans-relativistic behavior expected with our simulations.

Once the spectral index has been set, the bounds of the distribution can be initialised.
As long as p > 2, γmax can actually be set to infinity. In practice, it just needs to be set
to a high enough value such that the contribution of the upper end of the distribution
to the flux in the observer frame is above the highest frequency of interest. Since we
know the shape of the distribution and have now initialised p and γmax, we can set
γmin by simply equating the integrated energy from the population (provided we know
the fraction ζ of electrons participating to the synchrotron process) with that available
for emission calculated from the microphysical parameters εe and εB. In practice, ζ,
εe and εB are ignorance parameters fitted to observations using analytical models (e.g.
Granot & Sari, 2002). Once p has been measured from the afterglow spectral decay
and temporal decay using the afterglow closure relations, the remaining microphysical
parameters (εe, εB) can only be determined without degeneracy if the afterglow is
observed in every one of its 4 spectral regimes. For this reason, the microphysics are
still poorly constrained with εB spanning a few orders of magnitude across the GRB
population (Barniol Duran, 2014; Santana et al., 2014). In the simulations presented
in this thesis we will set them to sensible values in comparison to those measured in
the literature.
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Let’s place ourselves directly downstream of a shock, in the co-moving frame and drop
the prime exponent for readability. Let us remind the reader that the energy distribu-
tion of accelerated particles follows:

n(γe) ∝

(γe)
−p if γmin < γe < γmax,

0 otherwise,
(2.45)

The number of electrons contributing to radiation is:

ne = ζρ/mp. (2.46)

Since the bulk of the energy is contained in the electrons close to the lower bound γmin,
we can assume infinity for γmax (for p > 2) and get (Granot et al., 1999):

γmin =
p− 2

p− 1

εee

neme
. (2.47)

Notice that εB does not influence γmin. Only the spectral index p and the amount of
energy going into particle acceleration εe impact the position of the lower bound of the
population.

2.4.2 Local synchrotron cooling

We now have an in initialised micro-physical state directly downstream of shocks. To
evolve this state we have to consider how individual electrons lose energy with time.
In this regard, equation 1.10 driving the evolution of an electron’s Lorentz factor in
the fluid frame γ′e can be re-cast into an advection equation by making use of the
continuation equation:

∂

∂t

(
Γρ4/3

γ′e

)
+

∂

∂xi

(
Γρ4/3

γ′e
vi

)
=

σT
6πmec

ρ4/3(B′)2. (2.48)

The advantage of this formulation is that a hydrodynamics code can simply treat the
new quantity γ̂ = ρ1/3/γ′e as a passive scalar with a source term. To numerically
capture the evolution of the accelerated particle population, one would ideally need to
split the distribution into a large number of energy bins and advect the bin boundaries
during the dynamical evolution. As a first approach, one can simply advect the upper
and lower bounds γmax and γmin and assume that the distribution remains a power-law
throughout the evolution.
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2.4.3 Flux reconstruction - linear radiative transfer

Eventually, we have everything at our disposal to carry out the calculation of the local
emissivity in the co-moving frame at any point of the fluid. The radiative flux can then
be reconstructed in the observer frame by means of a linear radiative transfer approach.
Let us first focus on the emissivity.

Assuming an isotropic distribution of electrons, a single average electron of energy γe
(where we have dropped the primed exponent for legibility) radiates at a characteristic
frequency (Rybicki & Lightman, 1979):

νsyn(γe) =
3γeqeB

16me
. (2.49)

The spectral power Pν follows a 1/3 slope asymptotic behavior below this frequency
and decreases exponentially above:

Pν(ν) =
4

3
σTβ

2 εee

neme
F

(
ν

νsyn(γe)

)
, (2.50)

with

F (x) ∼ 4π√
3Γ(1

3)

x

2

1/3
, x� 1, (2.51)

F (x) ∼
(π

2

)1/2
e−xx1/2, x� 1, (2.52)

where Γ(z) =
∫ +∞

0 xz−1e−xdx is the gamma function.

As introduced in §1.3.2, we know that the synchrotron emission from a truncated
power-law distribution of electrons produces a smoothly connected broken power-law
spectrum in the co-moving frame that peaks for νmin = νsyn(γmin). The volumetric
spectral emitted power in the co-moving frame (where quantities are denoted with a
prime) is simply the convolution of single average electron emissivity with the electron
energy distribution, and can be approximated by a broken power-law (Sari et al., 1998;
Granot et al., 1999):

P ′ν =

P
′
ν,max

(
ν

ν′min

)1/3
, ν < ν′min,

P ′ν,max

(
ν

ν′min

)−(p−1)/2
, ν > ν ′min,

(2.53)

with P ′ν,max =
4(p− 1)

3p− 1
× n′σT

4

3

B′

6π

16mec

3qe
. (2.54)
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Notice that P ′ν(ν) retains the 1/3 slope from the single electron contribution below νmin

which is expected since νsyn(γe) ∝ γe.

Up until now, no influence of cooling has been added in this prescription. in the local
cooling approach, cooling is implemented by tracking the evolution of the higher bound
of the electron population, γmax. van Eerten & Wijers (2009) compute the emissivity
for this local cooling approach. Let us declare another characteristic frequency νmax =

νsyn(γmax). While the local spectrum remains approximately unchanged for ν < νmax,
the introduction of a higher cutoff in the particle population distribution leads to a fast
decay in emissivity above νmax:

P ′ν(ν) ∝
(

ν

ν ′max

)p−1

exp

(
− ν

ν ′max

)
,

ν

ν ′max

� 1. (2.55)

This means that for ν � νmax the emissivity is effectively zero because of the expo-
nential term. Calculating the accurate emissivity in the vicinity of the characteristic
frequencies involves numerically solving a complex integral. van Eerten &Wijers (2009)
tabulate the result and use it to compute the the corresponding emissivity from the
local fluid state. However, in our applications of the code, we will instead use a simple
broken power-law prescription as described above and introduce a sharp cut-off at νmax.
In summary, the numerical volumetric spectral power is thus given by:

P ′ν(ν) =


P ′ν,max

(
ν

ν′min

)1/3
, ν < ν ′min,

P ′ν,max

(
ν

ν′min

)−(p−1)/2
, ν > ν ′min,

0, ν > ν ′max,

(2.56)

where P ′ν,max is unchanged from eq. 2.53. We address in chapter 4 the potential impact
of our approximation when producing light curves and spectra from multidimensional
simulations.

Flux reconstruction implies solving the radiative transfer equation:

dIν
dz

= εν − ανIν . (2.57)

In this equation, the specific intensity Iν at frequency ν evolves along a path length
s following the emissivity coefficient εν and extinction coefficient αν . Note that for
an optically thin medium, αν vanishes and the equation is left with only emissivity to
integrate on the line of sight (l.o.s).

So this integration can be done from the dynamical output as long as we have a pre-
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scription for local emissivity. Let us consider the output of a numerical simulation for
which we have dynamical snapshots including micro-physical information at different
lab times (time for a static observer with regard to the central engine). We are inter-
ested in computing the observed flux for a static observer at a given observer frequency
νobs and observer time tobs (for a given lab time and location, the corresponding ob-
server time is the arrival time of a photon emitted at this location at this lab time).
Since we are considering relativistic flows, the frequency of interest in the frame co-
moving with the fluid ν ′obs will be related to the observer frequency νobs following the
relativistic Doppler effect valid for all frequencies:

ν ′ = νΓ(1− βµν) (2.58)

where µν us the cosine of the angle between the fluid velocity and direction of the
observer, Γ the Lorentz factor the fluid and β its velocity in units of c. For each cell in
each snapshot, the arrival time of the photons emitted in by this cell is given by:

tobs = (1 + z) (t− rµ) , (2.59)

with t the time in the lab frame, r the radial coordinate in the spherical coordinates
system as defined at the beginning of this chapter, µ the cosine of the angle ϑ between
~r and the line of sight, and z the redshift of the source. A schematic representation of
these quantities is given in figure 2.9. Careful, ϑ 6= θ in the general case, with ϑ = θ only
when the observer is aligned with the axis {θ = 0} in the spherical system of coordinates
used for the dynamical simulations. Assuming that the medium is optically thin, we
can eventually express the observed spectral flux density as:

Fν(ν, tobs) =
1 + z

4πd2
L

∫ 2π

0
dϕ

∫ 1

−1
dµ

∫ ∞
0

r2dr
P ′ν′(r, tobs + rµ, ϕ)

Γ2(1− βµ)2
. (2.60)

In this expression we have used ϕ instead of φ to make the distinction with the spherical
coordinate system used in the simulations which is not a priori aligned. From this
expression, two different approaches can be taken, both of which are subsequently
applied in chap. 3 and chap. 4, respectively.

The first approach can only be applied in an optically thin medium and consists in
summing over the contributions of all the snapshots for the whole light curve for a
given νobs. We first split the target light-curve in a number of bins. We then compute
the arrival time of each cell, and simply add the contribution form the integrand in
the in each bin. This approach has the advantage of being very straightforward to
implement. However, absorption along the photon paths cannot be implemented with
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Origin l.o.s

r

ϑ
Observer

t0obs

t1obs

tnobs

rays

Figure 2.9: Schematic representation of the linear flux integration process.
For each observer time, the emissivity is computed from each snapshot at the
intersections between pre-specified rays and the EDS (curved blue surfaces). This
schematic representation is valid ∀ϕ. Again we caution the reader that the system
of coordinates is not the one used in the dynamical simulation (the simulation
could actually be carried out in Cartesian or cylindrical coordinates too).

in this context.

Even though we do not include the effects of synchrotron self-absorption (SSA) in our
simulations yet9, we intend for future work to include its effects, and we make use in
chapter 4 of the code from van Eerten & Wijers (2009) which uses a linear radiative
transfer approach which we describe here. Figure 2.9 gives a schematic representation.
In this approach, the domain is traversed by a number of rays converging on the observer
and covering the simulation domain. For each snapshot (and corresponding lab time), it
is possible to define and equidistant surface (EDS). For a given lab time t and observer
time tobs, the EDS equation is obtained by re-writing eq. 2.59:

r =
1

µ

(
t− tobs

1 + z

)
, µ 6= 0. (2.61)

All the photons emitted from this surface will reach the observer at the same specified
tobs. The emissivity is evaluated at the intersection between this EDS and the collection
of rays. The snapshots are then considered in increasing order of lab times and the
flux is integrated along the rays before the resulting contributions from each rays are
summed up. This approach presents the advantage of allowing for the implementation
of absorption along each ray which we will not detail in this thesis.

9SSA will be discussed in more detail in chapter 6 and will be included in future simulations
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Preamble

In this chapter I present the first application of the methods described in chapter 2. The
objective here is to tackle from a new angle a long-standing question in GRB afterglow
research, the origin of flares, made possible thanks to the benefits of the moving-mesh
and local cooling approaches combined. Indeed, this particular problem requires the
ability to model complex dynamics and identify multiple synchrotron emission sites in
a relativistic outflow. With the goal of providing answers on the mechanism responsible
for such flares, we use this project to highlight the benefits of the moving mesh and
local cooling approaches in a simple one-dimensional setup. This is the first extensive
study of the validity of the reverse shock flaring scenario which was made possible by
the first implementation of local cooling on a moving mesh.

In the context of this thesis, the presentation of this work is also a great opportunity
to give a more intuitive understanding of GRB afterglow dynamics and emissision
processes, and the workings of the moving mesh and local cooling methods, in a simple
one-dimensional setup, before presenting multi-dimensional studies in chapter 4. Since
this work was published in Ayache et al. (2020), I choose to report in the rest of
the chapter the contents of the paper as published, making this chapter entirely self-
contained. However, some of the introductory material in the paper has already been
presented in chapter 2. As such, the reader will encounter repetitions in §3.2.1 and
§3.4.1 when presenting these methods in the 1D case, which they might choose to
skim over. At the end of the paper, I provide a additional information which was not
published as well as a general conclusion to this paper in the context of the thesis
(§3.8).
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Abstract

Late activity of the central engine is often invoked in order to explain the flares observed
in the early X-ray afterglow of gamma-ray bursts, either in the form of an active neutron
star remnant or (fall-back) accretion onto a black hole. However, these scenarios are
not always plausible, in particular when flares are delayed to very late times after
the burst. Recently, a new scenario was proposed that suggests X-ray flares can be
the result of the passing of a long-lived reverse shock through a stratified ejecta, with
the advantage that it does not require late-time engine activity. In this work, we
numerically demonstrate this scenario to be physically plausible, by performing one
dimensional simulations of ejecta dynamics and emission using our novel moving-mesh
relativistic hydrodynamics code. Improved efficiency and precision over previous work
enables the exploration of a broader range of setups. We can introduce a more physically
realistic description of the circumburst medium mass density. We can also locally trace
the cooling of electrons when computing the broadband emission from these setups.
We show that the synchrotron cooling timescale can dominate the flare decay time if
the stratification in the ejecta is constrained to a localised angular region inside the
jet, with size corresponding to the relativistic causal connection angle, and that it
corresponds to values reported in observations. We demonstrate that this scenario can
produce a large range of observed flare times, suggesting a connection between flares
and initial ejection dynamics rather than with late-time remnant activity.

3.1 Introduction

Gamma-Ray Bursts (GRBs) are the most luminous explosions in the Universe. They
are the result of the collapse of a massive star (long GRBs) (Woosley, 1993; MacFadyen
& Woosley, 1999) or of the merger of two Neutron Stars (NS) or a NS with a black hole
(Short GRBs) (Eichler et al., 1989; Mochkovitch et al., 1995), a scenario spectacularly
confirmed three years ago with the joint detection of GW170817 and GRB170817a
(Abbott et al., 2017a,b; Goldstein et al., 2017; Savchenko et al., 2017; Troja et al.,
2017; Hallinan et al., 2017). These explosions give rise to a collimated ultra-relativistic
jetted outflow typically observed on-axis. In the first milliseconds to a few seconds, an
initial burst of gamma-rays (the prompt emission) can be observed, followed after a
few hundred seconds by an afterglow (at larger wavelengths). The afterglow, originally
peaking at X-ray energies, decreases in luminosity and frequency with time until it
disappears.

The launch of the Neil Gehrels Swift observatory (Gehrels et al., 2004) in 2004, ded-
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icated to GRB detection and early X-ray/optical afterglow observations, showed the
great variability in the light curve at early times. For 15 years now, Swift has been
detecting GRBs and measuring the properties and spectra of their early X-ray after-
glow at a rate of around 90 detections a year (Evans et al., 2009), revealing flaring and
re-brightening behaviors. These flares are detected in about a third of GRBs (Burrows
et al., 2005b; Falcone et al., 2007; Chincarini et al., 2010; Margutti et al., 2011; Yi et al.,
2016) and display a characteristic shape with a sharp jump in luminosity followed by
a smoother decay, eventually going back to the original luminosity level (Chincarini
et al., 2007). They can happen at any time during the afterglow, from 102 to 105 s
after the prompt emission, growing longer with time following ∆tflare/tflare ∼ 0.1− 0.3

(e.g. Burrows et al., 2005b). Margutti et al. (2011) showed that the average isotropic
equivalent energy of flares also decreased with time as Eiso,flare ∝ t−1.7

obs,flare, albeit with
a very large scatter.

Several works have shown that the external forward shock (FS) cannot produce flares
with the correct timescale and flux variability (Ioka et al., 2005; Nakar & Granot,
2007; van Eerten et al., 2009), and the currently accepted paradigm involves late-time
activity of the central engine (Burrows et al., 2005b; Chincarini et al., 2010; Margutti
et al., 2011) or late-time fallback accretion onto the remnant (King et al., 2005; Perna
et al., 2006; Proga & Zhang, 2006; Lee et al., 2009; Cao et al., 2014). This scenario,
though, requires the central engine to be active on the same timescale in the lab frame
as that of the occurrence of the flare (Kobayashi et al., 2007), implying that the engine
has not yet collapsed to a black hole in cases where fallback accretion is unlikely to
play a role as well (e.g. at very late timescales). It also requires this surge of activity
to obey the constraint ∆t/t ∼ 0.1, putting an intrinsinc constraint on the variability
timescale of the activity of the central engine up to very late times. Consequently,
having a model that relaxes the constraints on the central engine is a step towards
better understanding of late-time variability in X-ray afterglows.

In order to relieve the constraints on the central engine, Hascoët et al. (2017) proposed
an alternate mechanism in which flares can arise from the interaction of a long-lived
reverse shock (RS) with a stratified ejecta produced by a gradual and non-monotonic
shutdown of the central engine right after the initial ejection phase, and tested this
scenario using a ballistic model. Indeed, Uhm & Beloborodov (2007) and Genet et al.
(2007) showed that the emissivity of the RS can dominate over that of the FS. A
dominating RS is also able to reproduce most of the other canonical features of the
early X-ray afterglow (Uhm et al., 2012; van Eerten, 2014b). Lamberts & Daigne
(2018) (hereinafter LD18) further investigated this approach by running complete hy-
drodynamical simulations using the relativistic version of the adaptive mesh refinement
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(AMR) hydrodynamics code RAMSES (Teyssier, 2001; Lamberts et al., 2013). They
were able to reproduce in principle flaring behavior and validate the ballistic model
of Hascoët et al. (2017). But even with using a moving grid where cells were deleted
behind the ejecta to be reused upstream, they were limited by the fixed resolution of
their numerical hydrodynamics code. As a result they were constrained to very dense
uniform cirumburst environment (density n0 ∼ 103 cm−3). Additionally, they were
not able to directly trace the impact of synchrotron cooling on electron populations as
fluid zones advect away from the shocks. Finally, the study was limited in the range of
observer times for flares it could demonstrate.

In this work, we expand the approach of LD18 to more realistic dynamical initial con-
ditions. We use a newly developed moving mesh special relativistic hydrodynamics
code that allows for improved numerical accuracy and computational efficiency. We
improve the radiative prescription by implementing local cooling, by tracing the elec-
tron Lorentz factors bracketing the accelerated electron population through the fluid
(Downes et al., 2002; van Eerten et al., 2010b).

The hydrodynamics code we used and the simulation setup are described in §3.2. The
dynamical evolution is described in §3.3. We explain our emission prescription and
discuss flare production in §3.4.

3.2 Numerical Methods

3.2.1 Relativistic hydrodynamics on a moving mesh

The simulations were ran using our own numerical dynamics code (see appendix 3.7.1
for code validation). Similarly to the codes from Kobayashi et al. (1999), Daigne &
Mochkovitch (2000) and Duffell & MacFadyen (2011), our code uses a special relativis-
tic hydrodynamics (SRHD) finite-volume Godunov prescription on a moving mesh in
spherical coordinates (r, θ, ϕ), solving the following system of conservation equations:

∂tU +∇F (U) = S, (3.1)

where U and F (U) are the vector of conserved variables and the corresponding flux
vector, respectively and S is the source term. U and F (U) are given by:

U =

Dm
E

 ≡
 ρΓ

ρhΓ2v

ρhΓ2 − p

 (Rest-mass density)
(Momentum)
(Energy)

, (3.2)
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F (U) =

 Dv

mv + p

m

 , (3.3)

where the primitive variables ρ, v, p are the rest-mass density, the fluid velocity and
the fluid pressure in the comoving frame, respectively, h is the specific enthalpy, Γ the
Lorentz factor of the fluid, and the speed of light c = 1. The spherical coordinates
formulation of these equations includes a non-zero source term S = (0, 2p/r, 0)T .

The system of equations is closed using an ideal monoatomic fluid equation of state:

p(ρ, ε) = ρε(γ − 1), (3.4)

where ε is the specific internal energy density, and γ the adiabatic index of the fluid
set to γ = 4/3 in the ultra-relativistic case.

The 1D version of the code involves a grid of N cells (Ci)i∈J0,N−1K along the r direction,
for which the cell-centered vector of conserved variables is written Ui, and N − 1 inter-
faces (Ij)j∈J1/2,N−1−1/2K between these cells. As in any Godunov approach, computing
the evolution of the fluid involves determining the fluxes at each interface by solving
a Riemann problem at a given time. The code is built on an Arbitrary Lagrangian-
Eulerian (ALE) approach where the interfaces are allowed to move at arbitrary velocity
(provided that it does not exceed the speed of light c). We set this velocity to the ve-
locity of the contact discontinuity in the Riemann fan at each interface. This makes
the code purely Lagrangian. The fluxes are then computed by solving the Riemann
problem in the frame of reference of the interface. We then transform these fluxes to
the lab frame before updating the cell averages.

We use a HLLC Riemann solver (Harten et al., 1983; Mignone & Bodo, 2006) and linear
spatial reconstruction with a minmod slope limiter. Time integration is done using a
third order Runge-Kutta prescription which has the advantage of being total variation
diminishing, with a Courant-Friedrich-Lewy condition of 0.2.

The moving-mesh approach introduces the need for re-gridding. Cells that become
too small will hinder computational efficiency by driving down the time-step, while we
might lose crucial resolution in other areas because of expanding cells. The former issue
is addressed by merging neighbouring cells while the latter is solved by splitting cells
following a linear interpolation with a minmod slope limiter to ensure conservation.
Re-gridding criteria are twofold: first, a maximum and minimum cell aspect ratio1

1The aspect ratio (a.r.) is the ratio of the spatial extent of the cell in the first dimension over the
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constrain resolution for a given radius (a cell gets refined when its aspect ratio exceeds
the upper bound, and de-refined when it drops below the lower bound); second, we
enforce boundaries on primitive variables spatial second derivatives in order to increase
the resolution of regions with small-scale variability. Mesh regularity is enforced by
splitting any cell becoming more than three times as big as one of its neighbours,
provided that the two previous criteria are respected. All these parameters can be
updated on the fly when experimenting with new setups, by taking advantage of the
code to start from any previous data dump. The re-gridding parameters we used in
our simulations are described in §3.2.2.

Computational efficiency in the GRB setup is further improved by introducing a moving
outer boundary traveling at the speed of light ahead of the forward shock. The right-
most cell CN−1 is split if ∆rN−1 > 2∆r0 × rN−1

rN−1(t=0) , thus resulting in a dynamically
produced logarithmic grid ahead of the FS.

We assess the code accuracy and stability on standard test setups for which we are
able to compute the exact solution and show that we achieve second order convergence
for smooth flows while conserving accurate shock descriptions and evolution. The tests
and the associated results are described in detail in appendix 3.7.1. As a result, we can
confidently use the results of the dynamical simulations in more elaborate cases.

The computation of radiative emission relies on shock detection in the dynamics of the
blast-wave. We choose to use a modified version of the shock detector used in LD18
based on the method introduced in Rezzolla et al. (2003a) and described in Zanotti
et al. (2010), that evaluates the nature of the waves in the Riemann fan for all interfaces
of the grid based on the calculation of limiting relative velocities ṽ12. These waves can
either be rarefaction waves or shocks. Physical shocks will be signaled by shocks waves
emerging from these interfaces with relative velocity v12 > ṽ12. In practice, we place
shocks at the locations of local maxima of S = v12 − ṽ12. This method, however, can
lead to the spurious detection of weak shocks. LD18 address this issue by smoothing S.
The intense re-gridding used in our approach introduces occasional additional spurious
variability in the value of S for which the smoothing approach is unsatisfying. However,
the 1D aspect of our simulation makes the implementation of the full method from
Rezzolla et al. (2003a) rather straightforward. This method, which we implemented
successfully, tightens the shock detection threshold by also taking into account the
limiting relative velocity corresponding to the 2-shock Riemann fan. The calculation of
the limiting relative velocities is described in appendix 3.7.2, along with the treatment

spatial extent in the second dimension (a.r. = dx/dy in cartesian coordinates (x, y, z), a.r. = dr/rdθ
in spherical coordinates (r, θ, ϕ)).
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of weak shocks.

3.2.2 Simulation setup

Our approach follows that of LD18, that we describe in this section before introducing
the improvements we carried out. We emulate the behavior of the central engine during
ejection by setting up a slab of ejecta, shortly after breakout, in which we set up a
variable initial radial velocity profile. We will consider a constant power of the central
engine during the ejection phase, meaning that faster material will also be more diffuse.
A gradual shutdown can then be represented by slower material towards the back of the
ejecta. The chaotic aspect of that shutdown is tackled by introducing non-monotone
radial variability of the velocity in this region of the fluid.

In this approach, the initial state is characterized by a cold ejecta with variable Lorentz
factor radial profile Γ(r). The total isotropic equivalent energy of the blast wave is set
to E = 1053 erg and the initial ejection happens between t0 = 0 s and tw = 100 s,
bringing the constant isotropic power of the ejection to Ė = 1051 erg.s−1. The ejecta
being cold, the thermal pressure p is set by η = p/ρc2 = 10−3, where the rest-mass
density profile is expressed as a function of Ė and Γ(r) as follows:

ρ(r) =
Ė

4πr2v(r)Γ2(r)c2
[
1 + η

(
γ
γ−1 − 1

Γ2(r)

)] , (3.5)

where v(r) is the velocity of the fluid.

Until the starting time of the dynamical simulation tini = 200s, the ejecta is assumed
to follow a ballistic evolution, allowing to compute the corresponding positions of the
external and internal edges of the ejected shell, respectively R0 and R∆ (with Lorentz
factors Γ0 and Γ∆)2, such that:

R0 =

(
1− 1

Γ2
0

)1/2

c(tini − t0), (3.6)

R∆ =

(
1− 1

Γ2
∆

)1/2

c(tini − tw − t0). (3.7)

Since Ė is set to a constant value and the ejecta is cold, the initial radial profile can
be fully described by a single physical quantity. Here we follow LD18 and set the value
of the Lorentz factor Γ(r). The shell will be characterized by an outer flat head region
with Lorentz factor Γ0 and a region of decreasing velocity (the tail region) all the way

2Careful, R∆ here should not be confused with the reverse shock crossing radius defined in §1.3.1.
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to engine shutdown at Lorentz factor Γ∆. The initial Lorentz factor profile is given by:

Γ(r) =



1 if 0 < r ≤ R∆,

[Γ∆ + (Γ0 − Γ∆)x][1 + f(x)] if R∆ < r ≤ rα,
Γ0 if rα < r ≤ R0,

1 if R0 < r,

(3.8)

with,

x =
r −R∆

rα −R∆
, (3.9)

where rα = R∆ + α(R0 − R∆) sets the limit between the head and tail regions of the
ejecta (α is the ratio of tail to head). f(x) is the profile of the perturbation responsible
for the stratification of the ejecta and emanating from a chaotic shutdown of the central
engine. In LD18, f is given by:

f(x) = A sin(2πx), A ∈ [0, 1], (3.10)

where A is the amplitude of the perturbation.

We run SRHD simulations for various values of A and α (reported in table 3.1), with
the corresponding profiles drawn in figure 3.1. These values are the same as in LD18
to allow for comparison. Run1 is a test of our setup for a canonical reverse shock (RS)
propagating inside a homogeneous shell of ejecta. Run2 simulates the propagation
of a long-lived RS (LLRS) with a significant "tail" in the ejecta, corresponding to
the gradual shutdown of the central engine. Run3 produces a flare as a result of its
non-monotonic tail (corresponding to non-monotonic central engine shutdown) that
produces stratification in the ejecta. The initial profile parameters are summarized in
table 4.4.

The grid has outflow boundary conditions on both sides. The choice of AMR criteria is
driven by both the need for high resolution downstream of the shocks, as we expect very
short synchrotron cooling timescales (see §3.4.1), and by the need for computational
efficiency. These criteria will be different for the ejecta, the external medium, and the
material behind the ejecta. For this reason we track different regions of the fluid using a
passive scalar. The upper and lower limits on aspect ratio for each part of the fluid are
reported in table 3.3. We find a good balance between FS resolution and efficiency for
a higher bound decreasing with r in the circumburst medium and adjust the power-law
index manually. We also add in this part of the flow a de-refinement criterion based
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Run α A Description
run1 0 0 homogeneous
run2 0.5 0 tail
run3 0.5 0.6 perturbed

Table 3.1: Run Parameters

Parameter Notation Value Unit
Injected kinetic power Ė 1051 erg/s
Burst Lorentz Factor Γ0 100
Tail Lorentz Factor Γ∆ 10
Burst starting time t0 0 s
Duration of ejection tw 100 s
Initial time of simulation tini 200 s
External medium number density n0 1 cm−3

Ratio between pressure p and ρc2 η 10−3

Table 3.2: Initial parameters

on the derivative of the synchrotron cooling rate downstream of the FS to improve
efficiency that we also adjust manually.

We run simulations starting with 1200 cells in the ejecta and 100 in the external
medium. Depending on the setup, the total number of cells at the end of the sim-
ulations is usually contained between 3000 and 5000.

3.3 Hydrodynamical evolution

In this section, we comment on the behavior of the fluid resulting from the various
setups we introduced. The results are in accordance with LD18 and we refer the reader
to this paper for a more detailed discussion of the dynamics.

The dynamical evolution of run1 ("homogeneous shell") is reported in fig. 3.2. In order
to make dynamical evolution figures more easily readable, we plot physical quantities
as a function of cumulated mass M defined as follows:

M(r) =
1

M0

∫ r

R∆

4πρΓ(r′)2dr′, (3.11)

Fluid material Lower bound Higher bound
ejecta 10−10 5× 10−4

circumburst medium 10−9 5× 10−5 × (r/R0)−0.1

Table 3.3: Adaptive mesh refinement aspect ratio criteria
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Figure 3.1: Schematic representation of the initial profile of the Lorentz factor Γ
as a function of the radius r. The solid blue line represents the pulse profile with
constant Γ throughout all the ejection. The dashed orange line represents the case
with a tail of Lorentz factor Γ (progressive shutdown of the central engine). The
dotted red line is the case with a non-monotonic progressive shutdown, expected
to lead to the formation of internal shocks in the tail.

where M0 is the initial total mass of the ejecta. As expected, one can observe the
formation of a reverse shock propagating leftwards in the fluid frame (blue curve at
1.5×105 s), with a crossing time of tcross < 3.50×106s. In their simulations, Lamberts
& Daigne were limited in the spatial scale they could cover and thus discarded the
tail of the ejecta as the shocked medium grew in mass so as to keep a constant total
simulated mass. Thanks to our numerical prescription, we are able to keep all the
initial material in the simulation. This additional material at the back of the ejecta
is responsible for the formation of a spurious internal reverse shock, visible here at
M ∼ 0.05, tlab = 5.15 × 106 s (green curve), after the external reverse shock has
crossed the ejecta. After deceleration, a forward shock starts to form ahead of the
ejecta (M > 1) as the blast wave sweeps up some circumburst medium material.

Fig. 3.3 shows the dynamical results for run2 ("decreasing tail"). The initial profile
of velocity increasing with r is responsible for the tail expanding, as is visible in the
density profile (lower pane) where the density decreases in the tail (M . 0.7) as the
blast wave moves to larger radii. This causes the RS to take longer to traverse the
ejecta, thus giving rise to a long-lived reverse shock. Indeed, the crossing time is
increased to tcross > 1.3× 107 s in this case, thus giving rise to a long-lived RS.

The results of run3 are shown in fig. 3.4. The important feature in this run is the
presence of a non-monotonic radial Lorentz factor profile in the tail of the ejecta, akin
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Figure 3.2: Lorentz factor (top) and density (bottom) as a function of cumula-
tive mass for run1 (homogeneous ejecta). Dashed vertical lines show the positions
of reverse shocks and dotted vertical lines the positions of forward shocks.
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Figure 3.3: Lorentz factor (top) and density (bottom) as a function of cumula-
tive mass for run2 (gradual shut down of the central engine leading to a region of
decreasing Lorentz factor at the back of the ejecta). Dashed vertical lines show
the positions of reverse shocks and dotted vertical lines the positions of forward
shocks.
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to the ballistic simulations of Hascoët et al. (2017), and run 4 in LD18. The faster ma-
terial at smaller radii eventually catches up with the slower material ahead, creating a
first internal forward shock / reverse shock system (IFS/IRS) that delimits the bound-
aries of a dense shell of ejecta, with significantly higher rest-mass density (dark blue
curve at tlab = 1.00 × 105 s). The shocked material displays a centered spike in den-
sity that delimits the position of the contact discontinuity between "forward-shocked"
and "reverse-shocked" material. This spike is not visible in the simulations of LD18,
probably because of a lack of sufficient resolution, and is the result of the compres-
sion of the fluid ahead of shock formation because of the smooth velocity gradient in
the initial setup. A similar feature has been predicted by numerical Lagrangian sim-
ulations and analytical calculations (Daigne & Mochkovitch, 2000; van Eerten, 2014a,
respectively) and we can recover it here thanks to the moving-mesh approach. As the
external RS enters the dense shell, it is partially reflected into a forward shock (light
green curve, tlab = 5.15×106 s) that eventually catches up with the external FS (yellow
curve, tlab = 5.59 × 106 s). As the RS progresses through the dense shell, it eventu-
ally interacts with the contact discontinuity density spike leading to the formation of
an additional reflected forward shock that will eventually catch up with the previous
one and strengthen it. We show however in §3.4.4 that this feature does not influence
the general shape of the light-curve and thus validate the results from LD18. Sub-
sequently, the RS keeps traveling through the dense shell until it eventually leaves it
before crossing the ejecta altogether for tcross > 1.3× 107 s.

All three setups display dynamical features similar to LD18, thus providing additional
support to the idea that flares can be produced from the interaction of a LLRS with
a stratified ejecta. §3.4 focuses on the radiative prescription necessary to produce
synthetic light-curves, and shows how run3 can be responsible for flaring behavior in
GRB afterglows, while providing a better understanding of the spectral evolution of
flares associated with this setup, thanks to the local cooling approach we implemented.

3.4 Emission - Flares from a LLRS in a stratified ejecta

3.4.1 Radiative prescription - local cooling

Afterglow emission can be modeled by synchrotron radiation from electrons accelerated
in shocks. In our situation, we can neglect self-absorption as we are only interested in
the X-ray and optical afterglow. We ignore inverse Compton scattering for the sake
of simplicity. We approximate the population of accelerated electrons by a truncated
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Figure 3.4: Lorentz factor (top) and density (bottom) as a function of cumu-
lative mass for run3 (chaotic shut down of the central engine leading to a region
of negative velocity gradient in the trail of the ejecta. Dashed vertical lines show
the positions of reverse shocks and dotted vertical lines the positions of forward
shocks.)
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power-law:

n′(γ′e) =

(γ′e)
−p if γm < γ′e < γM ,

0 otherwise,
(3.12)

with p = 2.3 and γm the energy of the bulk of the population, and γM the evolving
cut-off due to localised electron cooling, where the ′ notation denotes quantities in the
fluid frame. We consider that a fraction ζ = 0.1 of electrons present in the fluid are
accelerated by any shock and that a fraction εe = 0.1 of the internal energy density
e = ρε is transferred to these electrons. Similarly, a fraction εB = 0.1 of the internal
energy density powers the tangled magnetic field needed for synchrotron radiation. The
choice of ζ = 0.1 differs from the canonical ζ = 1 commonly used. However, since we
neglect in this work synchrotron self-absorption, as well as the limited contribution to
radiation from the thermalised non-accelerated electron population Ressler & Laskar
(2017), ζ is a degenerate parameter, meaning that identical results can be obtained
for a different value of ζ by adjusting Ė, n0, εe and εB (Eichler & Waxman, 2005).
Moreover, particle-in-cell simulations suggest that ζ is most likely closer to 0.01 than
unity (Spitkovsky, 2008). In the simulations presented later, ζ = 0.01 led to fast-
cooling spectra which made interpretation less straightforward and we chose ζ = 0.1

instead. Electron cooling is driven by the adiabatic expansion and synchrotron cooling
as shown by the following equation:

dγ′e
dt′

= −σT (B′)2

6πmec
(γ′e)

2 +
γ′e
3ρ

dρ

dt′
, (3.13)

with σT the Thomson cross-section, me the electron mass and B′ =
√

8πεBe the mag-
netic field intensity. γm and γM follow this evolution. Since, our setups involve fast-
cooling populations of electrons for which synchrotron losses need to be taken into
account, we cannot compute γm a posteriori and we apply the same method for the
calculation of the local evolution of γm and γM . Most works implement the global
cooling approximation (Granot & Sari, 2002; van Eerten et al., 2010a) that is based
on assumptions on the dynamics downstream of the shock, or assume a single uniform
electron population across the shocked fluid. The complex dynamics of our system
prevents us from using this approximation as some regions of the fluid will be shocked
multiple times. In their work, LD18 approximate the cooling frequency by assuming it
decreases with the dynamical timescale in the co-moving frame of the shocked region
which approximates the time since a fluid parcel has been shocked. Our improved
dynamical numerical scheme actually allows us to directly trace the local numerical
evolution of γm and γM , as long as we allow the resolution to increase sufficiently
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downstream of the shocks thanks to the compression of the mesh. Indeed, equation
4.17 can be rewritten in the following advection equation form (Downes et al., 2002;
van Eerten et al., 2010b):

∂

∂t

(
Γρ4/3

γ′e

)
+

∂

∂xi

(
Γρ4/3

γ′e
v

)
=

σT
6πmec

ρ4/3(B′)2. (3.14)

The two boundaries of the electron population are thus simply handled as tracers during
the hydrodynamical evolution. We reset their value every time a cell is shocked. In
theory, the value of γM directly downstream of a shock set by the acceleration timescale
and can be taken to be infinity for sufficiently large p. In practice, we set γM to 108

when crossed by a shock, such that the induced frequency cutoff for the radiation from
each individual shock is placed above 1keV in the observer frame. γm is initialised
by normalising the integrated energy of the electron population by the total available
energy.

The improved resolution downstream of the shocks, along with the fact that grid zones
are co-moving with the fluid lift the constraints linked to the very short cooling time of
the accelerated electrons and enables the implementation of local cooling with accurate
treatment of new source term on the right-hand side of eq. 4.18.

Figure 3.5 shows the values of γM as a function of M during the propagation of the
reverse shock in the ejecta for run3 (perturbed setup). To begin with, the profile shows
a complex pattern of multiple acceleration sites that cannot be modeled with a simple
analytical approach. Second, γM drops by several orders of magnitude over a very
small number of cells downstream of each shock formed in the setup. This highlights
the need for very high resolution, provided by the moving mesh, downstream of shocks
for accurate calculation of the evolution of γM . Additionally, because of this very steep
drop, the region contributing to X-ray emission downstream of the shocks is extremely
narrow, adding an additional constraint on resolution in order to reconstruct the light-
curve accurately. The region contributing to optical is wider, which is responsible for
a smoother variations of the flux than in X-ray.

Once the energy distribution of electrons is known, we can compute the spectral vol-
umetric emitted power P ′ν for any region of the flow downstream of a shock. Let
νsyn(γ′e) = 3qeB′

16mec
(γ′e)

2 be the frequency of the synchrotron radiation from a single elec-
tron with energy γ′emec

2 in the frame of the fluid, with qe the charge of the electron.
We can associate a synchrotron frequency to any γe such that ν ′m = νsyn(γ′m) and
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Figure 3.5: Snapshot of run3 at tlab = 1.60 × 106 s (top panel) and tlab =
9.75× 106 s (bottom panel) showing the Lorentz factor (red) and γM (green) as
a function of cumulative mass M . In this figure εB,FS = 0.1. The black (grey)
dashed line is the minimum value of γM for which the synchrotron emission
can contribute to X-rays (optical) in the observer frame. The bottom panel is
zoomed in on the external medium to show the discrepancy between dynamical
and synchrotron cooling timescale.
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ν ′M = νsyn(γ′M ). P ′ν is thus given by:

P ′ν =

P
′
ν,max

(
ν
ν′m

)1/3
, ν < ν′m,

P ′ν,max

(
ν
ν′m

)−(p−1)/2
, ν > ν′m,

(3.15)

with P ′ν,max =
4(p− 1)

3p− 1
× n′σT

4

3

B′

6π

16mec

3qe
. (3.16)

Above the maximum frequency ν ′M the emitted power follows an exponential cut-off.
We set P ′ν = 0 if ν > ν ′M for the sake of simplicity.

We then integrate this power over the whole fluid using equation:

F (ν, tobs) =
1 + z

2d2
L

∫ 1

−1
dµ

∫ ∞
0

r2dr
P ′ν′(r, tobs + rµ)

Γ2(1− βµ)2
. (3.17)

This integration assumes that the fluid is optically thin, a reasonable assumption above
radio frequencies. For every cell in the volume, and a given lab time, we compute the
arrival time for a redshift z = 1, where we place the observer along the axis of the
jet. The latter assumption allows to generalise the results to an observer within the
opening angle of the flow, with the only difference being the nature of the jet break
transition of the underlying non-flaring continuum. In practice, and since we only run
1D simulations, we divide the jet opening angle in 500 angular directions and compute
the arrival times and radiative contribution for each cell in each one of these directions.
The contributions from all cells for a given observer time bin are then summed to
build the light-curve. As a sanity check, We verify a posteriori that we have taken into
account the contributions from all the lab times corresponding to a given observer time
by plotting the contribution to the total final light-curve for every snapshot.

3.4.2 Synthetic light-curves and spectra

Figure 3.6 shows the spectral energy distribution (SED) for the forward and the re-
verse shock for run1 (homogeneous).The slopes are in good agreement with analytical
modeling of shock emission (Sari et al., 1998) and thus validate our radiative prescrip-
tion. The slight deviation for the slopes of the FS decreases with increasing resolution
downstream of the shock, at the expense of computational efficiency. We also con-
firm that the frequency cut-off resulting from our choice of initial value for γM is also
located above 1020 Hz for the FS and 1024 Hz for the RS. With observer time, this fre-
quency cut-off decreases but we check that it always remains above X-ray frequencies,
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Figure 3.6: Spectral energy distribution for run1 (homogeneous) for the FS
(orange) and the RS (blue). We fit each regime of these SEDs in log space and
report the slope with the dotted lines. The choice of γM directly downstream of
the shocks causes the numerical solution to deviate from the expected slope at
high energies beyond those that we model (shaded region).

confirming the validity of our approach for light-curve calculations at 1keV.

In figure 3.7 we show the X-ray light-curves at 1 keV obtained in the case of a spherical
outflow and isotropic local emission for run2 (tail) and run3 (non-monotonic). These
are in very good agreement with the results from LD18. The emission is computed
with the same value of εe = 0.1 and ζ = 0.1 in the FS and RS, but εB = 0.1 in the RS
and εB = 10−6 in the radiatively inefficient FS. We discuss in §3.4.4 the validity of the
choice of values for the FS. The lower emission at very early times compared to LD18
before 100 s in our simulations is due to our decision not to include the variable "head"
region that they use in their simulations, as it is not linked to the flaring phenomenon.
We obtain very similar results displaying a first spike at ∼ 160 seconds corresponding
to emission from the internal shocks as the dense shell is being formed (we do not
include prompt emission or a steep decay phase at this time in our synthetic light
curves. The visibility of this first spike would directly depend on the characteristics
of those features). Indeed, fig. 3.8 reports the contribution of all lab times to the
final light-curve and shows that all the radiation in this first spike is emitted mostly
between tlab ∼ 4 × 104 s and tlab ∼ 5 × 105 s, the time of the formation of the dense
shell in our dynamical simulations (recall fig. 3.4). The arrival time of this spike is
comparable to the time at which the corresponding emitting material was ejected by
the central engine in the lab frame, in the same fashion as the internal shock mechanism
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Figure 3.7: X-ray light-curves for the FS (orange) and RS (blue) at 1 keV for
run2 (gradual central engine shutdown) and run3 (chaotic central engine shut-
down) for a non-jetted outflow. The RS displays flaring behavior in run3 at
tobs ∼ 3× 103 s. The FS shows a rebrightening at similar times, due to refueling
by reflected forward shocks. The spike in the RS at tobs ∼ 160s is associated with
the internal shocks and akin to prompt emission mechanisms.

invoked for burst emission (Rees & Mészáros, 2000; Zhang & Meszaros, 2002). A second
bump is visible in the light curve at tobs ∼ 3 × 103 s and corresponds to increased
emission from the RS as it traverses the dense shell. Again, this is highlighted by the
contributions map showing that this radiation is now only produced at very late lab
times corresponding to the RS crossing the dense region. This emission will be able to
peak above a radiatively inefficient FS in a flare-like manner. Allowing the microphysics
to differ in the ejecta and the external medium thus makes it possible for flares to have
a RS origin. The FS emission eventually displays a rebrightening occurring just after
the flare. This rebrightening is expected as a consequence of the reflected FS formed
by the interaction of the RS with the dense layer and is stronger in our simulations
than in that of LD18 because of the second forward reflected shock. However, we will
see in §3.4.3 that the rebrightening actually completely disappears when taking into
account the constraints on flare timescale in jet setups with an angular patch, side-
stepping the potential shortcoming of this scenario that would have associated flares
with rebrightenings in GRB afterglows.

Thanks to our emission calculation prescription, we are able to produce accurate syn-
thetic broadband SED for the afterglow emission. Figure 3.9 shows the FS and RS
spectra for run2 (tail) and run3 (non-monotonic). As expected for early times, we
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Figure 3.8: Normalised contribution of every data dump to the light curve for
run3. The light-curve is simply the stack of all these contributions.

Figure 3.9: Spectral energy distribution for run2 and run3 at the time of the
flare tobs = 4× 103 s. In this figure, εB,RS = 0.1 and εB,FS = 10−6. Careful, the
scale in the horizontal axis has been changed from figure 3.6. The vertical lines
show the approximate positions of the cooling break in both cases. We can see
that this characteristic cooling frequency increases from run2 to run3.
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get a harder spectrum for the FS than for the RS, with a dominating RS at low fre-
quencies. From these SEDs, we can see that the emission increases for all frequencies
in the RS at the time of the flare. However, the cooling break also increases from
νc,run2 ∼ 6 × 1015 Hz to νc,run3 ∼ 3 × 1016 Hz. As a result, the relative flux change
in optical is smaller than the change in X-ray, as optical frequencies are placed below
the cooling break, and X-ray above. Depending on how radiatively efficient the FS
is, it could allow the flare to dominate in X-ray, but not in optical, as suggested by
observations. Finally, it appears that the rebrightening FS in X-ray is linked to a sec-
ond radiating component with a very high cooling frequency. However, as mentioned
before, we will show later that this emission can be totally suppressed if the dynamical
perturbation is constrained to a small opening angle.

3.4.3 Short flares from a localised angular emission region

As mentioned in LD18 and shown in the previous section, the timescale of this flare
is longer than observed, with ∆tflare/tflare ∼ 1 instead of the ∆tflare/tflare ∼ 0.1 − 0.3

reported by Chincarini et al. (2010). LD18 choose to invoke anisotropy of the emission
in the co-moving frame in order to reconcile simulations with observations, essentially
limiting the emission to a smaller solid angle. However, this constraint could very well
be produced by the geometry of the jet itself. We present here a different approach
that avoids having to introduce additional constraints on the microphysics of emission.
Here, the short timescale of flares translates into constraints on the spatial extent of
the emitting region. In the late activity of the central engine scenario, this constraint
is satisfied as the emission is taking place at very small radii close to the remnant, such
that the timescale of the flare is directly proportional to the variability timescale of
the activity of the central engine. As a result, it is possible to reach the small values
of ∆tflare/tflare observed rather easily, but it is more difficult to justify the ad hoc
requirement of an evolving timescale for the central engine activity (Kobayashi et al.,
2007). In the reverse shock scenario, the criterion on spatial extent can be fulfilled
in the angular direction. The variability of the initial ejection can leave an imprint
on the radial as well as the angular velocity profile of the ejecta. In this situation,
an over-dense region of material could form only in a "filament" of ejecta in a small
angular region, with which the RS would eventually interact.

We investigate this possibility by limiting the perturbed dynamical setup to a small
angular region at the initial state. The angular setup is described in figure 3.10. We
expect this setup to allow the cooling timescale to dominate the flare decay time,
suppressing the curvature effect. We show that the reverse shock scenario can produce
flares in filaments away from the line of sight as well as on the line of sight, before
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Figure 3.10: Schematic representation of the angular setup for the jet viewed
on-axis. The shaded region represents the non-perturbed dynamics, whereas the
white region corresponds to the perturbed "filament" responsible for the flare.

focusing on flaring behavior aligned with the observer.

In practice, we use the dynamics results of run2 and run3 and assign them to different
angles in the light-curve and spectral reconstruction, to form a non-perturbed (NP)
and a perturbed (P) region, respectively. Later in this work, we will assign different
dynamics outputs to the P region and will refer to the integrated light-curve and
spectra over P and NP by the name of that dynamical output (since NP is unchanged
and remains run2). In the on-axis (θc = 0) case, the dynamics D(θ) eventually come
down to:

D(θ) =

DP, 0 ≤ θ < ∆θc

DNP, ∆θc ≤ θ < θjet

, (3.18)

with ∆θc the opening angle of the P region and θjet the jet opening angle. As a first
approach, and provided that ∆θc is sufficiently large, we can thus limit ourselves to
post-processing of 1D dynamical simulations as we expect the P region to be non-
causal at least until the reverse shock has crossed the dense shell. The NP region
that constitutes the bulk of the jet is also non-causal as we model its evolution pre-jet
break. From these considerations on the validity of our setup, we extract the following
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constraints:

∆θc & 0.01 rad, (3.19)

θjet . 0.1 rad. (3.20)

In the results presented in fig. 3.11, we chose ∆θc = 0.015 and θjet = 0.1. The value
of θjet corresponds to a canonical observed jet opening angle (Ryan et al., 2015). As
expected, we observe a decrease of the flare decay time, in better accordance with
observations. We can then empirically derive a final constraint on ∆θc corresponding
to the maximum value it can take in order to retrieve the flare timescales measured
from observations. From our simulations, we record that ∆tflare/tflare starts increasing
for ∆θc & 0.01 rad, which actually corresponds to the maximum expected size for the
patches allowed by transverse causal contact 1/Γ. This limit supports the validity of
our scenario since flares with longer timescales than that observed can’t actually be
produced.

Fig. 3.12 also shows that this setup can produce X-ray flares with perturbations away
from the line of sight, as visible when offsetting the P region by an angle θc = 0.02.
Due to curvature effects, the timescale of the flare increases when moved to higher
angles. However, the flux of the the flare also decreases in that case due to simple
Doppler beaming effects. As the flare coming from the RS needs to peak above the FS
emission, this latter effect is also responsible for a decrease in timescale. It also means
that perturbations away from the line of sight will sometimes not give rise to flares at
all, causing concerns about the timescales of flaring behavior to be irrelevant in these
directions. Additionally, this effect can be responsible for the large scatter in ∆F/F

measured in observations (Chincarini et al., 2010; Margutti et al., 2011).

Figure 3.13 shows the contributions of the P and NP regions to the spectral energy
distribution for the case aligned with the observer at the time of the flare. Just like in
the spherical blast-wave case (fig. 3.9), the X-ray flare is due to an increase in both the
peak frequency and the cooling frequency in the radiation from the P component. The
significant increase in the cooling frequency in the P component is responsible for a
stronger flare signature above the cooling break. This is responsible for the flare being
much smaller in optical than in X-ray.

3.4.4 Evolution and influence of the shocked external medium

We presented here the first set of simulations with a realistic treatment of the external
medium density for n0 = 1 cm−3. Even though the RS is weaker than for larger
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Figure 3.11: X-ray light-curves (black, blue, orange) at 1keV and optical light-
curve (green) for a jet perturbed in an angular patch (θjet = 0.1 rad, θc = 0,
∆θc = 0.015 rad, black solid curve) and for a non-perturbed jet (black dashed
curve). The blue dashed and dot-dashed curves are the contributions to the RS
from the NP and P regions respectively. The solid green curve is the optical light-
curve for the flaring setup. The timescale of the flare is significantly reduced in
comparison with globally perturbed setups.

Figure 3.12: X-ray light-curves at 1keV for a jet with a perturbed angular patch
away from the line of sight (θjet = 0.1 rad, θc = 0.02, ∆θc = 0.03 rad, blue solid
curve).
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Figure 3.13: Simulated RS spectra at the flaring observer time tobs = 2500s
for the flaring (solid black line) and non-flaring (solid red line). The dotted and
dash-dotted blue lines show the contributions of the P and NP regions to the
total RS spectrum in the flaring setup.

values of n0, these simulations first show that the setup still produces flares for a more
diffuse external environment and is not dependent on the very high density of previous
simulations. Moreover, the lower density causes the reverse shock to form later in the
lab frame, causing the flares to appear later in the observer frame. This is a first
encouraging result towards the ability of this setup to produce late flares. We study
late flares in more detail in §3.4.5

Flares can peak over the FS thanks to the difference in radiative efficiency between
the ejecta and the external medium. In our simulations, we chose εB,RS = 0.1 and
εB,FS = 10−6. Even though a change in the value of εe would yield the same result,
the constraints are more stringent on this parameter with εe ∼ 0.13− 0.15 (Beniamini
& van der Horst, 2017). On the contrary, Santana et al. (2014) measure a wide scatter
of εB ∼ 10−8 − 10−3 in the FS, with a median for εB ∼ 10−5. This coincides with
our choice of value of εB. The discrepancy in the values of εB between the FS and
the RS could be explained by a difference in the intensity of the seed magnetic field
eventually ccmpressed in the shock, where the ejecta may be more magnetised than
the circumburst medium.

As mentioned in the previous section, the interaction of the RS with the dense region
in the tail of the ejecta is responsible for a rebrightening in the FS at the observer time
of the flare. As it turns out, and is shown in fig. 3.11, the rebrightening is strongly
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suppressed when constraining the perturbation to a small angular region, for various
reasons. First, the increased emission now comes from a smaller region, causing the
total flux to be lower. Second, the region being narrow, the rebrightening is only visible
while the beaming angle is smaller than the perturbed region opening angle. When
this is not the case anymore, a break in the contribution of the perturbed region to the
light-curve causes its emission to drop below the underlying non-perturbed jet emission.

The fact that the rebrightening disappears in the case of a narrow emitting region
supports the validity of our setup, as it would otherwise imply that all flares have to
be associated with a subsequent rebrightening.

3.4.5 Late flares

The currently accepted paradigm for X-ray flares in GRB light curves invokes late
activity of the central engine, either from late-time fallback accretion, or from energy
injection from a NS remnant. Various works have shown the ability of this model
to reproduce the observed flare properties. However, a significant number of GRBs
display flares at times as late as 105s after the burst (Burrows et al., 2005b). The
scenario involving late activity of the central engine runs into a limitation there as the
timescale on which the flare shows in observer time is equal to that over which the
central engine reactivates. This puts severe constraints on the nature and stability of
the remnant. Piro et al. (2019) show a rebrightening around 160 days at 3.2σ in the
X-rays relative to the underlying broadband continuum for the famous gravitational
counterpart afterglow of GRB170817A (the significance decreases to 2.8σ if the X-rays
are analysed in isolation (Piro et al., 2019; Hajela et al., 2019)). They suggest energy
injection from a hypermassive NS, which further emphasizes the need for an explanation
for flares at very late time that does not rely on assumptions about the nature of the
remnant. In this section, we show how a LLRS can be responsible for flares at early
and late times.

We investigate how our setup can reproduce flares at later times by modifying the
previous dynamical setup as follows: The radial Lorentz factor profile still displays a
flat head region, followed by a smoothly decreasing region corresponding to gradual
shutdown of the central engine. The chaotic shutdown of the engine is now modeled
by a Gaussian profile added to the gradual shutdown. This is done by replacing f(x)

in eq. 3.8 by g(x) such that:

g(x) = Ae

(
x−x0
σ0

)2

. (3.21)
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Run A x0 σ0 Description
run4 8 0.01 0.005 early bump
run5 8 0.001 0.005 late bump

Table 3.4: Run Parameters for late flare setups.

Figure 3.14: Initial Lorentz factor radial profile for run4 and run5. The gaussian
bump is moved further at towards the back of the ejecta in comparison to the
oscillation visible in run3.

This bump can be moved left or right to model earlier or later ejection times by changing
the value of x0 ∈ [0, 1], with σ0 controlling the width of the bump. The Lorentz
factor initial radial profiles are shown in fig. 3.14 and the corresponding parameters
are reported in table 3.4. A and σ0 are kept the same in both run so as to investigate
whether x0 would have an influence on its own on ∆F/F for the produced X-ray flare.
The strength of this approach lies in that the shell still has the same width of 100 light-
seconds. The late variability in the afterglow can then be imprinted onto the dynamics
at the time of the ejection and does not rely on late activity of the central engine.

The dynamics are very similar to the dynamics described in §3.3 and are shown in figures
3.15 and 3.16. As in previous simulations, the region of negative velocity gradient in the
tail leads to the formation of a dense region of ejecta surrounded by two internal shocks.
Again, the RS emission is powered up as it traverses this shell and is responsible for a
flare. Fig. 3.17 shows the synthetic X-ray light-curves for this setup for various values of
x0. As expected smaller values of x0 lead to later peak times of the produced flares. The
significant result of these simulations is that the timescale ratio of the flares remains the
same, independent of the value of x0, showing that the cooling timescale remains the
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Figure 3.15: Lorentz factor (top) and density (bottom) as a function of cumu-
lative mass for run4 (chaotic shut down of the central engine leading to a region
of negative velocity gradient in the trail of the ejecta. Dashed vertical lines show
the positions of reverse shocks and dotted vertical lines the positions of forward
shocks.)
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Figure 3.16: Lorentz factor (top) and density (bottom) as a function of cumu-
lative mass for run5 (chaotic shut down of the central engine leading to a region
of negative velocity gradient in the trail of the ejecta. Dashed vertical lines show
the positions of reverse shocks and dotted vertical lines the positions of forward
shocks.)
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Figure 3.17: X-ray light-curves for run3, run4, run5. The flare moves to later
observer times as non-monotonic region of velocity is moved further at the back
of the ejecta.

same regardless of the arrival time of the flare, making the reverse-shock scenario for
flares all the more robust. Another striking feature is that the flux variability ∆F/F is
the same for run4 and run5, for flares occurring at different times, in accordance with
observations. This suggests that it is possible to produce flares up to an arbitrarily
long time after the burst if one considers a gradual shutdown of the central engine all
the way to Lorentz factors of order unity, over a timescale consistent with a short-lived
central engine, while still fulfilling the flux variability and flare timescale requirements.

3.5 Discussion

We demonstrated the ability of the RS to produce flares at both early and late times as
it interacts with a dense region in the ejecta created by the non-monotonic initial radial
velocity profile. These flares can arise both in a direction aligned and non-aligned with
the line of sight and satisfy the timescale constraints given by observations provided
that the region producing them is narrow enough. However, some aspects remain to
be investigated.

3.5.1 Limitations to dynamical simulations

Even though we offer significant improvement over previous studies thanks to the mov-
ing mesh approach, both in terms of efficiency and accuracy, because we are able to run
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more simulations with a wider range of more realistic parameters, our description of the
dynamics still relies on a number of simplifying hypotheses. First, we are running 1D-
simulations that ignore all lateral motion. This is a good approximation at early times
as the jet is non-causal but becomes less valid as the blast-wave decelerates at later
times, leading to spreading and growing shear-driven lateral instabilities. However,
since we are mostly interested in the dynamics of the reverse shock at Lorentz factors
of a few tens, 1D simulations remain a good approximation all the way to crossing
time. Still, given the complexity of the dynamics involved, and the need to introduce
angular structure to explain the observed timescale for flares, we expect that this study
will benefit from comparison with 2D simulations in the future.

Second, we neglect in these simulations the dynamical effect of potential magnetic fields
and assume a low magnetisation of the ejecta. At late stages following launching, mag-
netic fields are not expected to be dynamically dominant (see e.g. Granot et al., 2015,
for a recent review). We consider residual magnetic fields that are small enough such
that they do not influence the strength of the reverse shock, as a strong magnetisa-
tion would hinder the propagation of the RS, making this scenario unviable (Giannios
et al., 2008; Mimica et al., 2009). While the observation of reverse shock signatures
(the optical flash (e.g. Akerlof et al., 1999) and radio flare (e.g. Frail et al., 2000)) in
several afterglows, as well as low polarisation upper limits and detections (e.g. Mundell
et al., 2007; Laskar et al., 2019) are in favour of our assumption, other detections of
more strongly linearly polarised reverse shocks (Mundell et al., 2013) show that low
magnetisation cannot always be assumed. Measured polarisation is also strongly de-
pendent on the spatial scale of the ordering of the magnetic field, and low polarisation
does not necessarily entail low magnetisation. Future work could include investigating
whether flares appear in highly polarised afterglows.

3.5.2 Validity of the flaring setup

Some aspects of our setup itself still need to be investigated. To begin with, the
flux variability of the flares is loosely constrained, for two main reasons. First, the flux
variation is a measurement of how high the flare from the RS can peak over the FS. This
is directly driven by the ratio in radiative efficiency between the FS and the RS, decided
by the values of εe and εB in the FS, and the RS respectively. The timescale ∆tobs/tobs

of the flare also depends on this ratio, as a better radiative efficiency of the FS will cause
a shorter ∆tobs. Improving the constraints on the microphysics of emission in the ejecta
and the circumburst medium constitutes a crucial step towards validating the approach
presented here. Moreover, this dependency on the relative radiative efficiency between
FS and RS could cause flares to be more frequent in dimmer afterglows with this model.
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It would be interesting to investigate whether such corelation exists in observations.
This effect could however be cancelled out by potential correlation between intrinsic
GRB energy and the level of variability observed in the ejecta dynamics.

Second, the scope of this article focuses on cases in which the jet axis is aligned with the
line of sight. We observe that, even though perturbations away from the line of sight
give rise to flares with longer timescales than aligned perturbations, they also display
smaller peak fluxes simply because of Doppler beaming effects. This gives rise to a range
of values for ∆F/F for patches at arbitrary angles and can actually completely suppress
the flare for high angles as the flux variability from the RS becomes unable to peak
above the FS emission. As a result, we expect to mostly be seeing flares coming from
perturbations aligned with the line of sight. More evidence is also being accumulated
in favor of structured jets (e.g. Abbott et al., 2017b; Troja et al., 2017; Kasliwal et al.,
2017; Kathirgamaraju et al., 2017; Lazzati & Perna, 2019; Troja et al., 2019) with less
energetic sides and domination by the central material, further advocating for more
variability coming from the central region. These aspects in turn favour the associated
values of ∆tobs/tobs ∼ 0.1− 0.3 corresponding to observations.

These flares however can only fulfill the timescale requirements if the perturbed region
remains sufficiently narrow. We observe that longer flares arise if the curvature effect
starts to dominate the decay time, which can happen in the perturbed region becomes
too wide. We find empirically that the timescale starts to increase for ∆θc & 0.01 rad.
Actually, this constraint corresponds to the value of 1/Γ for Γ = 100 and is the expected
size of angular perturbations due to transverse causal contact across the ejecta. As a
result, we do not expect to see these longer flares, in accordance again with observations.
This proves the robustness of this mechanism which does not rely on fine-tuning of the
angle, nor the size of the patch in order to produce flares with the correct timescale,
arrival time and flux variability.

Finally, this mechanism relies on the formation of a dense shell associated with radiating
internal shocks in the ejecta, responsible for a first spike in the X-ray light-curve. One
might wonder whether these internal shocks can directly contribute in gamma-rays.
We do not expect that this is the case as the Lorentz factors involved in the tail of
the ejecta are too small to shield the corresponding radiation from γγ annihilation.
As a result, we expect these spikes not to be detectable in the prompt phase and to
be only visible in cases where X-ray observations start very early, for which they can
be interpreted as late prompt emission or early flares (such as some sometimes seen
during the early steep decay phase). Our afterglow model thus does not depend on any
prompt mechanism but merely requires the launch of a relativistic ejecta.
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3.6 Conclusions

In this paper, we present one-dimensional SRHD numerical simulations of GRB after-
glow blast waves. These simulations are carried out using our new moving-mesh code,
improving both resolution and efficiency. We apply them to a novel scenario (Hascoët
et al., 2017; Lamberts & Daigne, 2018) for the origin of flares in the X-ray afterglow
that involves the interaction of a long-lived reverse shock with a stratified ejecta. We
implement numerical tracing of the boundaries of the local particle population and
present the first broadband study of such scenario.

By exploring a larger parameter space than previous works, and by considering a more
realistic description of the circumburst medium density, we are able to confirm that
a chaotic shutdown of the central engine produces X-ray flares in the afterglow at an
arbitrary long time after the burst.

In order to do so, the initial dynamics of the ejecta must include the following features:

• A region (tail) of decreasing velocity as we move further towards the back of
the ejecta, responsible for its expansion at it travels outwards, and delaying the
interaction of a reverse shock with potential embedded features.

• Variations of the Lorentz factor in the tail. Each region of negative velocity
gradient in this tail will be responsible for the formation of a dense shell as the
faster material catches up with the slower material ahead, and later a flare when
it is crossed by the RS. The number of flares in a single afterglow depends on the
variability in the tail.

This model also relies on the assumption that the radiative efficiency of the forward
shock needs to be smaller than that of the reverse shock, by means of a smaller value
of εB, such that flares from the RS can peak over the FS emission. Depending on the
variability of the tail and the ratio of radiative efficiencies, a fraction of weak flares
might go undetected.

The light curve displays two new features in comparison with a uniform profile. First, a
spike is produced by the internal shocks at early times, reminiscent of the mechanisms
involved for prompt emission. The second feature is the result of the interaction of the
RS with the dense region. The peak frequency and the cooling break of the RS both
increase, leading to a flare in X-ray and a smaller bump in optical.

In order to retrieve the timescale flares expected from observations, we constrain the
perturbation responsible for the flaring behavior to a small angular patch and show
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that the width of this patch actually naturally falls below the expected size derived by
causal contact arguments as the cooling timescale needs to dominate over the curvature
effect.

We show that this model produces flares at an arbitrarily long time after the burst
if the perturbation in the gradual engine shutdown happens just before the complete
end of its activity. This delays the interaction of the reverse shock with the resulting
dense shell and produces flares with the same timescale and flux variability, but at later
times.

Eventually, our moving mesh approach to the simulation of the dynamics is sufficiently
efficient that we can expect to carry out additional simulations in a relatively short
amount of time. Moving to two dimension would allow us to simulate the dynamics
past jet spreading, and to study the link between flaring behavior and late evolution
of the afterglow light-curve.

3.7 Article appendix

3.7.1 Code validation

First, the stability and accuracy of the code are tested on standard shock-tube setups.
Fig. 3.18 shows an example in cartesian coordinates in which the numerical solution is
able to resolve the shock fronts and the constact discontinuity with high precision. The
spike at the contact discontinuity is a resolution-dependent numerical oscillation linked
to the initial transient state and is different from the physical density spike described
in §3.3. Fig. 3.19 shows an example in spherical coordinates in which the numerical
evolution is in good agreement with the exact solution. We tested the code on several
other shock-tube setups that all yeilded satisfying results but are not reported here.

We assess the accuracy of our code for smooth parts of the flow by testing the evolution
of an isentropic wave in cartesian coordinates, following the setup presented in Zhang
& MacFadyen (2006) and find that our code achieve the expected second order con-
vergence in these cases, as is shown in figures 3.20 and 3.21. Further testing is carried
out by reproducing the Blandford-McKee (BM) setup (Blandford & McKee, 1976) akin
to the propagation of a spherically symmetric relativistic blast-wave in the ISM. The
results are shown in fig. 3.22 and show again that the code behaves as expected, even
at significantly high Lorentz factors and with realistic values of circumburst medium
number density n0 = 1 cm−3.
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Figure 3.18: Shock tube in cartesian coordinates.
t = 0.6. Initial discontinuity at x = 0.25. Left
state: ρ = 0.1, p = 1, v = 0.99 × c. Right state:
ρ = 1, p = 1, v = 0. Initial resolution is 200 cells.

Figure 3.19: Shock tube in spherical coordinates.
t = 0.3. Initial discontinuity at x = 0.25. Left
state: ρ = 1, p = 1, v = 0. Right state: ρ = 0.1,
p = 0.1, v = 0. Initial resolution is 200 cells.
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Figure 3.20: Isentropic wave test output for
primitive variables. We plot the initial (left wave)
and final state (right wave) on the same graph here.
The numerical results at t=0.8 (blue crosses) are in
very good agreement with the exact solution (black
solid curve).

Figure 3.21: Convergence rate and L1 error for
the isentropic wave test.

Figure 3.22: Validation of the moving-mesh code
against the Blandford-McKee analytical evolution
of a spherical blast-wave (Eiso = 1053 erg, n0 =
1 cm−3). Here we show the normalized density and
Lorentz factor as a function of radius at the deceler-
ation time. Then numerical solution (blue and red
dots) is in very good agreement with the analytical
Blandford-Mckee solution (solid black curve).
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3.7.2 Shock detection algorithm

Shock detection methods usually rely on measuring gradients in the fluid state. How-
ever, these methods are only efficient for strong shocks and often fail to detect internal
shock in our setups (Lamberts & Daigne, 2018). As a result, we follow the more robust
method introduced in Rezzolla et al. (2003a) and described in Zanotti et al. (2010),
that evaluates nature of the waves in the Riemann fan for all interfaces of the grid
based on the calculation of limiting relative velocities. Indeed, in the absence of a mag-
netic field, a discontinuity between two regions of fluid with different thermodynamical
values will decay into two waves propagating on both sides of a contact discontinuity
(jump in density). These waves can either be rarefaction waves or shocks. As described
above, we use this behavior to compute the dynamical evolution of our fluid by solving
the Riemann problem at every interface between the cells of our grid. We can simply
detect the shocks in our fluid by checking whether the wave pattern at each of these in-
terfaces will contain a shock or not. A shock will appear if the relative velocity between
neighbouring cells exceeds a threshold dependent on the fluid states.

The 1D aspect of our simulations allows us to compute the limiting relative velocities
of each case of the Riemann problem rather efficiently. We report here the procedure
presented in Rezzolla et al. (2003a) to compute the limiting relative velocity in the
Shock-Rarefaction (SR) and 2-Shock (2S) cases.

One Shock - One Rarefaction wave case (1R←3C3′S→2)
The Riemann fan produced at the interface between two neigbouring cells will contain
at least a shock if the relative velocity between these cells v12 is greater than a limiting
velocity (ṽ12)SR given by

(ṽ12)SR =
1−A+(p3)

1 +A+(p3)

∣∣∣∣
p3=p2

, (3.22)

with

A+(p3) ≡
[(

(γ − 1)1/2 − cs(p3)

(γ − 1)1/2 + cs(p3)

)(
(γ − 1)1/2 + cs(p1)

(γ − 1)1/2 − cs(p1)

)]2/(γ−1)1/2

, (3.23)

with cs(pi) the sound speed in region i.

A very straightforward shock detection method would consist in comparing the relative
velocities and limiting relative velocities at each interface, flagging a shock if:

v12 > (ṽ12)SR. (3.24)
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However, this method detects shocks of any strength, and we are only interested in the
strongest shocks responsible for particle acceleration. A nice workaround involves the
calculation of the limiting relative velocities in the 2S case.

Two-shock case (1S←3C3′S→2)
The fan will display two shocks if:

v12 > (ṽ12)2S =

√
(p1 − p2)(ê− e2)

(ê+ p2)(e2 + p1)
, (3.25)

with

ê = ĥ
γp1

(γ − 1)(ĥ− 1)
− p1, (3.26)

where ĥ is the only positive root of the Taub adiabat (Taub, 1948). In order to relax the
our shock-detection criterion, we set the threshold for shock detection to a intermediate
value between both relative velocity limits:

(ṽ12) = (ṽ12)SR + χ[(ṽ12)2S − (ṽ12)SR], (3.27)

where the value of χ is arbitrarily chosen between 0 and 1. In our simulations, choosing
χ = 0.1 gives satisfying results.
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3.8 Additional information

3.8.1 Implementation specifics

The code is implemented in C/C++ with an object oriented approach. It makes use
of the GNU scientific library for root finding operations. Data inputs and outputs are
structured using HDF5. The code can restart from any outputed snapshot in order for
the user to resume computation if stopped too early. This also allows users to adjust
numerical ad hoc parameters during simulations. The calculation is parallelised with a
shared memory approach using OpenMP.

The code is one-dimensional but includes solvers in cartesian, cylindrical and spherical
coordinates. The Riemann solvers implemented are HLL and HLLC with the possibility
to set up criteria on the choice of solver at runtime. Shock detection and particle
injection and cooling can be turned on or off. To compute synthetic light curves and
spectra from dynamical snapshots, the radiative calculation module can be compiled
from the same source as the dynamical simulation code as a lot of their functions
overlap.

3.8.2 Flux integration

As explained in §2.4.3, there are two approaches to computing the observed flux at a
given observer time tobs. Contrary to the linear radiative transfer method described in
chapter 2, the method used in this chapter consists in summing the contribution of the
cells from each snapshot to each observer time considered in the calculation of the light
curve. This approach obviously relies on the assumption that the medium is optically
thin, which is the case above radio frequencies. For a given observer frequency νobs,
the calculation is done as follows:

1. We split the observer time range in a series of bins in log space.

2. For each snapshot, we compute the arrival time for each cell. Each cell is thus
attributed a bin to which it will contribute.

3. We compute the emissivity in each of these cells at the frequency corresponding
to the observer frequency but in the frame co-moving with the fluid. This relies
on our knowledge of the local micro-physical quantities.

4. The contribution of the cell to its associated bin is a function of the cell position,
velocity and the time between data dumps. To simplify the calculation, for each
snapshot at lab time td we assume that each cell contributes up to the following
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data dump at td+1 and integrate the power over ∆td = (td+1 − td). With this
approach, the contribution to the light curve is:

∆Fcell(ν, tobs) =
1 + z

2d2
L

× P ′ν′ |cell

Γ2(1− βµ)2
×∆µ r2∆r

∆td
∆tobs

, (3.28)

where ∆r and ∆µ are the radial and polar extent of the cell, and ∆tobs the
observer time bin size.

This approach forces us to arbitrarily declare a bin size even when computing spectral
energy distributions. However, it allows us to create maps of light-curve contribution
and identify the various emission sites. An example of how these contribution maps
can be used is shown in figure 3.8 in which we plot the integrated contribution from
each snapshot to the total light-curve, allowing us to connect features in observer time
with events in lab time. These steps were implemented in a module added to the
one-dimensional hydrodynamics code which can be called after the dynamics run to
compute light curves or SEDs for any combination of parameters.

General conclusion

In this chapter, we have shown the importance of accurately capturing the dynamics and
emission from relativistic astrophysical transients in order to better understand their
complex features. Using the improved dynamical and radiative simulation tools I de-
veloped, we showed that the flaring mechanism involving the interaction of a long-lived
reverse shock with a stratified ejecta naturally reproduces observed flare characteris-
tics in the whole range of values covered by their observables. This result came from
our ability to run more simulations thanks to the increased computational efficiency
from the moving mesh. Comparison between x-ray and optical bands was only possible
thanks to the local cooling.

Overall, this project highlights the benefits of the methods described in chapter 2 even
when constraining them to a simple 1D approach. The important results obtained
provide backing the idea of applying such methods to full multi-dimensional simulations
in order for us to learn about the full trans-relativistic radiative evolution of the blast
wave, which I develop in chapter 4. While chapter 3 how local cooling helped in
identifying multiple emission sites, the next chapter will show how crucial an accurate
description of synchrotron cooling is in order to conduct broadband analysis of non-
thermal emission from relativistic transients.
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Preamble

Following the first results obtained from 1D simulations on GRB afterglow phenomenol-
ogy, we carry out a full implementation of the code in multi-dimensions. The paper
reported in this chapter presents the full description of this new code, GAMMA, in the
context of the study of the full GRB afterglow blast-wave evolution. As later shown in
this chapter, GRB afterglows in the trans-relativistic regime are an inherently multi-
dimensional phenomena, with crucial features in the light curve directly depending on
our ability to accurately capture the transverse jet evolution.

Just like in chapter 3, I report the contents of the paper as submitted for publication.
This means that this chapter is self-contained and can be read independently from the
rest of the thesis. Some repetition of the introductory concepts from chapter 2 can be
found in §4.2.1 and §4.2.2 (dynamics), and in §4.4.1 and §4.4.2 (radiation). Additional
information not included in the submitted paper is reported in §4.7. §4.7.2 summarises
the results introduced in this chapter in the general context of the thesis.
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Abstract

In recent years, dynamical relativistic jet simulation techniques have progressed to
a point where it is becoming possible to fully numerically resolve gamma-ray burst
(GRB) blast-wave evolution across scales. However, the modeling of emission is cur-
rently lagging behind and limits our efforts to fully interpret the physics of GRBs. In
this work we combine recent developments in moving-mesh relativistic dynamics with
a local treatment of non-thermal emission in a new code: GAMMA. The code involves an
arbitrary Lagrangian-Eulerian approach only in the dominant direction of fluid motion
which avoids mesh entanglement and associated computational costs. Shock detec-
tion, particle injection and local calculation of particle evolution including radiative
cooling are done at runtime. The dynamical evolution is adiabatic. Even though
GAMMA has been designed with GRB physics applications in mind, it is modular such
that new solvers and geometries can be implemented easily with a wide range of po-
tential applications. In this paper, we demonstrate the validity of our approach and
compute accurate broadband GRB afterglow radiation from early to late times. Our
results show that the spectral cooling break shifts by a factor of ∼ 40 compared to
existing methods. Its temporal behavior also significantly changes from the previ-
ously calculated temporary steep increase after the jet break. Instead, we find that
the cooling break does not shift with time between the relativistic and Newtonian
asymptotes when computed from our local algorithm. GAMMA is publicly available at:
https://github.com/eliotayache/GAMMA.

4.1 Introduction

The simulation of gamma-ray-burst (GRB) afterglow evolution is a particularly chal-
lenging multiscale numerical problem (Granot, 2007; van Eerten, 2018). These colli-
mated relativistic jets produced by the collapse of a massive star (long GRBs) (Woosley,
1993; MacFadyen & Woosley, 1999) or a compact binary merger (short GRBs) (Eichler
et al., 1989; Mochkovitch et al., 1995) exhibit features crucial to our understanding of
their behaviour over several orders of magnitude in time and space. Various analytical
and semi-analytical models for the lateral spreading of afterglow jets based on single
shell models exist in the literature (Rhoads, 1999b; van Eerten et al., 2010a; Wygoda
et al., 2011; van Eerten & MacFadyen, 2012; Granot & Piran, 2012; van Eerten &
Macfadyen, 2013; Duffell & Laskar, 2017; Ryan et al., 2020). However, even when cali-
brated on simulations these do not capture the full radial and angular profiles computed
by simulations. In the last 20 years, dynamical simulations of GRB blast waves have
evolved from one-dimensional (1D) Lagrangian computations of the evolution of spher-

https://github.com/eliotayache/GAMMA
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ically symmetric fireballs (Kobayashi et al., 1999; Daigne & Mochkovitch, 2000), to
state-of-the-art two-dimensional (2D) and three-dimensional (3D) Eulerian simulations
(Kumar & Granot, 2003; Cannizzo et al., 2004; Zhang & MacFadyen, 2009; van Eerten
et al., 2010a; Meliani & Keppens, 2010; De Colle et al., 2011; Wygoda et al., 2011; van
Eerten et al., 2012). The latter can simulate the sideways interaction of collimated jets
with the circumburst (CSM) medium and provide insight in the stability of the ejecta-
CSM interface. Unfortunately, these approaches remain particularly computationally
expensive. They rely on intense adaptive mesh refinement (AMR) procedures in order
to capture the extreme resolution needed to properly resolve the head of the jet and
converge before the onset of the jet’s sideways expansion. As it is notoriously difficult
to resolve jet spreading behavior in the lab frame even with AMR, a first successful
approach improving convergence and computational efficiency has been to move the
computation in a Lorentz-boosted frame(van Eerten & Macfadyen, 2013). Moving at
fixed velocity along the jet axis, this frame minimises the Lorentz-contraction of the
blast-wave and relaxes the resolution constraints.

The use of arbitrary Langrangian-Eulerian (ALE ) methods helps to improve the nu-
merical resolution of simulations of astrophysical flow, as has been demonstrated for
Newtonian dynamics by e.g. AREPO (Springel, 2010; Weinberger et al., 2020). In
this finite-volume approach, the mesh edges can be moved arbitrarily during the dy-
namical evolution. In practice, matching the mesh motion to that of the fluid provides
significant improvement in terms of time-stepping and resolution around shocks as the
numerical prescription effectively becomes pseudo-Lagrangian. Duffell & MacFadyen
(2011) implemented this approach in the special relativistic context in their code TESS,
finally opening the door to numerically capturing the trans-relativistic evolution of GRB
jets across scales from the ultra-relativistic stage to the deceleration. Furthermore, in
cases in which fluid motion is dominant in one direction, further progress was made
by sidestepping the need for computationally expensive re-gridding operations usually
associated with moving meshes. JET (Duffell & MacFadyen, 2013) and DISCO (Duf-
fell, 2016) take advantage of this directionality and model the dynamics on parallel
’tracks’ along which fluid zones can move freely, leading to a significant increase in
computational efficiency.

As a result, the bottleneck for accurate modeling of highly energetic transients currently
lies in the calculation of associated radiative emission. GRB afterglows are the result
of synchrotron emission from shocks forming in the head of the jet as it interacts with
the CSM (Rees & Meszaros, 1992; Meszaros & Rees, 1997). Current numerical radia-
tive prescriptions rely on approximations of the evolution of the micro-physical state
in the fluid downstream of these shocks. The widely used global cooling approximation
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assumes a single micro-physical state across the whole fluid profile that evolves globally
with time since the explosion (Sari et al., 1998). While this conserves the scalings and
closure relations in each regime of the resulting spectra, this approximation is known to
produce errors in the absolute flux level by up to a decade, as well as an incorrect posi-
tion of the characteristic spectral break frequencies (van Eerten et al., 2010a; Guidorzi
et al., 2014). This makes any broadband interpretation of the data across timescales
very difficult. While analytical solutions locally calculating the micro-physical states
have been used for 20 year now (Granot & Sari, 2002) and produce satisfying results
in the ultra-relativistic limit of top-hat jets observed on-axis, an accurate description
across all stages of jet evolution is still missing. Having at our disposal a numeri-
cal tool capable of computing such radiation accurately, efficiently and with precision
promises to finally allow broadband fitting of afterglow light-curves and spectra. This
toolkit could achieve this by refining the current templates and providing benchmark-
ing opportunities for more efficient semi-analytical approaches, while also allowing for
the accurate study of edge cases involving complex dynamics and multiple radiation
emission sites.

In this work, we present a new numerical code, GAMMA, and use it to show the striking
difference obtained in the radiative evolution in the trans-relativistic phase of the jet’s
life compared to previous approaches. In order to achieve this calculation, GAMMA com-
bines the moving mesh approach to multi-dimensional dynamical simulations seen in
JET and DISCO with a local calculation of the micro-physical accelerated particle
population evolution. The local cooling approach is possible thanks to the increased
resolution from the moving mesh around the shocks that allows accurate computation
of the rapidly evolving particle energy distribution. In §4.2 we describe the dynamical
part of the code. §4.3 is dedicated to standard tests of the dynamics. We also inves-
tigate the code’s ability to capture complex dynamics by reproducing results from a
study of Rayleigh-Taylor (RT) instabilities at the contact discontinuity between ejecta
and CSM (Duffell & MacFadyen, 2013). We then describe the local cooling prescrip-
tion in §4.4. Finally, in §4.5 we present the calculation of accurate synthetic afterglow
light-curves and spectra from early to late times from the forward shock (FS) from 2D
axisymmetric simulations of a GRB jet. A discussion of the implications and limitations
of our work is presented in in §4.6.

4.2 Code description

GAMMA uses a Godunov scheme to solve hyperbolic systems of partial differential equa-
tions (PDEs) in one and two dimensions (3-dimensional evolution will be implemented
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at a later stage). The solvers currently implemented correspond to special relativistic
hydrodynamics (SRHD). New solvers (e.g magneto-hydrodynamics) can be added eas-
ily. The code follows the same approach as JET and DISCO (Duffell & MacFadyen,
2013; Duffell, 2016) with the addition of the radiation module and a treatment of par-
allelisation that takes advantage of shared memory architectures. In this section we
describe the numerical approach to the dynamics. The radiative local particle acceler-
ation and cooling and the associated radiation are described in §4.4.

4.2.1 Special relativistic hydrodynamics

The fluid can be described by a state vector of primitive variables V = (ρ,~v, p)T , where
ρ and p are the rest-mass density and pressure in the co-moving frame, and ~v is the
fluid velocity in the lab frame. We solve the following system of equations:

∂tU +∇F (U) = S, (4.1)

Where U and F (U) are the vector of conserved variables and the corresponding flux
vector, respectively, and S is the source term. ∇ is the divergence operator broadcast
on all spatial vector components of F (U). U and F (U) are expressed in terms of
primitive variables as follows:

U =

D~m
τ

 ≡
 ρΓ

ρhΓ2~v

ρhΓ2 − p−D

 (Rest-mass density)
(Momentum)
(Energy)

, (4.2)

Fi(U) =

 Dvi

~mvi + p̂i

mi −Dvi,

 , ∀i ∈ {x, y, z}, (4.3)

where î is the unit vector in the i-direction, h is the specific enthalpy including rest-mass
energy in the co-moving frame, Γ is the Lorentz factor, and the speed of light is set to
c = 1. The SRHD equations can be cast in their angular momentum conserving form
identical to eq. 4.1 for cylindrical (r, θ, z) and spherical (r, θ, φ) coordinates (Mignone
& McKinney, 2007). This requires that we replace, in the conservation equation, the θ
component of linear momentummθ in U with the the angular momentum rmθ, and the
flux of the θ momentum Fiθ = mθvi + pδiθ with rFiθ. With this form of the equations,
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the following source terms appear in 2D:

cylindrical S = (0 , p/r , 0 , 0)T , (4.4)

spherical S = (0 , (ρhΓ2v2
θ + 2p)/r, p/ tan θ , 0)T , (4.5)

where the pressure terms compensate our inclusion of p in the divergence and the
other term is a "geometrical" source term. The calculation of the geometrical source
terms for the linear momentum conserving form, for any set of orthogonal curvilinear
coordinates, is presented in the appendix of Mignone et al. (2005). The corresponding
derivation in the case of SRHD is reported in the appendix of Zhang & MacFadyen
(2006), which is equivalent to our approach. The full conservation equations can also
be derived in any curved metric using the "Valencia formulation" (Banyuls et al., 1997)
against which we compared our expressions.

We close the system of equations with the Synge-like ideal mono-atomic fluid equation
of state (EOS) from Meliani et al. (2004) based on the relativistic perfect gas law
(Synge, 1957; Mathews, 1971):

p(ρ, ε) = ρε(γeff − 1), (4.6)

where ε is the specific internal energy and γeff the effective polytropic index of the fluid
given by:

γeff = γ − γ − 1

2

(
1− 1

e2

)
. (4.7)

γ = 5/3 is the fixed adiabatic index of the fluid in the non-relativistic (cold) case,
and e the specific internal energy including rest-mass. γeff is dependent on the fluid
temperature such that γeff = 4/3 in the ultra-relativistic case and γeff = 5/3 in a non-
relativistic fluid and allows for a trans-relativistic description of the evolution. This
description is a very good approximation to the Synge gas equation and avoids the
costly evaluation of associated Bessel functions.

4.2.2 Riemann solver

The code is based on a finite-volume Godunov scheme. The simulation domain is
divided in discrete volumes, or cells in which the local fluid state is averaged. To
evolve the system we solve a Riemann problem at each interface by calculating the
corresponding Riemann fan of waves emerging from the discontinuity and the associated
fluxes. At this stage, GAMMA includes the HLLC (Mignone & Bodo, 2006) solver for
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x

t

0

W← C W→

UL, FL UL∗ , FL∗ UR∗ , FR∗ UR, FR

x/t = w

Figure 4.1: Schematic representation of a Riemann problem. The dashed red
line shows the movement of the interface at velocity w. The flux across the
interface, and the state chosen to correct for the motion of the interface, will be
FR∗ and UR∗ , respectively.

relativistic hydrodynamics. This solver builds on the two-wave HLL solver (Harten
et al., 1983) by adding a calculation of the wavespeed of the contact discontinuity
(CD). As explained in the next section, we set the interface velocity to that of the CD
and thus require the use of a complete three-wave solver.

GAMMA follows an arbitrary Lagrangian-Eulerian approach (ALE). This means that it
can compute inter-cell fluxes for arbitrary interface velocities, in any direction. Figure
4.1 describes a Riemann problem for a moving interface with velocity w. For the HLLC
hydrodynamics solver, three waves (W←, C, W→) emerging from the discontinuity
split the fluid in 4 regions (L, L∗, R∗, R). The flux across the interface is given by
F = FRiemann−wURiemann, where FRiemann and URiemann are the flux and state vectors
of the fluid in the region in which sits this interface (region R∗ in the situation depicted
in figure 4.1).

4.2.3 Moving mesh and parallelisation

Moving meshes provide several advantages to simulate the evolution of GRB afterglows,
but more broadly to simulate dynamics over a wide range of scales. First, the time-step
can be increased for smooth regions of high velocity, where it is essentially limited by
the speed of sound, in comparison to fixed-mesh approaches where the bulk velocity
is the limiting factor. This is of particular interest to us as we look to maximising
the resolution downstream of shocks to capture local cooling accurately. Second, a
moving mesh matching the fluid velocity ends up naturally refining the regions of strong
gradients as the fluid zones pile-up in compression waves and shocks. Because we are
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Figure 4.2: Mesh radial velocity and interface positions for a low-resolution
example of a relativistic GRB jet. Axi-symmetry at θ = 0 and planar symmetry
at θ = 90 deg allow us to restrict the simulation to θ ∈ [0, π/2]. The resolution
naturally increases at the shock without the need for active adaptive mesh re-
finement.

trying to capture the very fast evolving particle population downstream of shocks, a
pseudo-Lagrangian approach is ideal.

The mesh is allowed to move in one direction, that we will assume to be the x-direction
for the rest of this section. The transverse direction will be called y as the treatments
remain the same in 2D or 3D. The simulation grid is built as a set of tracks along which
the interfaces between the cells are allowed to move at arbitrary velocity. This frees
us from the re-gridding operations associated with mesh entanglement, and ensures
that interfaces remain orthogonal to the coordinate system basis vectors. In practice,
to maximise mass conservation in a given cell, we set interface velocity to the contact
discontinuity velocity (C wave in the Riemann fan). Figure 4.2 illustrates how the mesh
moves following these tracks. Allowing the mesh to move forces us to re-compute the
geometry of the interfaces between tracks for each time-step. For two neighbouring
tracks, since the number of interfaces between them can significantly vary during the
simulation, we allocate new interface objects in the code at each time-step, instead of
evolving an array of interfaces form one time-step to another. While this approach is
more computationally expensive, it is much easier to implement and less demanding in
terms of memory.

We use a hybrid OpenMP/MPI approach to parallelisation in order to make use of
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shared memory on a single node. This gives us more flexibility when dealing with
variable numbers of cells per track. The simulation domain is cut in the y direction
into a number Nnodes of regions containing an equal number of neighboring tracks, each
region sent to a single node. Ultimately, depending on the number of nodes, tracks per
node, and cells per track, the user will be able to choose to parallelise the computation
in each region using OpenMP either in the moving x direction (for a given track, cell
are distributed over the available cores) or in the fixed y direction (for a given region,
track are distributed over the available cores). Parallelising in x minimises the number
of cores in an idle state in a node, but runs into the risk of false sharing1 for tracks
with very few cells compared to the number of cores available, which is why we first
implemented the parallelisation in y with the x version available soon. One limitation
to our approach is when the average number of cells per track varies strongly from
region to region (typical case in figure 4.2), which leads to some nodes having much
fewer cells to evolve and sit idle. At this stage we compensate this by giving more tracks
to these nodes to compute. Further improvements on parallelisation are expected in
future versions of GAMMA.

4.2.4 Spatial reconstruction

GAMMA currently includes piecewise linear spatial reconstruction. Figure 4.3 shows a
schematic representation of gradient calculation in two dimensions. In the x-direction,
the reconstruction can be done independently in each track as the cell centers and the
center of the interface between cells are aligned. we store the slope-limited gradients in
the x-direction for use in the y-direction gradient calculation. Indeed, for reconstruction
across tracks, we follow the procedure from Duffell (2016). The gradient ~w inside a
given cell is calculated using the following steps. First, for every interface i between
two cells at (xi, yi) coordinate, we compute an associated gradient in the y-direction
wy,i across this interface:

wy,i = [W+(xi)−W−(xi)]/(y
+ − y−) (4.8)

with W±(x) = W±
0 +w±x (x− x±0 ) (4.9)

where the + and− exponents denote the cell above and below the interface, respectively
(see figure 4.3), W±

0 is the cell-centered primitive fluid state and w±x the gradient in

1False sharing happens when several threads are trying to update independent variables on the
same cache line at the same time (a cache line is a collection of neighbouring memory adresses loaded
together by the processor when carrying out an operation on even only one address). Each thread must
wait for the cache to be freed by competing processes in order to make their update. This makes the
set of operations that should have been run in parallel actually occur linearly. To avoid false sharing,
separate processes should be working on distant memory locations.
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x

y

Figure 4.3: Schematic representation of the procedure to reconstruct the states
left and right of the interface between the red and green cells. For example for
the red cell, the first step is to compute the transverse gradients for all the y-
interfaces of the cell (marked in blue). These gradients are measured between
states projected on the x coordinate corresponding the center of the interface
using the x gradients already computed (gray dashed lines) We then compute
the average gradient for the cell and apply the slope limiter. Using this gradient
for each cell, it’s possible to reconstruct the red and green states.

the x-direction. We then compute an averaged gradient w̄y for the considered cell from
the gradients associated with all the interfaces composing its two y-faces, weighted by
their respective surface areas Ay,i:

w̄y =

∑
i∈{interfaces}wy,iAi∑
i∈{interfaces}Ai

(4.10)

To avoid spurious oscillations we apply a minmod slope limiter such that the final
gradient value in the y-direction is:

wy = minmod(w̄y, (wy,i)i∈{interfaces}), (4.11)

Once the gradients have been computed in all directions for every cell, it is then possible
to finally compute the fluid states on either sides of every interface by interpolating
from the cells centers:

W (~ri) = W0 + ~ri · ~w, (4.12)

where ~ri is the interface coordinate calculated from the cell centroid to ensure quantity
conservation during spatial reconstruction. Indeed, this method returns a single gradi-
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ent to be used to reconstruct the states at all interfaces of a given cell. Even though
this gradient is a quantity averaged from all the gradients with neighbouring cells, the
Riemann solver will then use the reonstructed states on each side of each interface to
compute the inter-cell flux, which enforces strict mass and energy cionservation, even
at higher orders.

4.2.5 Time-stepping and adaptive mesh refinement

The cell conserved quantities are updated by summing over all fluxes across their asso-
ciated interfaces in all directions, for each time-step (method of lines), while accounting
for potential source terms. The moving interface positions are updated according to
their measured velocities during this time-step too, which leads to minimum fluxes (and
zero flux in mass) across them when setting their velocity to that of the CD. The time-
integration can be chosen between Euler time-stepping and third order Runge-Kutta,
which has the advantage of being total-variation-diminishing. We use an adaptive
time-step based on a Courant-Friedrich-Lewy (CFL) condition (Courant et al., 1928).
This introduces issues when combined with a moving mesh as compressed fluid cells
will lead to a detrimental decrease in time-step if no lower bound is chosen for their
size. We implement the ability for the user to set up their own criteria for adaptive
mesh refinement and include in the code methods to split and merge cells together on
a single track. The code offers two different modes for re-gridding: a "runaway" mode
in which the total number of cells on a given track is only constrained by a maximum
value, and a "circular" mode in which every call of the merge/split function calls an
instance of the split/merge function on a cell in the same track based on a calculation
of its "re-gridding score" that can also be set by the user. This "circular" mode ensures
that the total number of cells on a single track is constant throughout the simulation.

The new physical state in cells post-merger are is averaged over the two states in
the cells prior to merger, ensuring quantity conservation. Cell-splitting follows linear
interpolation of the conserved variables from the new cells centroids. We apply the same
slope limiter as in the spatial reconstruction on the gradient used for the interpolation.
This ensures quantity conservation and limits oscillations around shock fronts.

4.3 Tests

We evaluate the accuracy and convergence of the code on a range of standard tests.
All tests are carried out with a CFL condition of 0.4 unless stated otherwise.



4.3. Tests 137

Figure 4.4: Shock tube in Cartesian coor-
dinates. t = 0.6. Initial discontinuity at
x = 0.25 (outside of the range in x shown here,
the waves having moved towards increasing x).
Left state: ρ = 0.1, p = 1, v = 0.99× c. Right
state: ρ = 1, p = 1, v = 0. Ideal EOS with
γ = 4/3. Initial resolution is 200 cells

Figure 4.5: Shock tube in spherical coor-
dinates. t = 0.3. Initial discontinuity at
x = 0.25. Left state: ρ = 1, p = 1, v = 0.
Right state: ρ = 0.1, p = 0.1, v = 0. Ideal
EOS with γ = 4/3. Initial resolution is 200
cells

4.3.1 1D relativistic shock tubes

In figure 4.4 we show the result of a relativistic 1D shock tube in cartesian coordinates
with the following parameters:

(ρ, v, p) =

(0.1, 0.99, 1) for x ≤ 0.25,

(1, 0, 1) for x > 0.25,
(4.13)

where v is in units of c. We also choose a fixed adiabatic index γ = 4/3. In figure 4.5
we test our correct implementation of spherical coordinates and show the result of a
relativistic 1D shock tube with parameters:

(ρ, v, p) =

(1, 0, 1) for x ≤ 0.25,

(0.1, 0, 0.1) for x > 0.25.
(4.14)

In both systems of coordinates, the code is able to properly capture the shock positions
as well as the contact discontinuity. The motion of the interfaces at the fluid velocity
allows us to resolve contact discontinuity with only a couple of zones in these tests.
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Figure 4.6: 1D Isentropic wave test output
for primitive variables with 100 fluid zones.
The numerical results at t = 0.7 (black circles)
are in very good agreement with the exact so-
lution (red solid curve)

Figure 4.7: Blandford-McKee blast-wave
output at t = 8.81× 106s. Eiso = 1053erg, ini-
tial peak fluid Lorentz factor Γ = 100, CSM
number density n0 = 1 cm−3.

4.3.2 Isentropic wave

We test the accuracy of our code for smooth regions of the flow by simulating the
evolution of a 1D isentropic wave in cartesian coordinates. The setup we use is identical
to that of Zhang & MacFadyen (2006). We choose a fixed adiabatic index γ = 5/3

for this setup. A comparison of the exact solution and the numerical result is shown
in figure 4.6. The convergence rates at different resolutions are reported in table 4.1.
We nearly reach second order convergence for this test. We also assess the order of
convergence of the code in two dimensions by running the isentropic wave in a direction
diagonal to the initial grid in cartesian coordinates. This setup is identical to the one
from Duffell & MacFadyen (2011). We choose periodic boundary conditions and fix
the boundaries to a [0, 1]× [0, 1] box. We constrain the aspect ratio of the cells in the
simulation domain to the [0.5, 2] interval. A snapshot in which we have instead allowed
the boundaries to move (with a periodic boundary condition still however), showing
the distortion of the grid, is shown in figure 4.8. We report the convergence rates for
the fixed boundaries case in table 4.2.

4.3.3 2D Riemann problem

To assess more complex 2D behavior of the code, we run a 2D Riemann problem with
the same parameters as Mignone & Bodo (2006). This setup involves the interaction
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Table 4.1: Convergence analysis for the 1D isentropic wave test

Resolution L1 error Convergence rate
100 4.41e-3
316 5.87e-4 1.85
1000 6.15e-5 1.92
3160 6.92e-6 1.89

Figure 4.8: 2D isentropic wave test at t = 0.7 with initial uniform grid of
resolution of 50 × 50. In this case, the mesh is allowed to move the x direction
and distorts with the waves. The waves remain diagonal to the grid directions
and follow the expected theoretical evolution, propagating towards increasing x
and y.

Table 4.2: Convergence analysis for the 2D isentropic wave test

Resolution L1 error Convergence rate
20x20 1.93e-2
50x50 3.71e-3 1.80

100x100 1.18e-3 1.65
300x300 3.46e-4 1.12
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Figure 4.9: Density output for the 2D Riemann problem at t = 0.8. Initial
uniform grid of resolution 300 × 300. The mesh moves in the y direction. Even
though the mesh only moves in one direction, we observe a symmetrical evolution
where the only difference between the x and y directions is the higher diffusion
around the shocks in the non-moving direction.

of four elementary waves formed at the interfaces between four initial different fluid
states. On a square domain spanning [−1, 1]× [−1, 1], their setup is the following:

(ρ, vx, vy, p) =



(0.1, 0, 0, 0.01) for x, y > 0

(0.1, 0.99, 0, 1) for x < 0 < y

(0.5, 0, 0, 1) for x, y < 0

(0.1, 0, 0.99, 1) for y < 0 < x

. (4.15)

In our setup, we use a resolution of 300 × 300 and allow the mesh to move in the x
direction and constrain the aspect ratio in the interval [0.2,3]. We show the output
density at final time tf = 0.8 in figure 4.9. This test confirms the accuracy of the code
in both the directions aligned and transverse to the mesh motion. It also highlights
the increase in precision around shocks parallel to the mesh motion as features in the
x direction are more diffuse. The slight asymmetry in the region of lowest density is
attributed to the difference in treatments between the x and y directions and nicely
confirms the improvement in the direction of mesh motion. This region also particularly
suffers from a high frequency of de-refinement operations on the lower-right edge, which
is responsible for the loss in precision.
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4.3.4 1D GRB jet - Blandford Mckee blast wave profile

A first application of this code to one-dimensional GRB blast wave simulations is
done in Ayache et al. (2020). It is important for any code applied to ultra-relativistic
blast waves to demonstrate its ability to properly capture dynamics in these extreme
regimes. As such an very important test is the comparison with the analytical solution
for a relativistic point-like explosion, the Blandford-Mckee (BM) solution (Blandford &
McKee, 1976). GRB blast waves transition to this asymptotic solution as they sweep up
CSM material and it is surprisingly hard for fixed mesh AMR codes to properly capture
the peak of the blast-wave, where particle acceleration happens. Here, we set up a BM
solution at time t0 (corresponding to an initial Lorentz factor Γ0) and check that our
numerical solution still matches the expected radial profile for the fluid quantities for
t > t0. We set up a blast wave with isotropic equivalent energy Eiso = 1053erg and CSM
uniform number density n0 = 1cm−3 at an initial peak fluid Lorentz factor Γ0 = 100

(initial time t0 = 4.36×106s). Figure 4.7 shows the radial profile of primitive variables
at t = 8.81 × 106s. The code accurately captures the shock position and the radial
profile of the blast wave. Our code also fully captures the time evolution of the peak
Lorentz factor at the shock front, which we demonstrate for two dimensions in §4.5.3.
The peak four-velocity directly downstream of the shock uPeak follows the expected
evolution uPeak ∝ t−3/2 (fig. 4.13) very closely until the onset of transverse motion (jet
spreading). In this 1D test, we use the same AMR criteria as in the 2D simulations
described §4.5.2, using a fiducial angular track width dθ = π/2000. We can see the
advantage of the moving mesh approach where we can resolve the blast wave with little
added computational cost as the region limiting the time-step is situated just ahead of
the shock.

4.3.5 2D GRB jets - Rayleigh-Taylor instabilities in afterglows

Moving to two dimensions, we show the ability of the code to capture complex dynamics
by investigating the growth of Rayleigh-Taylor (RT) instabilities at the contact discon-
tinuity between the ejecta and the CSM. Duffell & MacFadyen (2013) (hereinafter
DM13) have already shown that RT instabilities can appear at the contact discontinu-
ity in GRB afterglows by running moving mesh dynamical simulations. We reproduce
here their approach and compare our results with those obtained using their code JET.

Initial setup

We implement the fireball model (Kobayashi et al., 1999) in which we input a given
amount of energy Eiso and massM into a small sphere of radius R0 placed in a uniform
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Table 4.3: Initial parameters for the 2D GRB RT simulations

Parameter Notation Value Unit
Equivalent Isotropic Energy Eiso 1052 erg
Coasting Lorentz factor Γ 30;100
Initial radius of the fireball R0 100;0.4 l.s.
CSM number density n0 1 cm−3

Temperature of CSM (p/ρc2) η 10−5

CSM of mass density ρ0. At the initial time, the velocity of the fluid is 0 in the whole
system. The thermal energy in the hot fireball is then converted to kinetic energy and
the resulting blast wave will coast with fluid Lorentz factor Γ = Eiso/M . Like DM13
we place ourselves in the thin shell limit where the initial structure of the fireball
does not influence the evolution after tγ = (M/Γρ0)1/3. This is done by choosing R0

small enough in order for the coasting and spreading phases to happen long before
the deceleration phase: Γ2R0 � tγ (Kobayashi et al., 1999). We run two simulations
with Γ ≡ 30 (run30) amd Γ ≡ 100 (run100). Setting Eiso ≡ 1052 erg determines the
corresponding value of M . The rest of the initial parameters are reported in table 4.3.

1D early run and grid parameters

All simulations are carried out in axisymmetric spherical coordinates (r, θ, φ). For the
sake of computational efficiency, we first run 1D simulations of the acceleration and
coasting phases of the fireball, before deceleration. 1D simulations are sufficient in
this regime since the collimated jet is not yet causally connected and we can thus
assume spherical symmetry. Transverse motion will appear with the instabilities after
the deceleration time and we will need to transition to 2D before then. We initialise
the fireball on a logarithmic radial grid with 600 cells. The inner boundary is initially
placed at 0.01 R0 and set to reflective boundary conditions. After the acceleration
phase, we set the inner boundary velocity to 0.5 c and outflow boundary conditions to
reduce the computation grid size. The outer boundary moves at 1.05 c throughout the
whole simulation. We call rmax this increasing outer radius. In the 2D stage, we set
reflective boundary conditions at θ = 0 and θ = θsimu.

We transition to the 2D simulations at t ∼ 0.5 tγ , by broadcasting the result of the 1D
solution onto Nθ ≡ 200 radial tracks evenly distributed in the interval θ ∈ [0, θsimu ≡
π/32]. Since our simulation domain is half as wide, this corresponds to the 400 tracks
case in DM13. We run the simulation until tM = (M/ρ0)1/3 which is the time at
which the blast-wave becomes non-relativistic. In both the 1D and 2D stages, the
radial resolution is governed for each cell by a modified cell aspect ratio criterion â =

dr/(rmaxdθ). We choose to use â instead of the actual aspect ratio a = dr/(rdθ) to
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Figure 4.10: 2D Snapshots at t = tM of run30 (left) and run100 (right). The
density is normalised by ρ0. The tracer highlights the mixing between ejecta
material (tracer=0) and CSM material (tracer=2).

prevent the time-step from being limited by the cells located at small radii at later
stages of the evolution. For each cell, â is allowed to vary in the interval â ∈ [0.2, 5].
We normalise the pressure and density by ρ0 and ηρ0c

2, respectively. Throughout the
evolution we floor the normalised density and pressure to 10−10.

Results

Snapshots at tM for run30 and run100 are shown in figure 4.10 and the corresponding
radial profiles are reported in figure 4.11. We obtain very similar results to DM13. The
radial profiles in 2D were obtained by averaging the fluid quantities over the θ direction
weighing track contributions by their respective volumes. We also ran 1D simulations
up to tM to compare with the results from the 2D runs. First looking at these radial
profiles, our forward shock (FS) closely coincides with the FS in the simulations of
DM13. However, we notice a discrepancy in the reverse shock (RS) position and a
difference in the rest-mass density behind the ejected material. This not linked to our
different choice of EOS (they use an ultra-relativistic ideal gas with fixed γ = 4/3, as
opposed to our trans-relativistic EOS) as the difference is still visible when switching to
their fluid description. We have confirmed that mass was conserved in the ejecta using
the passive scalar tracer we have set up. Finally we ran the code for various values of
R0 and noticed no significant difference between our runs. DM13 do not specify the
treatment of their inner boundary.

The 2D runs exhibit the same features as those found in DM13. We observe Rayleigh-
Taylor instability at the contact discontinuity growing from the numerical noise without
the need for seeding. We can also confirm the influence of this instability on the
position of the RS. As the instability grows, the turbulence is able to reach the RS and
pushes it faster towards the back of the ejecta. This effect is particularly well visible
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Figure 4.11: Radial profiles at t = tM for run30 (left) and run100 (right).
Density and pressure are normalised by the external medium density value. The
DM13 curve is their 1D solution. In all cases, the forward shock is very accurately
captured. In 2D, the RT instabilities push the reverse shock further at the back
of the ejecta.

in run30 in figure 4.11 and so strong in run100 that the RS has actually already left
the simulation domain at tM . In order to properly quantify this effect, we would need
to run higher resolution simulations like in DM13 as the transverse size of the tracks
currently prevents the instability from growing properly. While sufficient resolution
is almost achieved in run30, we do not observe the smaller scales expected at higher
Lorentz factors. In run100 the maximum angular size at which RT instability can
develop is 1/150 rad, corresponding to 13.6 angular track widths. It is therefore likely
that smaller scale instability was not sufficiently resolved.

These results confirm the ability of the code to properly capture complex relativistic
dynamics on a moving mesh. They also confirm that the CD can be unstable in
the afterglow. Since this particular phenomenon has previously been explored in the
literature, we refer the reader to DM13 for more in depth analysis, where they show
that the instability is does not affect the forward shock emission, but causes the the
reverse shock contribution to peak later and the corresponding flash to be narrower.

4.4 Local synchrotron cooling

We have shown in the previous two sections that our code is able to properly capture
complex relativistic hydrodynamics on a moving mesh. In this section, we describe our
approach to implementing local tracing and radiation of particles accelerated at the
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shock fronts in the fluid.

4.4.1 Tracing of accelerated particles

We follow the prescription first described in Downes et al. (2002) and van Eerten et al.
(2010b) and implemented on a moving mesh in one dimension in Ayache et al. (2020).
We expand on this previous implementation by including a description of the spectral
evolution of the particle population that depends on shock velocity.

Shock waves are responsible for the acceleration of electrons that radiate in synchrotron
across the whole electromagnetic spectrum. We model this accelerated population with
a truncated power-law in energy (Sari et al., 1998; Wijers & Galama, 1999):

n′(γ′e) ∝

(γ′e)
−p if γmin < γ′e < γmax,

0 otherwise,
(4.16)

where primed quantities are expressed in the co-moving frame. n′ is the spectral number
density as a function of γ′e the Lorentz factor of an electron. γmin is the minimum
Lorentz factor (of the bulk of the population) and γmax is the maximum Lorentz factor
that decreases as the population cools. p is the spectral index (power-law slope of
this population). The distribution is normalised by considering that a fraction ζ of
electrons are accelerated and carry a fraction εe of the internal energy density e = ρε.
The cooling of these electrons is driven by synchrotron losses and adiabatic expansion:

dγ′e
dt′

= −σT (B′)2

6πmec
(γ′e)

2 +
γ′e
3ρ

dρ

dt′
, (4.17)

with B′ =
√

8πεBe the local magnetic field intensity derived from magnetic energy
expressed as a fraction εB of internal energy. me and σT are the electron mass and the
Thompson cross section, respectively. This expression can be re-cast into an advection
equation:

∂

∂t

(
Γρ4/3

γ′e

)
+

∂

∂xi

(
Γρ4/3

γ′e
vi

)
=

σT
6πmec

ρ4/3(B′)2, (4.18)

that the hydrodynamics solver can treat as a passive scalar with a source term. The
bounds of the population of accelerated electrons are locally evolved downstream of
shocks following this procedure. Particle injection at shock fronts is simply done by
resetting the values of γmax and γmin. γmax directly downstream of the shock is theo-
retically set by the acceleration time-scale. For sufficiently large p it can be taken to
be infinity. In practice, we just set γmax = 108 to a high enough value such that the
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frequency cut-off in the observer frame is higher than 1018 Hz, the highest frequency at
which we compute the radiation. γmin is set by normalising the total available energy
over the electron population.

We have also added in the radiative code the possibility of using a local value of p.
Indeed, most works currently assume fixed spectral index p ∼ 2 − 2.5. However, we
expect shock strength to vary during the dynamical evolution, which leads to a varying
spectral index in the accelerated population. To evaluate the effect of this evolution we
implement this in our shock detector and subsequently advect the spectral index value
p as a simple passive scalar field:

∂

∂t
(Γρp) +

∂

∂xi
(Γρpvi) = 0. (4.19)

The initial value of p is chosen following Kirk et al. (2000) and Keshet & Waxman
(2005) (see e.g. Sironi et al. (2015) and Marcowith et al. (2020) for recent reviews
on particle acceleration in relativistic shocks), where we have identified the upstream
fluid velocity with the bulk fluid velocity. This approximation greatly simplifies the
implementation and is acceptable as we will only be interested in forward shock emission
from GRB afterglows in this work, but a different approach would be needed for e.g.
reverse shock contribution or internal shocks. The dependency of p on the upstream
fluid four-velocity u is approximated by the following expression in our code (which is
a rough fit to Kirk et al. (2000), sufficient as a first approach):

p = 2.11 + 0.11× tanh(log10(u/3.16)). (4.20)

We thus have p→ 2 and p→ 2.22 in the Newtonian and relativistic limits, respectively.
It should be pointed out at this stage that this addition leads to issues in the initiali-
sation of the accelerated particles. In short, decreasing values of p lead to decreasing
values of γmin. If γmin gets too close to 1, our description of the particle population as a
power-law in energy breaks down. In keeping with the mainstream approach, we focus
on converting the total available energy in radiation and allow for values of γmin < 1.
In the results we focus on the radiation at high energies around the cooling break. This
issue and potential solutions are discussed in more details in §4.6.

4.4.2 Radiative flux calculation

To calculate the corresponding flux, we have adapted the linear radiative transfer ap-
proach and corresponding code from van Eerten & Wijers (2009) using the same sim-
plified connected power-law description for synchrotron emission as in van Eerten et al.
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(2010a). We intend to upgrade the code in the future with more a elaborate description
including a treatment of the transition between these power-law regimes as described
in van Eerten & Wijers (2009). For the sake of simplicity we neglect self-absorption
here and focus on frequencies above the radio band.

The frequency at which a single electron with energy γ′emec
2 in the co-moving frame

produces synchrotron radiation is νsyn(γ′e) = 3qeB′

16mec
(γ′e)

2 with qe the charge of the
electron. We can now write ν ′min = νsyn(γmin), and ν ′max = νsyn(γmax). The spectral
volumetric power for an emitting region of the fluid is given by:

P ′ν =

P
′
ν,max

(
ν

ν′min

)1/3
, ν < ν′min,

P ′ν,max

(
ν

ν′min

)−(p−1)/2
, ν > ν ′min,

(4.21)

with P ′ν,max =
4(p− 1)

3p− 1
× n′σT

4

3

B′

6π

16mec

3qe
. (4.22)

where n′ is the accelerated electron number density in the co-moving frame.

To account for local cooling, we implement a simple sharp cut-off in the spectral emis-
sivity for frequencies above ν ′max in the fluid frame. In theory the emitted radiation
follows and exponential cutoff that will be implemented in the future. We expect from
our prescription a small underestimation of the true flux above the cooling break. This
does not change the interpretation of the results from §4.5 as we will see the flux is
generally higher with our approach compared to previous prescriptions. Eventually,
once having taken into account the proper beaming factors depending on µ the cosine
of the angle between the fluid velocity and the observer, and accounting for photon
arrival times, the flux received at a given observer time tobs for a given frequency ν can
be integrated following:

F (ν, tobs) =
1 + z

2d2
L

∫ 1

−1
dµ

∫ ∞
0

r2dr
P ′ν′(r, tobs + rµ)

Γ2(1− βµ)2
, (4.23)

with dL the luminosity distance and z the redshift.

4.4.3 Shock detection algorithm

This radiative prescription relies on accurate detection of the shock positions in the
fluid. While Ayache et al. (2020) make use of a shock detector based on the calculation
of the limiting relative velocities at cell interfaces in 1D from Rezzolla et al. (2003b) and
Zanotti et al. (2010), we use in this work the more complex multi-dimensional version
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of this dectector, introduced by the same authors, that we describe in this section.

Let us consider a candidate discontinuity in fluid quantities in which we observe a jump
in density, pressure and velocity between two regions denoted 1 and 2. This is the setup
of a local Rieman problem for which we can compute a criterion on the relative velocity
orthogonal to the discontinuity v12 ≡ (v1−v2)/(1−v1v2) for the formation of one shock
and one rarefaction (SR), or two shocks (2S) in the resulting Riemann fan. By checking
for this criterion on all the interfaces of the grid we can map the location of the shocks
in all directions.

In the SR case, the criterion is given by:

v12 > (ṽ12)SR = tanh

(∫ p2

p1

√
h2 +A2

1(1− c2
s)

(h2 +A2
1)ρcs

dp

)
, (4.24)

where cs is the speed of sound and A1 ≡ h1γ1v
t
1, with vt1 the transverse velocity. We

compute (ṽ12)SR by numerical integration.

In this simple form, the algorithm does not discriminate on shock strength and can
lead to the spurious detection of weak shocks. This can be adjusted by computing the
limiting relative velocity for the 2S case:

v12 > (ṽ12)2S =
(p1 − p2)(1− v2V̄s)

(V̄s − v2){h2ρ2γ2
2 [1− v2

2] + p1 − p2}
. (4.25)

We refer the reader to (Rezzolla et al., 2003b) for the explicit expression of V̄s which is
the velocity of S→ in the Riemann fan {1S←3C3′S→2} in the limit case where p3 → p1.

The shock detection threshold is adjusted by computing a new limit (ṽ12)eff with ad-
justable parameter χ ∈ [0, 1] such that a shock is detected for:

v12 > (ṽ12)eff = (ṽ12)SR + χ[(ṽ12)2S − (ṽ12)SR]. (4.26)

We find χ = 0.5 produces satisfactory results in all the applications presented in this
paper.

This procedure can be generalized to any spacetime metric (or system of coordinates)
by projecting the velocities into a local tetrad following vî = M î

jv
j (Pons et al., 1998).

In this work we are only interested in spherical coordinates for which the projection
simply reduces to M î

j = diag(1, r, r sin θ).
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Table 4.4: Initial parameters for the 2D GRB jet local cooling simulation

Parameter Notation Value Unit
Dynamics:
Equivalent Isotropic Energy Eiso 1053 erg
CSM number density n0 1 cm−3

Initial peak Lorentz factor Γpeak,0 100
Corresponding initial time t0 4.36× 106 s
Jet half-opening angle θjet 0.1 rad
Temperature of CSM (p/ρc2) η 10−5

Micro-physics: slow / fast
Fraction of accelerated e− ζ 1 / 0.1
Electron energy εe 0.1 / 0.1
Magnetic energy εB 0.01 / 0.1

4.5 Synthetic GRB afterglow light curves with local cool-
ing

4.5.1 Initial setup

We run simulations of spreading top-hat jets with local and global cooling. The setups
are similar to those from van Eerten et al. (2012). We start from a BM solution
constrained to a small opening angle. This ensures that the results can be re-scaled
making use of scale invariance with regard to the ratio of burst energy over circumburst
medium density. The initial time t0 is chosen such that the peak fluid Lorentz factor
of the outflow is set to Γpeak = 100. We run two simulations with the same dynamical
parameters but different micro-physical parameters leading to a slow-cooling and fast-
cooling early times case for us to analyse. Since we locally compute the microphysics
these parameters indeed need to be specified before the dynamical simulation. Of
course, the fast-cooling case is expected to transition to slow-cooling at later times
and these different sets of micro-physical parameters are only selected to make our
interpretation more straightforward. All the initial parameters in these simulations are
reported in table 4.4. The simulation final time tf is determined by the time spanned
by the synthetic light-curve. In practice, we choose tf = 3.33× 108s and we check that
the last snapshot does indeed not contribute to the emission at the final observer time
tobs,f = 108s.

4.5.2 Grid parameters

The grid contains Nθ = 300 tracks in the interval θ ∈ [0, π/2]. Initially we set the grid
radial width as a function of initial shock Lorentz factor Γs such that the radial bounds
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are equal to rmin,0 = rs − 50/Γ2
s and rmax,0 = rs + 50/Γ2

s, where rs is the initial shock
position as given by the BM solution. Each track contains Nr,0 = 5000 cells of equal dr

initially (except for r > rs where dr is multiplied by a factor 10 only in the initial grid
to make sure the blast-wave does not outrun the moving outer boundary in the first few
time-steps) so as to resolve the blast wave correctly and ensure the energy contained in
the grid is as close to the expected Eiso/(1− cos θjet)) as possible. The number of cells
per track quickly decreases due to the AMR criteria described in the next paragraph.
During the simulation, we move the outer boundary such that the shock front on the
jet axis is always located at 0.9rmax. New cells are simply created from this moving
boundary by the AMR methods implemented in the code. All boundaries apart from
the outer one are reflective to ensure energy conservation in the grid (inner boundary),
model potential interaction with the counter-jet (boundary at θ = π/2), and comply
with axisymmetry (boundary at θ = 0).

The resolution is determined as follows. The radial resolution is governed for each cell
by a special "re-gridding score" Sregrid = â× Γ3/2 where â is the modified aspect ratio
described in §4.3.5 and Γ the fluid Lorentz factor at the cell location. Sregrid increases
with Lorentz factor such that smaller aspect ratios are allowed for highly relativistic
cells. This ensures that the blast wave is better resolved at the shock position where
the velocity is the highest. We ran simulations with varying exponent values and found
Γ3/2 to give satisfying convergence of the light-curves. We also multiply Sregrid by a
factor 10 in the few cells around the onset of the forward shock to further increase the
resolution there. Sregrid is allowed to vary in the interval [0.1, 3] leading to aspect ratios
ranging from 10−4 to 3 in practice. The re-gridding mode is set to "runaway". In order
to improve the resolution close to the jet axis, we use a variable-size track width where
the position of interface j − 1/2 between tracks j − 1 and j is set by:

θj−1/2 =
π

2

(
0.3

j

Nθ
+ 0.7

(
j

Nθ

)3
)
, (4.27)

where Nθ is the number of tracks. This means that the radial resolution is also higher
closer to the jet axis. The number of cells on track 0 varies from ∼450 to ∼1500
throughout the simulation. The dynamical simulations run in 7 hours on 384 Marvell
ThunderX2 ARM cores distributed over 12 nodes.

The synchrotron emission is computed following the method described in section 4.4
with a small modification. The the larger size of the cells ahead of the blast wave
leads to shock diffusion over the same scale as that of the hot region, and thus a wide
region ahead of the blast wave is marked as "shocked" by the shock detector. We



4.5. Synthetic GRB afterglow light curves with local cooling 151

decide to turn off the emissivity in all the cells neighbouring a detected shock, and
only sum over the emission from the cells in the process of cooling. This does not
hinder the ability of the computed light curves to converge since the resolution directly
downstream of the shocks is sufficient to allow for this approximation. We check that
the light curves obtained are indeed converged by running simulations with varying
radial and transverse resolutions (see fig. 4.17, light curve with 600 tracks).

4.5.3 Results

Snapshots in the slow-cooling case at 1.6× t0, spreading time ts and close to final time
t . tf are reported in figure 4.12. For better readability, these snapshots are truncated
at θ = 0.5 rad. We observe the expected behavior where the first stages of the evolution
follow the BM solution as the jet lacks transverse causal connection. The jet eventually
starts spreading at:

ts =

(
17Eisoθ

2
jet

4πn0mpc5

)1/3

= 3.22× 107s, (4.28)

where it transitions to the spherical evolution stage in which we choose to stop the
simulation at tf . In figure 4.14 we show that at ts the blast wave still follows the BM
solution. this figure also highlights the very high resolution needed to properly resolve
the hot region where γmax quickly decreases downstream of the shock. In figure 4.13 we
show that our simulation accurately follows the expected BM evolution until spreading
by plotting the fluid Lorentz factor at the shock position as a function of lab time.
Figure 4.15 shows the peak value for γmin (directly downstream of the shock) as a
function of lab time in three different directions. Here too, we recover the expected
evolution pre-jet break except near the outer edge of the jet where interaction with
the CSM influences γmin from the start. This figure highlights the transition to the
spherical expansion phase when γmin adopts the same evolution in all plotted directions
for t > 108s. At these late times, with our description of the particle population,
we enter the regime in which γmin < 1. We report in the figures the limit observer
time tlim ∼ 107s above which regions of the fluid with such low values of γmin start
contributing to the light-curves and caution against interpretation of the radiation
evolution after tlim, especially at the lowest frequency end of the spectrum. Figure 4.16
shows the evolution the spectral index p directly downstream of the shock with lab time,
in the case where we allow it to vary. We can notice it does not evolve significantly
before the jet break at tlab = ts = 3.2× 107s and undergoes a sharp decrease as the jet
decelerates post-jet break. This is easily explained by the direct dependency of p on
the upstream fluid velocity.
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Figure 4.12: Snapshots in the slow-cooling case before spreading (left column),
at ts (center column), and at the end of the simulation (right column). The
bottom line shows the x-ray emissivity (positive angles) as seen from an on-axis
static observer. Since we use a log color scale, we floor the emissivity to the
lowest measured non-zero value in the grid. This quantity allows us to map
the emission sites in the jets and verify that the contribution to X-ray from the
early re-collimation shock in the evolution is negligible in our simulation, as the
density downstream of these shocks is very low compared to the FS. This shock
propagates from the edge of the edge of the jet head towards the jet axis as a
result of the jets sideways expansion, and is reflected on the jet axis, creating a
V-like feature in the γmax snapshot at t = 7.33s.
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Figure 4.13: Four-velocity Γβ directly down-
stream of the shock. We obtain this value by sim-
ply measuring the maximum radial velocity in the
simulation domain. Our dynamical simulation very
accurately follows the BM solution Γβ ∝ t−3/2 be-
fore jet spreading at ts = 3.22× 107s.

Figure 4.14: Radial profile at ts in the
fast-cooling case for θ = 0. The jet still
follows the BM solution at this stage.
Density and pressure are normalised by
mpn0 and mpηn0c

2, respectively.

The synthetic light curves and spectra are reported in figures 4.17-4.18 (slow-cooling)
and 4.19-4.20 (fast-cooling). All light-curves exhibit a jet break at tobs = tbreak ∼ 105s
corresponding to the spreading time ts in the lab frame. In both cases, we observe pre-
jet break a very good match with the expected BM flux computed with local cooling
(Granot & Sari, 2002), which confirms the validity of our approach. Post-jet break,
the BM solution diverges from the true solution as it does not take into account jet
spreading and the associated deceleration. As expected, we observe a steeper decrease
post-jet break when accounting for jet spreading and deceleration in our numerical
solution.

We can now compare the light curves and spectra to those obtained with the global
cooling approximation. Let us first consider the slow-cooling case. We can observe a
discrepancy of factor ∼ 5 in flux levels between the global cooling and local cooling
approaches after the cooling break. This is explained by the difference in the position
of the cooling break in the spectrum, which has a direct influence on the overall flux
level in the light-curves at higher frequencies. Now considering the fast-cooling case,
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Figure 4.15: Slow-cooling case, fixed spectral in-
dex p. Lower bound γmin of the accelerated elec-
tron population directly downstream of the shock
for different directions (jet axis θ = 0, jet half-
opening angle θ = θjet, and halfway θ = θjet/2). As
expected γmin decreases faster from the beginning
due to jet edge effects. All evolutions rejoin when
the jet enters the spherical expansion phase in the
Newtonian regime. Eventually we encounter the
known issue with describing the accelerated parti-
cles as a power-law in energy as γmin moves below
1 (dashed gray line) at very late times.

Figure 4.16: Slow-cooling case, variable spectral
index p. Spectral index p directly downstream of
the shock for different directions (jet axis θ = 0,
jet half-opening angle θ = θjet, and halfway θ =
θjet/2). p undergose a fast transition during jet
spreading. This explains why the light-curves and
spectra are identical in the variable and fixed p
cases in our figures.

we see that the change in cooling break frequency influences all parts of the spectrum
as γmin is now also subject to cooling. The light curves flux level at frequencies below
νc is thus also affected in this case. These strong differences highlight the clear need to
include local cooling in the modeling tools currently used by the community.

Locally tracing the particle population offers several opportunities regarding the study
of the evolution for the emission post-jet break. We can for the first time accurately
capture the radiative transition from the ultra-relativistic BM solution to the Newto-
nian ST solution. In figure 4.21 we report the evolution of the cooling break νc with
observer time tobs. Firstly, we find that our simulations using the global cooling ap-
proach are in good agreement with previous trans-relativistic simulation works (van
Eerten & MacFadyen, 2012; van Eerten & Macfadyen, 2013). We find the expected
−1/2 slope in the ultra-relativistic limit and observe the same turnover at tbreak. Sec-
ondly, with local cooling, νc follows the same slope for tobs < tbreak, but offset by a
factor ∼ 40. This offset was expected as pointed out by previous works (van Eerten
et al., 2010a; Guidorzi et al., 2014). Post-jet break, we observe a striking difference
between the two approaches. While νc,global sharply increases, νc,local transitions to a
plateau stage from tobs ∼ 3 × 105s to tobs ∼ 3 × 107s. As the jet transitions to the



4.5. Synthetic GRB afterglow light curves with local cooling 155

Figure 4.17: Light curves in the slow-cooling case in far IR
(orange), optical (green) and x-ray (blue). The BM solution
is not computed after 107s as is is outside its region of validity
then. As expected, it diverges from the true solution after
the jet break at tobs ∼ 105s. The difference between local and
global cooling at early times for optical and far IR is due to the
fact that the system is still fast-cooling then. As it transition
to slow-cooling the light-curves rejoin. At later times, the
effect of local cooling starts to show on γmin that decreases
faster than in the global cooling case, leading to lower fluxes
above the injection break. After tobs ∼ 107s (dashed gray
vertical line), some of the contributing regions of the blast-
wave see γmin < 1 in the variable p case and we caution against
interpretation of the corresponding dot-dashed curves at later
times. The loosely dotted black line shows the optical light-
curve for a local, variable p run at higher transverse resolution
(600 tracks). Other frequencies are not shown for readability
but we confirmed convergence there too.

Figure 4.18: Slow-cooling spectra. Line
styles match those of fig 4.17. Since this
is slow cooling, the cooling break νc is eas-
ily identified as the right-most break in each
spectrum. The injection break νm is the left-
most break (not apparent in the late spectra
at 108s in this figure) The difference in the
cooling break position is responsible for the
difference in flux density at high frequencies.

Figure 4.19: Same as figure 4.17 but in the fast-cooling case.
We do not show the variable p light curve in this case which is
discussed instead in the slow-cooling case. As in slow cooling
all curves exhibit a jet break at tobs ∼ 105s. Just like in slow-
cooling, the x-ray light-curve shows a factor ∼ 5 difference
pre-jet break as this frequency is placed above the cooling
break throughout the whole evolution.

Figure 4.20: Fast-cooling spectra. Line
styles match those of fig 4.17. The cool-
ing break is the left-most break in the blue
curves, and the only break visible in the red
curves. At the time of the yellow curves,
the injection and cooling break are super-
imposed and it is diffictult to identify their
exact positions (transition from fast to slow-
cooling).
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Newtonian phase, νc resumes decreasing. In figure 4.21 we show the asymptotic -1/5
slope expected for this phase. Unfortunately, our simulations did not run long enough
to allow us to model the radiation at later times yet and we cannot confirm at this
stage that νc will settle on this asymptote from this simulation. In this particular setup
the global and local calculations of νc meet up at late times. Investigating whether this
phenomenon happens for all explosion parameters or has a physical explanation is left
to future work.

In in all the figures describing the radiation from our the slow-cooling case, we also show
the evolution of νc in the case where the spectral index p varies following the approach
described in §4.4. We observe further differences from the case where p = 2.22 is kept to
a fixed value. As can be seen in figure 4.17, for tobs > tbreak, the flux decreases faster at
all frequencies when p is allowed to vary. This is also seen in the slow-cooling spectra, at
tobs = 108s, where the spectrum in the "variable p" case lies below the spectra in other
cases. As supported by these spectra, where the synchrotron regimes are conserved,
this decline in flux can be explained by the sharper decrease of γmin associated with
decreasing spectral index after ts, as is visible in the snapshots in figure 4.12.

The evolution of the cooling break position also changes and we observe in figure 4.21
that the plateau at the jet break time present with a fixed spectral index disappears with
a variable value for p, showing a steady decrease similar to the pre-jet break regime.
This effect is visible in light curves and spectra and provides a potential avenue to
investigate the theoretical processes involved in particle acceleration at shock fronts.

4.6 Discussion

In this work, we present a 2D relativistic hydrodynamics code that includes a local
calculation of particle population evolution. While the use of a moving mesh offers
significant improvements in terms of efficiency over fixed mesh approaches, the imme-
diate downside of the local cooling approach is the necessity to run separate expensive
dynamical simulations for each set of micro-physical parameters, increasing the num-
ber of runs necessary to explore the parameter space in comparison to global cooling
approaches.

Regarding our jet simulations, we assume either sphericity or axi-symmetry and run
2D calculations. We do not expect 3D effects to strongly influence our synthetic light-
curve calculations, however, the study of the Rayleigh-Taylor instabilities at the contact
discontinuity in the afterglow would benefit from a 3D approach as this could have
important consequences on the rate of propagation of the reverse shock in the ejecta.
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Figure 4.21: Evolution of the cooling break position with observer time. The
dashed segments represent the asymptotic slopes expected in the relativistic
(−1/2) and Newtonian (−1/5) limits. The global cooling results match those
from van Eerten & MacFadyen (2012) and van Eerten & Macfadyen (2013) with
a temporary sharp increase of νc. The local cooling approach displays a very
different behavior with constant νc for at least two decades in observer time from
the jet break onwards.

We also consider in these simulations the magnetisation to be small enough that it does
not influence the general dynamics of the jet, which is expected at late stage of the
evolution post-deceleration (for a recent review, see e.g. Granot et al., 2015).

The light curves and spectra presented in this work are all calculated for top-hat jets
for an on-axis observer. Since GRBs are sources at cosmological distances, they are
typically observed near on-axis or at least within the jet half-opening angle (Ryan et al.,
2015), a situation for which angular structure of the jet has a negligible influence on
the light-curve shape (Rossi et al., 2002; Kumar & Granot, 2003; Ryan et al., 2020).
These results can thus already be applied to the bulk of GRB afterglow observations.
The influence of local cooling on structured jets observed off-axis will be the focus of a
future study.

In section 4, we mention our simplified approach to the cut-off of local emissivity above
νmax. Since the slope above the cooling break in the observed spectrum is the result of
this cut-off being place at different frequencies in the observer frame depending on the
emitting region of the blast-wave, a sharp cut-off will have a tendency to underestimate
the flux received above νc. However, this can be compensated by increased resolution in
the emitting region, and we actually observed observe a very good agreement between
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our numerical approach and analytical solutions before the jet break. Our main results
remain valid at later times too since what we observe is a significant increase in the
observed flux with local cooling.

As also pointed out in §4.4, our treatment of the variable spectral index leads to a
breakdown of our assumptions for accelerated particle injection when the jet transitions
to the Newtonian phase after tobs = 107s, when we can no longer model the accelerated
particle population as a power-law in energy. As p and the bulk Lorentz factor Γ of
the blast-wave decrease, the total available energy for radiation cannot be stored into
the electron population while keeping γmin � 1. van Eerten et al. (2010b) handle
this problem with a varying fraction of accelerated electron. In theory, the electron
population should be described in the Newtonian phase by a powerlaw in momentum
(Bell, 1978; Blandford & Ostriker, 1978; Blandford & Eichler, 1987) which has been
implemented by Sironi & Giannios (2013). An accurate initialisation of γmin in the deep
Newtonian phase will be implemented in a future version of the code. This requires that
we re-write eq. 4.18 to account for non-relativistic energies. Let us also point out that
this issue is not as pronounced when keeping a fixed value of p = 2.22. Nevertheless,
the difference in flux between variable and fixed p starts showing as soon as the jet
break time, when our approach still holds. This makes a strong case for this effect
to be taken into account in the radiative modeling. Finally, we also expect in the
deep Newtonian phase contribution from the thermal population of electrons (Eichler
& Waxman, 2005). However, we expect this part of the population to mostly impact
the radio emission, both in absorption and emission, and we have restricted ourselves to
higher frequencies in our study. An accurate treatment of the thermal emission would
also require that we implement absorption in our radiative transfer approach, which is
outside of the scope of this paper.

In conclusion, this work provides a solution to the current pitfalls of numerical modeling
of afterglow light-curves thanks to an improved numerical approach that accounts for
the local variability of the emissivity in the fluid. The striking difference in cooling break
behaviour across the jet break between local and global cooling approaches implies that
it is not sufficient to merely apply a fixed correction factor to a global cooling approach
in order to match the more physically realistic local cooling results. Nevertheless, the
cooling break evolution curve remains completely scale invariant in the manner first
described by van Eerten & MacFadyen (2012) even across the trans-relativistic stage.

Recent discoveries associated with the multi-messenger detection of 170817 (Abbott
et al., 2017b,a; Goldstein et al., 2017; Hallinan et al., 2017; Savchenko et al., 2017; Troja
et al., 2017) have given new impetus for the development of more accurate numerical
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models. These are needed for us to be able understand the added complexity (jet
structure, off-axis observer, kilonova contribution, interaction with a dynamical ejecta)
from these ongoing observations observations (e.g Troja et al., 2019; Hajela et al., 2019;
Troja et al., 2020). While the simulations presented here are a textbook case of top-hat
on-axis GRB afterglow evolution, GAMMA now provides the basis for the implementation
of more complex micro-physical descriptions for the emission and GRB dynamics which
will be explored in future works.
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Figure 4.22: General algorithmic progression of the code. The first iteration
starts with the re-gridding step. The shock detection can be activated or not
depending on the needs of the simulation. When using higher order time-stepping,
the first order partial time integration involves all steps apart from the re-gridding
operations that are only carried out between full time increments.

4.7 Additional information

4.7.1 Implementation specifics

Even though the methods presented here are built on those introduced in the 1D case
in chapter 3, these methods are implemented in a new separate code. Several reasons
justify writing a new code: the parallelisation approach described in §4.2.3 differs from
that of the code in chapter 3 and involves a significant re-write; the public access of
the code also requires a more modular structure. The main algorithmic progression of
GAMMA is summarised in figure 4.22, while the high-level flowchart of the code, which
highlights the relationships between computational operations, is shown in figure 4.23.

Languages and libraries: GAMMA is implemented in C/C++. Compiled languages
offer better performance than interpreted languages for highly intensive calculations.
We also take advantage of C++ object-oriented capabilities which helps with code
modularity. We make use of the GNU scientific library for root-finding operations.
Data inputs and outputs (IO) are in pure text form so far. In the future, and like
the code presented in chapter 3, handling of IO files in the Hierarchical Data Format
(HDF5) should be implemented, if not because it is more flexible, then simply because
it offers faster (parallel) output writing capabilities. For now, we have written a simple



4.7. Additional information 161

Figure 4.23: Flowchart
of GAMMA. Parallelisation
operations are ignored in
this representation. In green
are I/O operations. In
red are fluid state update
operations. The simuation
ends when one of the
user-specified criteria is
verified. "Intermediate
time-steps" are the multiple
time integrations in a single
Runge-Kutta time-step.
The x and y directions
are the moving and fixed
directions, respectively.
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Python tool which converts text files into the input HDF5 format for radiative post-
processing (described later in this section).

Setting up simulations: A large number of hydrodynamics codes publicly available
unfortunately suffer from their user-unfriendlyness. While GAMMA does not offer (yet)
an elaborate, easy to use, python wrapper like e.g. PLUTO (Mignone et al., 2007),
the code was designed with this constraint in mind. Additionally, we strived towards
giving maximum flexibility to the user in setting up their scientific simulation problems.
This means that all the problem-specific functions (initial grid geometry and fluid state,
refinement criteria, mesh motion control, source terms, boundary conditions, frequency
of output) can be edited in a single file overriding their default versions. Even though
the parallelisation procedure splits the domain in various slices in one of the dimensions
(recall §4.2.3), we wanted this aspect to be imperceptible to the user when possible and
the initialisation of grid geometry and fluid state is done on a domain that is then
automatically distributed among processes. Other runtime functions unfortunately
still have to be written taking parallelisation into account. A great improvement on
accessibility would be to provide wrapping functions available to the user. More detailed
instructions, including the list of user functions and compilation options are included
in appendix A.

4.7.2 Interfacing with radiation code

Unlike in chapter 3, we did not write our own radiative transfer code to process the
dynamical output of GAMMA. Instead, we adapted the in-house code blast (methods
described in van Eerten & Wijers (2009)) by including the processing of local cooling
from simulation snapshots which was not yet fully functional. blast uses the radiative
transfer methods described in §2.4.3 and includes three different modes: (1) flux from
analytical BM solution only, (2) from simulation snapshots only, (3) from analytical
BM solution up to a given lab time followed by simulation snapshots. All three modes
can now be used with local or global cooling. In practice, we use mode 3 since the
simulations cannot start too early (the time-step at small radii becomes prohibitive).
However this approach is still valid as long as we switch to simulation snapshots before
any influence from transverse motion starts to show (which is not expected before the
jet becomes causally connected). In this chapter, we presented simulations where the
accelerated population of electrons has a variable local spectral index p. blast offers
the possibility to pass additional local variables to the local fluid state when loading
these from a simulations snapshot and we simply adapt the emissivity calculation to
take into account this variable spectral index, instead of using the default one specified
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in the blast parameter file.

blast uses the Hierarchical Data Format (HDF5) to load simulation snapshots. HDF5
allows one to load in memory only the spatial slices of interest, contributing to the
observer time considered, in each snapshot. Considering that we loop over all snapshots
for each observer time, this offers a significant increase in performance. Even though
we run 2D hydrodynamical simulations, blast computes the emissivity in a 3D space
by assuming axisymmetry of the simulation domain. As stated stated earlier, the text
outputs form GAMMA are converted to the HDF5 format before use in blast using a
simple Python tool we have written. This tool outputs the geometrical description
of each cell as well as its corresponding fluid and micro-physical state. Ultimately,
GAMMA will directly output files in the HDF5 format removing this extra step in the
synthetic light curve calculation.

General conclusion

In this chapter, we presented our results improving the accuracy of the modeling of
synchrotron emission from relativistic transients. These results were obtained by build-
ing on the latest developments in numerical relativistic hydrodynamics which allowed
for the accurate calculation of the local emissivity. These improvements are combined
and presented in the form of a new turnkey numerical code GAMMA which is the main
contribution of this thesis work. Straight out of the gate, this code is able to produce
significant results. In chapter 3 we use the code’s ability to compute radiation pro-
duced at multiple emission sites to investigate an alternative flaring mechanism. In
this chapter, the full blown multi-dimensional modeling allows us to finally start to
pin down the trans-relativistic evolution of the broadband spectrum. The study of the
late-time evolution of GRB afterglows needs to rely on improved prescriptions of the
synchrotron emissivity calculation in comparison with the methods currently in use.
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Machine Learning Insights into
Gamma-ray Burst X-ray Emission

Eliot H. Ayache, Tanmoy Laskar & Hendrik, J. van Eerten (in prep.)

Good and bad, I define these terms quite clear, no doubt, somehow,
Ah, but I was so much older then I’m younger than that now.

— Bob Dylan, My Back Pages
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Preamble

The numerical simulations presented earlier allow us to conduct analysis of either theo-
retical setups, or individual events, by fitting these models to observations. The theory,
however, relies on information at the population level, and models can only be built by
identifying the characteristic features of a population. This raises the age-old question
whether differences in features between events can be explained by the same model or it
is a marker of differences in the phenomenology, and thus separates two populations. In
this chapter we adopt a data-driven approach to modeling GRB afterglow X-ray light
curves and question whether the physics responsible for differing temporal behaviours
signal a difference in phenomenology or a simple gradual change of regime. In order to
do this we apply advanced unsupervised machine learning methods to GRB afterglow
data and study the latent structure of the information it contains, to inform the validity
of the categories traditionally used for afterglow light curve classification. This com-
pletes our set of numerical approaches to investigating GRB afterglow phenomenology
in this thesis.
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Abstract

As a data-driven science, astrophysics has tremendous potential as both driver and
consumer of machine-learning (ML) applications. In particular, astrophysicists glean
significant insight on the generalisation potential of their models from large-scale,
population-based studies, where ML techniques can be used to great advantage for
dimensionality reduction, generative modeling, and inference. Recent work in ML has
made significant strides in both image-domain and time-series techniques. We present a
case study at the intersection of both techniques using variational autoencoders (VAEs),
applied to X-ray observations of Gamma-ray bursts (GRBs) from the Neil Gehrels Swift
Observatory. We explore prospects for acquiring physical inference from ML models by
clustering light curves in an unsupervised manner, and investigate the resulting level of
segregation in the dataset. We find that the data creates over-densities in the latent-
space suggesting the presence of dominant light curve types. However, the observed
gradual transition in between unifies the prevalent classification of GRBs based on their
X-ray data into a single continuum, supporting the idea that light curves of different
types should be unified under a single model.

5.1 Introduction

For the last 17 years, the Neil Gehrels "Swift" Obervatory (Gehrels et al., 2004) has been
detecting and measuring emission from gamma-ray bursts (GRBs) and their associated
afterglow. Today, over 1500 GRBs have been observed. Observations by the Swift X-
ray telescope (XRT, Burrows et al., 2005a) revealed the high variability and complexity
of the early X-ray afteglow. In particular, X-ray light curves (lcs) display differences
in the succession of regimes with time since the burst. Ignoring the well known divide
between long and short bursts and the associated differences in afterglow properties
(short GRBs are less energetic, less luminous and decay faster, Margutti et al. (2012)),
we investigate whether these different light curve (lc) "morphologies" form distinct
classes of objects.

Recent years have seen massive progress in unsupervised machine learning (ML) meth-
ods for data visualisation. Dimensionality reduction techniques have been used to
extract the most important features, or investigate the significant similarities between
samples inside astrophysical datasets. Dimensionality reduction allows one to identify
underlying classes in the population. For example, Garcia-Dias et al. (2018) use K-
means1 to identify spectral classes in the APOGEE survey. Jespersen et al. (2020)

1K-means is a clustering method where each sample belongs to the cluster with the nearest mean.
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recently used t-distributed stochastic neighbour embedding (t-SNE, Van Der Maaten
& Hinton, 2008)2 to unambiguously classify short and long GRBs on a two-dimensional
space.

For several years now artificial neural networks (ANN, Rosenblatt, 1957) have shown
a great capacity in mimicking complex non-linear functions. More particularly, convo-
lutional neural networks (CNN, LeCun et al., 1989) have shown their ability to extract
the most significant features of samples of high-dimension (e.g. images, regularly sam-
pled time-series) for classification and regression problems. ANNs have also been used
for dimensionality reduction in the form of autoencoders (LeCun, 1987; Bourlard &
Kamp, 1988; Hinton & Zemel, 1994). Autoencoders use two separate regression models
trained together to compute latent variables in a lower-dimensional space. One model,
the encoder, maps the input onto this lower-dimensional latent space. The other one,
the decoder, re-computes the input from the latent variables3. More recently, this
dimensionality reduction technique has been applied to classification problems by in-
troducing variational inference in the encoding process (Kingma & Welling, 2013; Blei
et al., 2017). This means that we optimise an approximate posterior distribution (usu-
ally a multivariate distribution) for the latent variables at the output of the encoder.
Thanks to this approach, variational autoencoders (VAEs) acquire a generative capac-
ity in which it becomes possible to sample the latent space to produce new inputs.
This property leads to clustering in the latent space as inputs from a training sample
now carry a "region of influence" in the latent space where decoded samples have to be
similar. The simplest VAE uses a unit Gaussian prior distribution in the latent space.
However, new more elaborate methods, such as variational deep embedding (VaDE,
Jiang et al., 2017) have been applied to astrophysical samples (e.g. Spindler et al.,
2021). This method operates like a VAE with the difference that it uses a mixture-
of-Gaussians as a prior, meaning that the latent space is forced to arrange itself in a
specified number of clusters.

In this paper, we investigate the presence of different classes of GRB afterglow X-ray
lcs by carrying our unsupervised classification using a convolutional variational autoen-
coder (CVAE) on Swift-XRT data. The objective is to identify intrinsic classes (or lack

It is an iterative algorithm that requires that the number of clusters to find, K, is specified.
2t-SNE assigns a probability to all pairs of points in the high-dimensional sample based on their

similarity (points close-by get a higher probability, which requires the choice of a distance measure).
It also defines a probability distribution over pairs in the low-dimensional space. It then minimises
the Kullback-Leibler divergence between the distributions, which minimises the loss of information in
the low-dimensional distribution with respect to the high-dimensional sample.

3Separating the encoder and decoder is not necessary mathematically, as this is just an optimisation
problem in which we fit the model parameters to operate a two-way mapping between input and latent
space, but it gives a more intuitive interpretation of the training process.
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thereof) in the light curve population using advanced data-visualisation techniques. In
§5.2 we describe the Swift-XRT dataset, as well as the pre-processing we carry out on
the data before training. §5.3 describes our neural network and the related training
algorithm. §5.4 presents our preliminary results. We discuss avenues for improvements
of these results in §5.5.

5.2 Data description

5.2.1 Swift-XRT light curves

We focus our analysis on the Swift-XRT afterglow light curve sample4 (Evans et al.,
2007, 2009) (hereinafter E07; E09). In this sample, light curves comprise of photon
count rates in the energy range 0.3-10 keV binned by time. The time binning of the
data given by the XRT data reduction pipeline is irregular. It is based on the number
of counts in a given bin to ensure that short-timescale features are resolved in the early
afterglow, while still allowing for late-time detection of the afterglow when it fades.
This target number of photons per bin varies with the photon count rate. In window
timing (WT) mode, maximising time resolution, the photon count per bin is at least
C = 30 for a count rate of 1 to 10 photons/second. In photon count (PC) mode,
C = 20 for a rate of 1 to 10. C increases by a factor 1.5 with increasing decades of
photon rate (e.g. C = 45 for 10 ≤ rate < 100 in WT mode). The photon count in a
bin can however be higher as each bin has to reach 3σ detection limit. The bin time is
the average photon arrival time, which is naturally offset from the center of the bin.

In Evans et al. (2009), lcs observed in log - log space are split into 5 morphological
categories depending on the succession of their power-law decay slopes: "canonical",
"no break", "one break - steep first", "one break - shallow first", "oddball". Canonical
lcs display at least 2 breaks with a "steep - shallow - steep" decay succession and an
eventual final steepening (the jet break) (see also Nousek et al., 2006). The other
categories are self-explanatory. Racusin et al. (2009) also classify light curves based
on a similar power-law fit approach. They assume that all lcs intrinsically follow the
canonical shape from Nousek et al. (2006) (steep decay, plateau, normal decay, jet
break) and split them into 4 categories depending on whether we observe the full
lc (canonical including jet break), only the beginning (no observed jet break), only
the end (plateau to normal decay, or normal decay to jet break), or only one regime
(single power-law). More recently, Margutti et al. (2013) (hereinafter M13) have
conducted a comprehensive statistical analysis of Swift-XRT lcs. They also identify

4https://www.swift.ac.uk/xrt_curves/

https://www.swift.ac.uk/xrt_curves/
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different categories of lcs depending on the number of breaks and slopes (figure 1 in
their paper):

• 0: no breaks,
• Ia: one break, shallow first,
• Ib: one break, steep first,
• IIa: two breaks, steep - shallow - steep,
• IIb: two breaks, shallow - steep - shallow,
• III: three breaks.

These categories match those from E09, with "canonical" corresponding to "IIa", and
"oddball" encompassing "IIb" and "III". In the rest of this paper, we adopt the
nomenclature from M13 as it is more informative, and includes a larger dataset than
Racusin et al. (2009). However, since the regularly updated Swift-XRT repository
follows the procedure from E09, we will not discriminate between "IIb" and "III" and
will combine these classes into "oddballs".

Our dataset (case A) comprises of 1222 Swift-XRT afterglow light curves observed
between December 2004 and November 2019 (517 type 0, 144 type Ia, 107 type Ib,
307 type IIa, 147 type "oddballs"). This dataset contains bin locations tbin, bin upper
extent ∆tupper, bin lower extent ∆tlower (negative value), count rate r, count rate upper
extent ∆rupper, count rate lower extent ∆rlower (negative value) for each lc. We discard
any light curve that displays a single measurement only.

In order to evaluate the influence of the presence of short-timescale features such as
flares and rebrightenings, we also produce a dataset in which the data points from
flaring features are simply removed (case B). The flares are identified in each lc in the
Swift-XRT dataset (E07; E09). However, the procedure presented in E09 does not carry
out model fitting to evaluate flare candidates and the approach has been improved since,
making use of the functional form from Willingale et al. (2007) to fit the lc, including
seperate components for prompt and afterglow contributions. Flares are identified by
iteratively fitting the Willingale et al. components to the lc, and marking data points
that lie above the model as candidate flare data points. For each point the significance
is defined as (Data-Model)/(Error on data). The point is categorised as a flare if the
significance exceeds a threshold defined as follows:

• If within 3ks of the trigger, the threshold is set to 8 if applied to an isolated flare
point candidate, or to 6 if the flare candidate spans at least 5 light curve bins.

• If more than 3ks after the trigger, the threshold is set to 10 if applied to an
isolated flare point candidate, or to 8 if the flare candidate spans at least 5 light
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curve bins.

This process is repeated until no new point is excluded. This information contained in
these lcs is thus identical to that used for the fitting of multiple power-law components.

5.2.2 Synthetic light curves

In order to evaluate our model capacity to identify different lc types, we will make
use of synthetic lcs alongside real observed lcs. These synthetic observations mimic
Swift-XRT observations of lcs of the types described in M13 (0, Ia, Ib, IIa, IIb and III).
We will follow the procedure from Curran et al. (2008), making use of the code applied
in van Eerten et al. (2010a). For each class, the lcs are described by a set of break
times (tib)0<i≤Nt and power-law decay slopes (αi)0<i≤Nt+1, where Nt is the number of
breaks in the lc (the number in the class label). The lcs are modelled by a succession
of broken power laws such that the count rate as a function of time r(t) is given by:

r(t) =



Ntα1 , t < t1b
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)α2
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)α3
(
t
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)α4

, t3b ≤ t

(5.1)

where N is the normalisation constant, t the observer time and tib the break times in
the lc. This expression is general, meaning that we can model lcs with strictly fewer
than 3 breaks simply by setting the last break times to infinity or setting consecutive
slopes to the same value. The net advantage of these synthetic lcs is that they are much
better sampled than raw Swift-XRT observations, and are devoid flares and other short
timescale variability that were excluded in the fitting procedures from E07; E09; M13.
We do account however for the noise and orbital gaps in the observations.

From a set of (tib) and (αi), reconstructing the lcs requires that we iteratively compute
the variable bin size as it is dependent on count rate. All lcs will start at tini = 10s after
prompt emission and be modeled up to tend = 107s unless they fall below the detection
threshold before this time. For each bin starting at time t, the count rate is computed
using eq. 5.1. The bin size ∆t is computed assuming that the count rate remains equal
to r(t) (the count rate at the beginning of the bin) throughout the bin width, following
the criteria given in §5.2.1, meaning that bin locations correspond to bin centers. After
one day the fractional exposure of the source f drops from 1 to 0.1. Meaning that
the general expression for the bin size is ∆t = Ctarget/(rf), where Ctarget is the target
count per bin. The count rates are then scattered following a 1σ error of fractional
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value 0.25 which corresponds to the error measured on well sampled Swift-XRT lcs. The
perturbation is sampled from a normal distribution with standard deviation σ = 0.25r

and applied to the previously computed count rate. We take the 47-minute orbital gap
into account, during which no synthetic data is created. The time of first occurence
is sampled randomly from a uniform distribution in range [0, T/2] where T = 94 min
is the Swift orbital period (low Earth orbit means that the occultation time is T/2).
We resume sampling after the occultation and apply the gap periodically from then
on. We stop computing the lc after tend, or if the count rate falls below the sensitivity
limit for Swift-XRT rlim = 10−4 cts/s.

We create 2 synthetic light curve datasets that serve distinct purposes.

• The first synthetic dataset (case C) consists in synthetic lcs generated from the
parameters reported in M13 fitted to 437 observed Swift-XRT afterglows. Their
sample comprises of fits to light curves starting 60s after the burst. They also se-
lected well-sampled enough events such that flux light-curves could be calculated.
As mentioned before, our synthetic lcs do not display any flares or short timescale
variability and are better sampled than raw XRT observations. They offer a ho-
mogeneous complete sample improving training efficiency. This dataset allows us
to evaluate the influence of the short timescale variability on training. However,
the limited sample size hinders our ability to carry out robust interpretation of
the results from its analysis.

• A second synthetic dataset (case D) is used to evaluate the capacity of the network
to cluster known groups of lc morphologies. This will allow us to confirm that the
presence of (engineered) structure in the high-dimensional does lead to clustering
in the lower-dimensional space. We produce between 100 and 1000 samples of
each class, depending on their relative weight in the sample from M13 (1000
type 0, 500 type Ia, 500 type Ib, 500 type IIa, 500 type IIb, 100 type III). For
each lc, we sample the break times and slopes from uniform distributions, while
ensuring that the relative succession of slope values depending on the lc type is
respected. The bounds of the distributions used are reported in table 5.1. We
make sure that these are similar to the mean values measured by M13. For all
types, the last regime of the lc is a normal decay with slope ∈ [-2, -1.2]. The
uniform distributions are chosen to increase the variability in lc morphologies
that the network will have to model. The ranges in the slope distributions are
constrained by the necessity of the the absence of overlap between classes, which
entails a varying slope value from one regime to the next. For simplicity, we set
the normalisation to N = 105 cts/s, which is the count rate at 1s after the burst,
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Table 5.1: Bounds of the uniform distributions from which parameters of case
D are sampled.

Type Break times log tib/[1s] Slopes αi

0 n/a [-2, -1.2]
Ia [1.2, 4] [-0.8, 0.2], [-2, -1.2]
Ib [1.2, 2.5] [-4.4, -3.6], [-2, -1.2]
IIa [1.2, 2.5], [3, 4] [-4.4 ,-3.6], [-0.8, 0.2], [-2, -1.2]
IIb [1.2, 2], [2, 2.5] [-0.8, 0.2], [-4.4 ,-3.6], [-2, -1.2]
III [1.2, 2], [2, 2.5], [3, 4] [-0.8, 0.2], [-4.4 ,-3.6], [-0.8, 0.2], [-2, -1.2]

Table 5.2: Description of datasets used in this study

Case Number of samples Description
A 1222 Swift-XRT full lcs
B 1222 Swift-XRT lcs with flares removed
C 437 Synthetic lcs produced from M13 measured parameters
D 3100 Synthetic lcs produced from sampled parameters (see table 5.1)

except for classes Ib, IIa and III which display and early steep decay and for
which N = 109 cts/s. This second value is chosen to ensure the count rate does
not fall below the detection threshold before the first break time. Higher values
of N are also measured for these classes in M13.

The lcs can then undergo the same pre-processing as the real data, which is described
in the following section. All the datasets used in this work are reported in table 5.2.
Examples of samples from each cases A and B are shown in figure 5.1. An example of
a synthetic light curve is shown in figure 5.2.

5.2.3 Sample pre-processing

The irregular binning of the data represents added complexity for a machine learning
model for unsupervised time-series classification. As we only focus on identifying the
dominant lc morphology, we decide to re-bin the lcs on a regular grid of 40 evenly spaced
bins in log space, which is chosen as it is close to the median value of 46 bins measured
in our sample extracted from the Swift-XRT dataset. This simplifies the design of our
ML model, avoiding the need for e.g. recurrent neural networks (Elman, 1990), which
require more time for training and offer less opportunity for interpretability. It also
simplifies the calculation of our cost function which will be used to train the network,
as all bins now have equal weight in this function and all inputs have the same number
of bins (see the description of the variational autoencoder in §5.3). An example of the
comparison between raw and pre-processed lc for a well sampled afterglow is shown
in figure 5.3. Intuitively, the new rate values can be set to the average of the values
in the initial bins that overlap with the new bin, weighted by the size of this overlap.
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Figure 5.1: Raw Swift-XRT light curve (left) from case A showing flares
between 100s and 400s and the corresponding case B light curve (right)
where the flare has been removed.

Figure 5.2: Raw synthetic Swift-
XRT light curve in case C (type IIa,
canonical). Our approach produces
large temporal uncertainties at the
orbital gaps which is different from
the absence of data reported in the
Swift sample. this has no influence
on our model as the pre-processing
only accounts for the bin center po-
sition.

However, this can lead to pathological morphologies in poorly sampled lcs with very
large initial bins, where we then observe a large succession of bins with the same count
rate (large flat succession of points). We choose instead to compute the average over
the count rates of the initial bin centers located in the new bin. This approach leads
to more gaps in the lc since new bins that do not overlap with any raw XRT bin center
will then have a zero flux. The lc morphology is well conserved with this approach.
We choose to treat empty bins as missing data and flag them by setting them to a
constant value of -1. We explain later how we ignore the contribution of these bins in
the objective function used for training.

In order to focus on lc morphology, we stretch the lcs so that the first photon detection
corresponds to the first bin, and the last detection to the last bin. The bins thus lose
absolute time information. For each sample, the log count rate is normalised by the
mean log count rate value of the lc. This ensures that the network does not encode
for the absolute flux level, and that the values passed to the network are of order of
magnitude of unity which is crucial for efficient training.
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Figure 5.3: Pre-processing on a canonical Swift-XRT lc. On the left is the
corrected data from the Swift sample. On the right is the pre-processed lc used
as input to our model. The orbital gaps (shaded regions) lack data, which we
impute to -1 (unfilled data points). Points within machine precision of -1 are not
taken into account in our objective function.

5.3 Convolutional variational autoencoder

We design a CVAE for time-series analysis. An autoencoder is composed of an encoder
Eφ and decoder Dθ.

Eφ(x) = z (5.2)

Dθ(z) = x̂, (5.3)

where x is the input, z the corresponding latent representation, and x̂ the output
estimating x. φ and θ are the parameters of the encoder and decoder, respectively.
These correspond to the trained weights in both ANNs. This sets up a regression
problem in which the full network learns a latent representation z of the inputs at the
bottleneck between encoder and decoder. As with any ANN, the weights are updated
during training using backpropagation of the error (Rumelhart et al., 1986). This
means that we define a cost function (also called loss, or objective function) at the
output layer, L(x̂,x), which will depend on the problem we are solving (regression or
classification).

For each update during training, we compute the output x̂ of the network and the
corresponding loss, for a batch of samples. We then compute the partial derivatives
of this loss with respect to the weights. Let us note wlij the weight between neuron i
and j from layers l and l− 1 respectively. In a given layer l each neuron j outputs the
weighted sum of inputs (the outputs of neurons from the previous layer) to which it
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Figure 5.4: Architecture of our CVAE. Forward pass from left to right. Pur-
ple layers are dense layers. Convolutional blocs are in yellow. Orange layers are
max-pooling operations. In blue are upsampling layers. The width of each convo-
lutional block corresponds to the number of filters used. The depth corresponds
to the number of neurons in each layer. The transition from/to convolutional
block to/from dense layer is done by flattening/reshaping the activation maps.
The 1D aspect of our data (time-series, as opposed to 2D images) is responsible
for the elongated aspect of the blocks as we only apply 1D convolutions here.

applies an activation function φ:

oj = φ

(∑
i

wijoi

)
= φ(sj). (5.4)

After a bit of algebra, the partial derivative of the loss with regards to the weights is
given by:

∂L
∂wij

= oiδj , (5.5)

with:

δj =

 ∂L
∂oj

dφ(sj)
dsj

, if j is an output neuron,

(
∑

l∈Lwjlδl)
dφ(sj)

dsj
, if j is an inner neuron,

(5.6)

where L is the set of neurons directly conneted to the ouput oj of neuron j. This ex-
pression highlights the recursive character of backpropagation in which the derivatives
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with respect to inner layers depend on the derivatives closer to the output. Once the
gradients have been calculated, the weights are updated following:

∆wlij = −η ∂L
∂wlij

, (5.7)

where η is the learning rate that we set manually in this work. This gradient descent
minimises the loss L(x̂,x) for the batch of samples at each iteration. ANNs however
need multiple epochs (loop over the whole training sample) in order to for the training
to converge.

Variational inference is introduced at the bottleneck in VAEs where the encoder now
learns the posterior latent distribution qφ(z|x). The decoder in turn now learns the
distribution pθ(x|z). The latent prior is set to a unit Gaussian p(z) = N (0, 1). In our
VAE the posterior distribution is approximated by a Gaussian multivariate distribution
such that:

Eφ(x) = N (µz,σ
2
z) ∼ qφ(z|x). (5.8)

This introduces a difficulty in the training of this network as back propagation of the
error in the stochastic gradient descent, used to update the network weights and biases,
is now impossible because of the non-differentiable random sampling carried out in the
encoder during the forward pass. This can be solved using the "re-parametrisation
trick" (Kingma & Welling, 2013) consisting in realising that N (µz,σ

2
z) = µz + σz �

N (0, 1) (� is the element-wise product), where the unit Gaussian sampling is now an
input to the decoder and does not need to be differentiated. The training is thus a
Monte-Carlo (MC) process in which we estimate the objective function by drawing
from this distribution. In practice however, since the dataset is usually large and since
we train for many epochs, only one sample is drawn from Eφ(x), and then passed to
the decoder.

Training requires that we define a cost function. We use the evidence lower bound
(ELBO) objective function which is a combination of a reconstruction term (forcing
the output to match the input) and a regularisation term (forcing the distribution of
z to match the specified prior). The ELBO is given by:

ELBO(θ, φ) = −KL[qφ(z|x)||pθ(z)] + Eqφ(z|x) log pθ(x̂|z), (5.9)

where KL is the Kullback-Leibler divergence measuring the dissimilarity between the
posterior approximation and prior distribution (variational loss), and the second term
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the log-likelihood (reconstruction loss), where we denote the expectation of a distribu-
tion with E. The reconstruction loss is set as the mean squared error (MSE) between
input and output multiplied by the input dimensionality Nbins:

Lrecon = MSE(x, x̂)×Nbins. (5.10)

With our description the variational loss becomes:

Lvar = −KL[N (µz,σ
2
z)||N (0, 1)] (5.11)

= −1

2

∑
j

[1 + (log σj)
2 − µ2

j − σ2
j ], (5.12)

where the subscript j denotes each element of the vectors in the latent space, and we
have dropped the subscript z for clarity. The total loss is then simply:

L = Lrecon + Lvar. (5.13)

We caution here however that the introduction of regularisation in the model decreases
the fidely of reconstruction, potentially leading to more scattering in the latent space.
Improvements can be expected by adjusting the relative influence of both terms with
a parameter β in so-called β-VAEs:

L = Lrecon + βLvar. (5.14)

A larger beta will favor minimization of the variational loss, leading to stronger clus-
tering, but worse reconstruction. Clusters will comprised of less similar light curves as
a result. Even though we implemented this method, we did not carry out systematic
parameter exploration for β and all the results presented in this work made use of
β = 1.

Our network architecture is shown in figure 5.4. The encoder and decoder are both
CNNs with 3 convolutional blocks and 2 dense layers. We set up a latent space of
dimension 2 to help with data visualisation. We use the rectified linear unit (ReLU)
activation function for all convolutional layers. At the bottleneck of the network, µz and
σz are set as the outputs of two separate dense layers with linear activation functions.
The output layer also uses a linear activation function. As mentioned in §5.2.3, we
suffer from an incomplete dataset where some of our samples are missing datapoints.
We choose to inpute a constant value for these datapoints and set them to -1 in the
standardised dataset. We also ignore their contribution to the objective function. The
network automatically learns to ignore these datapoints and does not try to match the
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Figure 5.5: Convergence during training of our model for case A (left) and case
D (right). We stop training before the validation loss starts increasing increasing
again, which would mark the onset of significant overfitting.

-1 value.

Hyper-parameters (batch size, learning rate) are set after manual adjustments to max-
imise validation accuracy. The learning rate is set to l.r. = 0.0001 and the batch size
to 64. A larger batch size improves training efficiency and accuracy but increases over-
fitting. A larger learning rate improves training efficiency but can fail to converge. We
use the Adaptive Moment Estimation (ADAM) (Kingma & Ba, 2015) gradient descent
algorithm for training.

5.4 Preliminary Results

For each dataset, we train the network for 200 epochs. Convergence plots of the model
applied to cases A and D are shown in figure 5.5, where we have randomly selected
15% of the dataset for validation. The difference in validation loss and training loss
shows that our model is marginally overfitted. However, the fact that the training
loss keeps decreasing up to the 200th epoch suggest that this is probably linked to the
small size of our dataset, and that the training set is not completely representative
of the validation set, since reconstruction keeps improving for unseen samples. The
autoencoder performs well and offers good reconstruction capability. In figure 5.6 we
show a few examples lc reconstructions for case A. As expected the regularisation in our
objective function causes a general smoothing of the reconstructed lc in comparison to
the input, but well sampled lcs are accurately reconstructed. Flares and poorly sampled
lcs prove challenging for our model to reconstruct accurately, justifying both the use
of datasets B (no flares), and C and D (synthetic lcs) in our study.

The latent space distributions and and analysis are shown of each case in figures 5.7
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Figure 5.6: lc reconstruction examples. The black squares represent the pre-
processed input data x and the red dots the corresponding prediction x̂. The
network is also able to predict values for missing points which is shown with the
red line. Values are inputed where data is missing (red line). Upper row: well
sampled inputs are accurately reconstructed, albeit with some smoothing intro-
duced by the regularisation in the latent space. Lower row: flares and rebright-
enings (left and center) are particularly challenging for model to reconstruct, as
well as poorly sampled or noisy lcs (right).

(case A), 5.8 (case B), 5.9 (case C) and 5.10 (case D). In each case, we show on the top
row the sample distribution in the latent space, colored by their type as reported in
the Swift-XRT sample, and the corresponding kernel density estimation (KDE) using a
Gaussian kernel and Scott’s rule (Scott, 2015) to calculate de optimal bandwidth. This
KDE analysis allows us to identify regions of over-density in the latent space and traces
the location of cluster candidates. On the bottom row, we show on the left the result
of a clustering analysis using the density-based spatial clustering of applications with
noise (DBSCAN) algorithm (Ester et al., 1996). This approach presents the advantage
of not relying on the user specifying a number of clusters to look for, but instead
identifies clusters depending on the choice of parameters. These parameters are the
neighbourhood size ε, which specifies the radius of the region around a point in which
the algorithm will look for neighbours, and the minimum number of samples Nmin to
be in that neighbourhood for this point to be identified as a core point. Core points
that are in each other’s neighbourhoods belong to the same cluster. Non-core points
in the neighbourhood of a core point also belong to the cluster. Points outside of the
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neighbourhood of any core point are labeled as noise points. For each dataset, we run
DBSCAN for various combinations of parameters and show the most relevant result in
this figure, with the objective to either identify the intrinsic number of clusters formed
in the latent space. Strongest clustering is obtained when DBSCAN finds a reasonable
number of clusters and few noise points. If, for all combinations of parameters, either
the number of clusters, or the number of noise points is large, the distribution is poorly
separated. More accurate measures exist of how representative of the population a
clustering result is, such as the silhouette score of the Calinsky-Harabasz index (Calinski
& Harabasz, 1974). These methods will be used in future work, in combination with
deep embedding, to accurately measure the number of clusters in the population. Note
that in our current approach, since we find poor clustering, the clusters identified by
DBSCAN should not be interpreted as the intrinsic cluster in the dataset and do not
highlight a particular light curve type.

In order to interpret the distribution of the data in the latent space, we make use of
the generative character of our model and produce lc templates generated by sampling
the latent space on a regular grid and decoding this each latent representation. The
results are shown in the bottom right corner panel of the figure and shows the tem-
plates arranged on this grid. Thanks to the variational aspect of our model, these lc
morphologies are representative of the general shape of the outputs generated from a
latent representation in the vicinity of this sample, and thus of the general shape of
the input encoded at this latent location. The number of points nodes in the grid is
chosen to facilitate readability of the figure. However, we inspected the latent space
with finer template grids and found no smaller-scale features in the latent space than
those shown in the figures. The variability scale in the latent space is also penalised
towards smaller values because of the unit Gaussian prior we use.

Case A is reported in figure 5.7. First, we observe a segregated distribution of lc
types. While showing some with overlap, type 0 lcs mainly populate the right-hand
side of the graph (high z1) while types IIa, IIb and III are on the left-hand side.
Interestingly, Type Ia are the least segregated distribution. Type Ib fall in the central
part of the graph, between 0 and IIa, IIb, III. This confirms the ability of the code
to arrange samples in terms of similarity. Second, we observe light clustering. This is
highlighted by the kernel density estimation where we observe 3-4 distinct over-density
locations in the latent space, one of which is centered on the type 0 populationi (notice
the elongated structure of the overdensity at this location, suggesting potential further
clustering, hence the tentative identification of 4 overdensities). The DBSCAN however
is not capable of recovering distinct clusters for any choice of parameters, leading to
either a very large number of clusters detected (shown in this figure) or a very large
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Figure 5.7: Case A: latent space distribution (sample distribution in upper left,
sample density in upper right, DBSCAN clusters found in lower left, light curve
templates in lower right). The description of these figures is given in the main
text. We observe a separation (dashed grey segment in the KDE figure) between
lcs with a flatter central regime (upper left corner), and those without (lower
right corner). The unrealistic light curve templates in the upper right corner
(bottom right=hand panel) do not correspond to light curves in the sample and
are the result of sampling in a region of the latent space not used by the training
set. No light curves from the validation set are found there either as shown in
the latent distribution.
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Figure 5.8: Case B: latent space distribution. (sample distribution in upper left,
sample density in upper right, DBSCAN clusters found in lower left, light curve
templates in lower right). The description of these figures is given in the main
text. There is a separation (dashed grey segment in the KDE figure) between
the lcs exhibiting a flatter central regime (upper right corner) and those devoid
of such a phase (lower left corner). This separation is more visible than in case
A.



186 Chapter 5. ML Insights into GRB X-ray Emission

Figure 5.9: Case C: latent space distribution. (sample distribution in upper
left, sample density in upper right, DBSCAN clusters found in lower left, light
curve templates in lower right). The description of these figures is given in the
main text. Here too, we observe a light separation (dashed grey segment, much
less pronounced than in cases A and B) between lcs with a flatter central regime
(lower left corner) and without (upper right corner). The latent space seems to
be more clustered than in previous cases (A and B).
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Figure 5.10: Case D: latent space distribution. (sample distribution in upper
left, sample density in upper right, DBSCAN clusters found in lower left, light
curve templates in lower right). The description of these figures is given in the
main text. Three main clusters can be identified using the KDE (two type 0
clusters, one type Ib cluster), confirming the ability of the model to separated
different lc morpholgies. However, only two main clusters are recognised by
DBSCAN. Type 0 lcs (single power-law) slope are clearly identified and separated
from the rest of the dataset. Other smaller variability in the distribution suggest
that the model has identified more discriminatory features in the lcs. Canonical
lcs (IIa, red points) are placed at the bottom, with the increasing the level of
the flatter central regime going towards the right side (seen in the templates).
The separation between light curves with such flatter central regime and those
without (dashed grey segment in KDE figure) is sharp but not wide. The over-
densities on each side are quite pronounced however.
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number of noise points and very poor completeness. One interesting feature however is
a valley of lower density running from the lower-left to the upper-right corners, which
disappears when encountering the type 0 population. When looking at the templates,
we can observe that this feature separates two distinct types of lc morphology with
light curves showing a flatter central regime phase in the upper-left corner (associated
with the plateau phase of type IIa light curves), and lcs without such a regime in the
lower-right corner. This valley disappears in the type 0 population which represents
a "transition state" between the two cases. Interestingly however, some type IIa light
curves are encoded on the side of the valley corresponding to no flatter central regime.
This is either due to the incapacity of the network to properly reconstruct these light
curves, or to other effects such as poor sampling of lcs, or very noisy signal, and needs
to be investigated further. We also notice that the network is incapable of detecting
the type Ia morphology which is absent from the templates and explains why type Ia
lcs are scattered over the whole latent space. This needs more investigation to identify
why the model presents such limitation.

As shown earlier, our ML model struggles in properly reconstructing lcs showing flares
or rebrightenings. This is in part due to the regularisation in our objective function,
but also to the very small dimensionality of the bottleneck of our autoencoder (two-
dimensional latent space). Indeed, increasing the number of dimensions in the latent
space consistently leads to better reconstruction, at the cost of interpretability how-
ever, since it becomes impossible to identify structure in the latent space with visual
inspection. Carrying out analysis of a latent space of higher dimension can potentially
lead one to identify more significant clustering but is left to future work at this stage.
Instead, to improve reconstruction, we train the model on lcs where we have removed
the short timescale variability (case B) and show the result in figure 5.8. We observe
here the same segregation as in case A. However, the valley of lower density is more
visible in this case and clearly separates lcs with a flatter central regime from those
without (the valley runs in the upper-left to lower-right direction this time, the di-
rection being arbitrary and only depending on the initial random state of the neural
network). DBSCAN however does not display significant improvement, meaning that
the gain from removing the variability in the lcs is potentially hindered by the creation
of larger gaps and the loss of information. It is also possible that this variability is not
the limiting factor of our approach.

An approach to removing this short timescale variability while avoiding the creation of
gaps is to create synthetic light curves. In case C, we take the parameters measured by
M13 and create the corresponding synthetic light curves using the procedure described
in §5.2.2. Unfortunately, this relatively old sample is much smaller than the current
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sample of detected afterglows and training is more difficult as a result. Nevertheless, we
get interesting insights from the graphs presented in figure 5.9. As for all previous cases,
type 0 lcs are easily identified and clustered together (here in the upper-left corner).
We also observe a clearer separation between type Ib and IIa, in a distribution that
appears contain 3 clusters. Indeed, even though the KDE only shows 2 over-densities
(most likely because one point in the latent space is much denser than the rest of the
distribution and hides underlying structure), DBSCAN is this time able to identify 3
separate main clusters each corresponding to type 0, type Ib and type IIa light curves.
Again, lcs with a flatter central regime (canonical type IIa) are separated from the
rest of the sample. Here, the presence of less overlap between types in the latent space
suggests that in cases A and B, the model was randomly reconstructing poorly sampled
lcs, or lcs with gaps, with any morphology that fit satisfyingly, not taking into account
Occam’s razor in doing so. The better sampling in case C potentially forces the model
to adopt the correct morphology since many more bins are filled on average in each light
curve. This could be verified by running the same analysis on well-sampled subsets of
A and B.

So far, only light clustering has been observed in each latent distribution. We need to
address whether this is due to the fact that, (i) even though we observe over-densities
of single types of lcs, there is a smooth transition between lc morphologies, or (ii)
the incapacity of our model to generate clusters in the first place. To do so, we use
a final dataset (case D) in which we sample slopes and break times from arbitrary
distributions (though similar to those measured for the same parameters in M13). In
this new case, our CVAE is clearly able to single out type 0 light curves from the rest
of the population, leading to the formation of 2 major clusters. Inside the right-hand
side cluster, multiple over-densities suggest that the network is also able to separate
the different lc types that display much less overlap than in previous cases, except
for type IIa which can be mis-classified as Ia (orange) or Ib (green) if its early decay
or plateau phase, respectively, is too short. Interestingly, the flatter central regime
/ no flatter central regime separation is clearly visible here again and runs from the
lower-left to the upper-right corners in the templates. While this separation is sharp
and is further highlighted by the fact that different light curve types sit on both sides,
the gap observed is not as wide as in case B. Finally, part of the type 0 lcs actually
sit at the boundary between all I, II, III types, allowing for a smooth transition in lc
morphology from any type to any other. The results on this dataset thus show that the
model is able to separate different morphologies, and that a short distance, or a smooth
transition, between two populations, does suggest that there exists a whole range of
hybrid morphologies in between.
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5.5 Discussion

In this work, we set up and make use of a variational convolutional autoencoder to
carry out unsupervised clustering of GRB afterglow light curves from Swift-XRT. We
show that our model is capable of automatically clustering lcs of high similarity by
producing a synthetic dataset. We apply our model to real data and find that light
curves are segregated with observed types organising themselves in over-densities in
the latent space. The smooth transition generally observed between types suggests
that light curve morphologies actually span a continuum, and we do not recover the
traditional light curve categories. In order to make sure that these categories are not
lost because of the short timescale variability or poor sampling of part of the dataset,
we carry out the same study on two additional datasets: (i) the real light curves where
flares have been cut out, (ii) a synthetic dataset produced with parameters measured
from real light curves. We find that the overlap is still significant in the first case,
while the second case suggests the presence of clusters but necessitates a larger dataset
to confirm. The presence in all cases, however, of a visible valley of lower density
between lcs showing a flatter central regime and those without such flattening calls for
further investigation. This can be carried out along two directions, either improving
the clustering methods used, or expanding the dataset with new data collection.

Most importantly, we these qualitative results alone are not sufficient in order for us
to conclude on the intrinsic number of light curve types and we require a quantitative
measurement of cluster numbers. Indeed, visually observing clear clusters in the latent
space of the real data would have confirmed supported the approach consisting in
separating the on the Swift-XRT dataset in different light curve types, invalidating
this hypothesis however requires us to quantitatively measure the level of clustering
in the latent space in a noisy dataset. In this regard, unsupervised deep embedded
clustering (DEC, Xie et al., 2016) represents a way to force the number of clusters
the data has to form in the latent space. In order to retain the generative aspect of
our current model, new methods, such as variational deep embedding (VaDE, Jiang
et al., 2017) have been developed to combine the benefits in terms of interpretability
that a VAE offers, with the control on the number of clusters formed of DEC. To do
this, VaDE uses a mixture of Gaussians as prior, instead of a unit Gaussian, in the
latent space of a VAE. Using this method would allow us to compare the posterior
probabilities of models with varying numbers of clusters in a Bayesian model selection
approach. Other metrics such as silhouette scores and the Calinsky-Harabasz index
(Calinski & Harabasz, 1974) can help in identifying the most appropriate number of
clusters to force the data into. These measures can also be directly applied to our
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current latent representation when using other algorithms than DBSCAN, such as K-
means and K-nearest neighbours, which will be done in the near future. Pre-processing
of the lcs could also be simplified. Indeed, the role of the pre-processing is to prepare
the data to allow convergence of a machine learning model and to remove the features
of no interest (for example the absolute flux level). However, this process potentially
introduces biases. Making use of recurrent neural networks simplifies the pre-processing
and the risk of such biases appearing. This type of network is able to handle time-
series data with variable number of data-points, by keeping a memory of the information
previously seen by the network for each input time bin. The trade-off however is that
that parallel back-propagation becomes impossible and the training time is significantly
increased.
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Conclusion and Outlook

Anders: Oh my God! Look at that picture over there!
There’s the Earth coming up. Wow, that’s pretty.

Borman: Hey, don’t take that, it’s not scheduled. (joking)
Anders: (laughs) You got a color film, Jim?
Hand me that roll of color quick, would you...

Lovell: Oh man, that’s great!
— The Apollo 8 crew, taking the picture ’Earthrise’
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A lot of progress in our understanding of relativistic astrophysical transients is expected
in the near future, thanks to a new generation of instruments and detectors opening
new windows of observation. The Square Kilometer Array (Carilli et al., 2003) will
significantly improve observations in the radio band. Radio afterglow emission can be
detected at very late times and provides substantial information about the late stages
of GRB evolution and inform the transition to non-relativistic dynamics. Where the
current facilities can observe this transition only for a handful of events, SKA will
observe up to a quarter of the detected GRB population at late times (Yuan et al.,
2016). SKA will also observe afterglows below the synchrotron self-absoprtion break for
longer. Additionally, polarisation measurements in radio allow us to probe the structure
(or lack thereof) of the magnetic field in the ejecta and the surrounding medium.

Detection capabilities will be significantly enhanced by the launch of the Sino-French
Space Variable Objects Monitor (SVOM, Schanne et al., 2010) dedicated to GRB
detection and follow-up, whose one essential objective is to facilitate GRB redshift
measurement and add to the detection capabilities of the current Swift telescope. Ded-
icated ground-based facilities ensure broadband observation of the detected GRBs. This
instrument will require real-time modeling of afterglows for efficient resource observing
time allocation. Indeed, the full power of SVOM will be unlocked when conduct-
ing follow-up operations with the new generation ground-based facilities such as the
Cherenkov Telescope Array (CTA, Acharya et al., 2013) at very high energies, the
Vera Rubin Large Synoptic Survey Telescope (LSST, Ivezić et al., 2019) in optical,
and SKA in radio.

The forthcoming operations of CTA promise real advances in the understanding of the
very high energy and particle acceleration processes at play in GRBs and GRB after-
glows. The first TeV detections from the afterglows of GRB180720B and GRB190829A
by the High-Energy Stereoscopic System (HESS, Hinton, 2004), and GRB190114C
by the Major Atmospheric Gamma Imaging Cherenkov Telescopes (MAGIC, Barrio
et al., 1998), the latter attributed to synchrotron self-Compton (SSC) processes, call
for accurate incorporation of particle acceleration and scattering processes associated
with emission. All these new facilities are of course expected to also inform us on the
physics of other relativistic phenomena such as active galactic nuclei, tidal disruption
events, etc.

As we expect these new facilities to reveal ever more complex features of the GRB
afterglow phenomenon, the models describing the targeted transients have to be im-
proved for (i) accurate description of new features, (ii) accurate real-time analysis of
transients and prediction of flux evolution for resource allocation. This is particularly
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important as the global temporal evolution results from the contribution of competing
distinct components which dominate at different times. Only then is it possible to use
these new observations to properly constrain the underlying physical mechanisms.

In this context, the questions driving the argument of this thesis have been the follow-
ing:

• How can we theoretically constrain the micro-physics of emission from
GRB observations?

• How can we devise relevant and self-consistent numerical schemes to
extract such information?

• What can we learn about the phenomenology of these events using this
accurate modeling?

With this underlying framework in mind, we decided to focus on three outstanding
scientific questions regarding aspects of GRB phenomenology:

• In chapter 3 we investigated the origin of flares in the early X-ray afterglow.
We showed that these flares can be the result of the interaction of a long-lived
reverse shock with a stratified ejecta. This stratified ejecta can be the result of
chaotic central engine shutdown imprinted into the ejecta during the progenitor
collapse. Variability present at the back of a region of low velocity leads to flares
at later times. These results lift the constraints on central engine activity long
after prompt emission.

• In chapter 4 we focused on accurately modeling the trans-relativistic evolution of
the blast wave when it decelerates to non-relativistic speeds. We found that the
cooling break in the GRB afterglow spectrum does not shift with time during the
jet break, in opposition to the temporary increase between the ultra-relativistic
and Newtonian phases modeled in previous works, which bears strong implica-
tions on late-time interpretation of GRB afterglow observational data.

• In chapter 5 we investigated the variability in morphology in the current sample
of X-ray afterglow light curves with the aim to investigate whether the GRB after-
glow sample consists of separate classes or if all light curves should be interpreted
using a unified model, with unsupervised dimensionality reduction machine learn-
ing techniques.

In order to be able to carry out accurate simulations of such situations we identified
the need for a better handling of both the numerical hydrodynamics and radiative
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prescriptions. The new set of methods we presented needed to accurately handle com-
plex dynamics leading to interacting radiating shocks (i.e. multiple emission
sites) and would need to provide an accurate broadband synthetic flux to reliably
compare light curve features in different observing bands. These criteria can be met
by carrying out numerical dynamical simulations on a moving mesh and by locally
tracing the accelerated particle population downstream of radiating shocks. We imple-
mented these features in a self-contained code, GAMMA, which is publicly available and
can be used to carry out simulations of dynamics and emission from any relativistic
astrophysical source.

In the applications of GAMMA presented in this thesis, we have focused on the high-energy
end of the EM spectrum and ignored synchrotron self-absorption (SSA) which plays
a significant part in the radio range. However, unlike cooling, SSA does not need to
be implemented directly in the dynamical simulation and can simply be implemented
during the linear radiative transfer phase (Granot et al. 1999; Granot & Sari 2002; more
recently van Eerten et al. 2010b). This is actually already implemented in the code
blast and will be used in future studies. The addition of SSA leads to an additional
break frequency νa in the spectrum of a radiative shock, below which the emitting fluid
becomes optically thick. Below νa, only the front of the blast-wave is visible to the
observer. Similarly to the change in peak flux in the fast-cooling case with no SSA, we
also expect new regimes to appear below νa in the fast-cooling case with SSA. These
aspects are important to take into account when analysing the early radio emission
from afterglows, especially when trying to disentangle RS and FS contributions, which
will become crucial with SKA observations.

Having such a code at our disposal, we can apply it to some outstanding questions in
GRB research such as the flattening of the light-curve in GRB170817A which could
potentially be a manifestation of a change in particle index p (Troja et al., 2020). Our
local description of the micro-physics allows us to investigate such a situation. Ad-
ditionally, as we expect potential contribution from the associated kilonova afterglow,
only an accurate calculation of the absolute flux from the GRB afterglow can allow us
to accurately extract the KN contribution.

With new facilities starting operations in the near future, the numerical work we car-
ried out can now be expanded upon in various ways. An application of great potential
of the code is to develop a fitting tool based on templates simulated with GAMMA, along
the lines of the work carried out by van Eerten et al. (2012). This tool will provide
both improvements in terms of precision, thanks to the moving mesh, but also in terms
of accuracy as the spectra were previously obtained using the "hybrid" global cooling
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approximation, introducing an offset in the position of the cooling break. In the era
of SVOM, this tool would allow real-time modeling of light curves and consequently
help with resource allocation with an unprecedented level of accuracy. Another avenue
to explore involves the recent TeV detections from GRB afterglows, which will only
become more frequent with the first observations from CTA. In this regard, it is crucial
that we investigate how relativistic explosions can produce such high-energy emission
and pin down the radiative efficiency of the processes involved (e.g. synchrotron self-
Compton). A code that provides a local treatment of particle evolution can serve as a
test-bench for particle acceleration and light-matter interaction theory, as well as turbu-
lent magnetic field generation, as it becomes possible to experiment with various local
physical prescriptions. Continuing in this direction, the implementation of a magneto-
hydrodynamical (MHD) module can be a way to link polarisation measurements with
magnetic field geometry and behavior. It also opens the door to applications in other
fields such as AGN physics where magnetic fields play a major role with regards to jet
stability.
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A

GAMMA readme

This appendix is adapted from the documentation available at: https://github.com/
eliotayache/GAMMA/readme.md.

GAMMA is a code for modeling relativistic hydrodynamics and non-thermal emission
on a moving mesh. We provide here information on how to compile and run the test
cases included with the code.

A.1 Requirements

• gnu scientific library
• OpenMP
• MPI

A.2 Installation

Clone this repository in a directory of your choice. Move to the directory and build
the code.

git clone https://github.com/eliotayache/GAMMA/ dirname

cd dirname

make -B
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A.3 Usage

A.3.1 running a simulation

Output is stored in ./results/Last. Before you can run calculations you need to create
this directory.

mkdir -p results/Last

Use mpirun to launch computation.

mpirun -n N_nodes ./bin/GAMMA -w # to overwrite files in results/Last

mpirun -n N_nodes ./bin/GAMMA -r # to resume from the last file in results/Last

A.3.2 choice of module to use

The choice of geometry, time-integration, solver, dimensions are specified in ./Makefile

INITIAL = Tests/BM1D # Initial setup: .cpp file in src/Initial (see test examples)

TIMESTEP = rk3 # euler / rk3

GEOMETRY = spherical1D # cartesian / spherical / spherical1D

HYDRO = rel_sph # rel_cart / rel_sph

RADIATION = radiation_sph # only one option for now

SOLVER = hllc # only one option for now

DIMENSIONS = 1d # 1d / 2d

IO = text1d # text1d / text2d

A.3.3 environment variables

A range of self-explanatory environement variables are specified in src/environment.h
and should be set before running the code. The non-thermal particle population cal-
culation switches are the following.

#define SHOCK_DETECTION_ ENABLED_

#define DETECT_SHOCK_THRESHOLD_ 0.01

#define LOCAL_SYNCHROTRON_ ENABLED_ # needs SHOCK_DETECTION_ ENABLED_

#define GAMMA_MAX_INIT_ (1.e8)

#define VARIABLE_PSPEC_ DISABLED_ # needs LOCAL_SYNCHROTRON_ and SHOCK_DETECTION_ ENABLED_

A.3.4 initial setup

New initial setups can be created as new .cpp files in src/Initial. These files should
follow the same architecture as the example tests in src/Initial/Tests. They
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specify the initial grid geometry, the initial fluid values, the output times, the AMR
criteria and other user-specified (override) functions.

The geometry and fluid state are initialised on a grid Cinit. After initialisation the
calculation will be moved to the Ctotgrid that includes ghost cells. The relevant indices
to move around the various grids involved in the code are all specified in src/grid.h

In initialValues() the fluid state should be specified in terms of primitive variables
S.prim[q] with velocities in units of c.

The following functions have to be declared in this initial file:

void loadParams(s_par *par){}

int Grid::initialGeometry(){return(0);}

int Grid::initialValues(){return(0);}

void Grid::userKinematics(){}

void Cell::userSourceTerms(double dt){}

void Grid::userBoundaries(int it, double t){}

int Grid::checkCellForRegrid(int j, int i){return(skip_);}

void Cell::user_regridVal(double *res){}

void FluidState::cons2prim_user(double *rho, double *p, double *uu){}

void Simu::dataDump(){}

void Simu::runInfo(){}

void Simu::evalEnd(){}

A.4 License

MIT1

A.5 Contact

Feel free to get in touch! e.h.r.ayache@bath.ac.uk

1<https://choosealicense.com/licenses/mit/>

https://choosealicense.com/licenses/mit/
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