4,324 research outputs found

    Partially-Static Data as Free Extension of Algebras

    Get PDF
    Partially-static data structures are a well-known technique for improving binding times. However, they are often defined in an ad-hoc manner, without a unifying framework to ensure full use of the equations associated with each operation. We present a foundational view of partially-static data structures as free extensions of algebras for suitable equational theories, i.e. the coproduct of an algebra and a free algebra in the category of algebras and their homomorphisms. By precalculating these free extensions, we construct a high-level library of partially-static data representations for common algebraic structures. We demonstrate our library with common use-cases from the literature: string and list manipulation, linear algebra, and numerical simplification.Supported by the European Research Council grant ‘events causality and symmetry Ð the next- generation semantics’; the Engineering and Physical Sciences Research Council grant EP/N007387/1 ‘Quantum computation as a programming language’, and a Balliol College Oxford Career Development Fellowshi

    Unfolding Mixed-Symmetry Fields in AdS and the BMV Conjecture: I. General Formalism

    Full text link
    We present some generalities of unfolded on-shell dynamics that are useful in analysing the BMV conjecture for mixed-symmetry fields in constantly curved backgrounds. In particular we classify the Lorentz-covariant Harish-Chandra modules generated from primary Weyl tensors of arbitrary mass and shape, and in backgrounds with general values of the cosmological constant. We also discuss the unfolded notion of local degrees of freedom in theories with and without gravity and with and without massive deformation parameters, using the language of Weyl zero-form modules and their duals.Comment: Corrected typos, references added, two figures, some remarks and two subsections added for clarit

    Modular nuclearity: A generally covariant perspective

    Get PDF
    A quantum field theory in its algebraic description may admit many irregular states. So far, selection criteria to distinguish physically reasonable states have been restricted to free fields (Hadamard condition) or to flat spacetimes (e.g. Buchholz-Wichmann nuclearity). We propose instead to use a modular l^p-condition, which is an extension of a strengthened modular nuclearity condition to generally covariant theories. The modular nuclearity condition was previously introduced in Minkowski space, where it played an important role in constructive two dimensional algebraic QFT's. We show that our generally covariant extension of this condition makes sense for a vast range of theories, and that it behaves well under causal propagation and taking mixtures. In addition we show that our modular l^p-condition holds for every quasi-free Hadamard state of a free scalar quantum field (regardless of mass or scalar curvature coupling). However, our condition is not equivalent to the Hadamard condition.Comment: 42 page

    The Ernst Equation on a Riemann Surface

    Full text link
    The Ernst equation is formulated on an arbitrary Riemann surface. Analytically, the problem reduces to finding solutions of the ordinary Ernst equation which are periodic along the symmetry axis. The family of (punctured) Riemann surfaces admitting a non-trivial Ernst field constitutes a ``partially discretized'' subspace of the usual moduli space. The method allows us to construct new exact solutions of Einstein's equations in vacuo with non-trivial topology, such that different ``universes'', each of which may have several black holes on its symmetry axis, are connected through necks bounded by cosmic strings. We show how the extra topological degrees of freedom may lead to an extension of the Geroch group and discuss possible applications to string theory.Comment: 22 page

    Design and Development of Software Tools for Bio-PEPA

    Get PDF
    This paper surveys the design of software tools for the Bio-PEPA process algebra. Bio-PEPA is a high-level language for modelling biological systems such as metabolic pathways and other biochemical reaction networks. Through providing tools for this modelling language we hope to allow easier use of a range of simulators and model-checkers thereby freeing the modeller from the responsibility of developing a custom simulator for the problem of interest. Further, by providing mappings to a range of different analysis tools the Bio-PEPA language allows modellers to compare analysis results which have been computed using independent numerical analysers, which enhances the reliability and robustness of the results computed.

    A Survey of Languages for Specifying Dynamics: A Knowledge Engineering Perspective

    Get PDF
    A number of formal specification languages for knowledge-based systems has been developed. Characteristics for knowledge-based systems are a complex knowledge base and an inference engine which uses this knowledge to solve a given problem. Specification languages for knowledge-based systems have to cover both aspects. They have to provide the means to specify a complex and large amount of knowledge and they have to provide the means to specify the dynamic reasoning behavior of a knowledge-based system. We focus on the second aspect. For this purpose, we survey existing approaches for specifying dynamic behavior in related areas of research. In fact, we have taken approaches for the specification of information systems (Language for Conceptual Modeling and TROLL), approaches for the specification of database updates and logic programming (Transaction Logic and Dynamic Database Logic) and the generic specification framework of abstract state machine

    Thermodynamics of Higher Spin Black Holes in AdS3_3

    Get PDF
    We discuss the thermodynamics of recently constructed three-dimensional higher spin black holes in SL(N,R)\times SL(N,R) Chern-Simons theory with generalized asymptotically-anti-de Sitter boundary conditions. From a holographic perspective, these bulk theories are dual to two-dimensional CFTs with W_N symmetry algebras, and the black hole solutions are dual to thermal states with higher spin chemical potentials and charges turned on. Because the notion of horizon area is not gauge-invariant in the higher spin theory, the traditional approaches to the computation of black hole entropy must be reconsidered. One possibility, explored in the recent literature, involves demanding the existence of a partition function in the CFT, and consistency with the first law of thermodynamics. This approach is not free from ambiguities, however, and in particular different definitions of energy result in different expressions for the entropy. In the present work we show that there are natural definitions of the thermodynamically conjugate variables that follow from careful examination of the variational principle, and moreover agree with those obtained via canonical methods. Building on this intuition, we derive general expressions for the higher spin black hole entropy and free energy which are written entirely in terms of the Chern-Simons connections, and are valid for both static and rotating solutions. We compare our results to other proposals in the literature, and provide a new and efficient way to determine the generalization of the Cardy formula to a situation with higher spin charges.Comment: 30 pages, PDFLaTeX; v2: typos corrected, explicit expressions for the free energy adde

    Topological features of massive bosons on two dimensional Einstein space-time

    Full text link
    In this paper we tackle the problem of constructing explicit examples of topological cocycles of Roberts' net cohomology, as defined abstractly by Brunetti and Ruzzi. We consider the simple case of massive bosonic quantum field theory on the two dimensional Einstein cylinder. After deriving some crucial results of the algebraic framework of quantization, we address the problem of the construction of the topological cocycles. All constructed cocycles lead to unitarily equivalent representations of the fundamental group of the circle (seen as a diffeomorphic image of all possible Cauchy surfaces). The construction is carried out using only Cauchy data and related net of local algebras on the circle.Comment: 41 pages, title changed, minor changes, typos corrected, references added. Accepted for publication in Ann. Henri Poincare
    corecore