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Partially-static data structures are a well-known technique for improving binding times. However, they are

often defined in an ad-hoc manner, without a unifying framework to ensure full use of the equations associated

with each operation.

We present a foundational view of partially-static data structures as free extensions of algebras for suitable

equational theories, i.e. the coproduct of an algebra and a free algebra in the category of algebras and their

homomorphisms. By precalculating these free extensions, we construct a high-level library of partially-static

data representations for common algebraic structures. We demonstrate our library with common use-cases

from the literature: string and list manipulation, linear algebra, and numerical simplification.
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1 INTRODUCTION

The defining feature of multi-stage programming is putting fine-grained control over beta reduction
in the hands of the programmer. For example, the multi-stage programming language Typed
Template Haskell [Peyton Jones 2016] extends Haskell with two constructs. The first construct,
quotation (written J e K), prevents beta reduction, turning an arbitrary expression into a value:

J f x K -- f x should not be reduced

The second construct, antiquotation (written $e), re-enables beta reduction inside a quotation:

J f $(g x) K -- g x should be reduced

A notable property of this style of quotation is support for reduction under lambda, with support
for quoting open terms:

J \x → $(f JxK) K -- f JxK should be reduced
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This fine-grained control over evaluation provides a basis for optimisation. In the execution of a
multi-stage program, each stage executes code constructed from quoted expressions in the previous
stage. Careful insertion of quotations and antiquotations allows terms depending only on known
values to be reduced during generation, leaving only terms depending on unknown values to be
reduced in the following stage.

The standard introductory example of multi-stage programming [Taha 2003] is the power func-
tion, implemented in terms of multiplication:

power :: Int → Int → Int

power x 0 = 1

power x n = x * power x (n - 1)

Under the assumption that the exponent n will be available to the generating stage, the program-
mer adds staging annotations and changes the types accordingly. (Here Code, an alias for Typed
Template Haskell’s Q (TExp a), is the type of quoted expressions):

power :: Code Int → Int → Code Int

power x 0 = J1K

power x n = J$x * $(power JxK (n - 1))K

Now power is no longer a function on integers, but a code generator: the application of power to
a variable x and an integer n evaluates to an expression specialized to the exponent, in which the
overhead of the recursive call and the branch have been eliminated:

power JxK 6 { J x * (x * (x * (x * (x * (x * 1))))) K

However, while the generated code is likely to outperform the unstaged power, there is evidently
room for further improvement. First, there is a needless multiplication by 1. More significantly, the
number of multiplications can be further reduced by let-binding intermediate results:

J let y = x * x in let z = y * y in z * y K

Evidently, beta reduction alone will not perform these simplifications, no matter how we coax it
by inserting quotation and antiquotation annotations. No series of beta reductions will perform
these simplifications, which are justified by the algebraic properties of multiplication Ð in this case,
that integers with multiplication form a monoid.

Similar difficulties occur in a wide variety of staged programs, as we illustrate in ğ4. In programs
that are staged by quoting expressions the structure of the generated code is determined by the
evaluation structure of the generator, and algebraic laws play no part in code generation.

Howmight we deal with this difficulty? First, we might restructure the source program (e.g. defin-
ing power via an auxiliary function square). However, relying on the programmer to take account
of algebraic laws does not scale well. Second, we might post-process generated code to perform
algebraic simplifications. However, this risks giving up the most desirable properties of multi-stage
programming: namely that code transformations can be implemented by the programmer within
the language itself. Finally, we might introduce specialized numeric representations that simplify
generated code using laws of the underlying algebraic structure. This is, in our view, the most
promising approach, and is widely used in the multi-stage programming literature (ğ7).
This paper builds on this third approach, re-examining the foundations of these partially-static

structures, which are typically approached in ad-hoc fashion, and conceptualising themwith a single
universal property, in terms of the operations and equations involved. Universality translates into a
functional specification which we need to implement and validate, and replaces the uncertainty of
designing a new data structure with the precise activity of implementing a specification.
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For concreteness we present our approach as a Haskell library, frex; however, the formulation
transfers straightforwardly to other settings. (In the extended version of this paper we describe a
second implementation of frex in the multi-stage language BER MetaOCaml [Kiselyov 2014].)
The frex library has a number of appealing features. First, frex applies algebraic simplification

during the normal evaluation of a generating stage of a multi-stage program Ð i.e. it turns algebraic
simplification into beta reduction, improving the performance of generated programs. Second, frex
provides drop-in replacements for many common algebraic structures that make it possible to
repurpose existing polymorphic code for staging. Third, by unifying a wide variety of partially-static
structures under the single concept of a free extension, frex exposes a tiny user-facing interface
consisting of just three simple functions together with existing algebraic classes.

The contributions of this paper are as follows:

• ğ2 provides a general introduction to the principles underlying partially-static structures
with algebraic laws, starting with binary operations with no equations, and showing the
effect on the representation of adding associativity and commutativity laws.

• ğ3 shows how the considerations in ğ2 identify each partially-static structure with a free
extension Ð i.e. the coproduct of an algebra and a free object in the appropriate category.
The unifying view provided by free extensions transforms programming with partially-static
data, as monads have transformed programming with effects: it guides the definition of
instances and programs, clarifies semantic properties, and provides a high-level framework
in which many common patterns can be uniformly abstracted.

• ğ4 uses free extensions to define a variety of partially-static instances for algebraic structures:
monoids (ğ4.1), commutative monoids and abelian groups (ğ4.5), sets (ğ4.8), commutative
rings and semirings (ğ4.11), distributive lattices (ğ4.13) and algebraic data types (ğ4.15).
In each case we illustrate the structures with examples drawn from the literature, showing
how frex can be applied to programming problems such as arithmetic, pretty-printing, linear
algebra and list manipulation, to improve generated code by algebraic simplifications.
As the representative benchmarks in ğ6 demonstrate, these simplifications translate directly
into faster running times.

• The major part of this paper is intended to be accessible, since we hope that frex and its
techniques will be widely adopted by functional and multi-stage programmers, as well as in
other settings such as compiler optimisation and partial evaluation. However, readers with
some familiarity with universal algebra will find a more formal justification for using free
extensions to represent partially-static structures in ğ5.

• ğ7 contextualizes our contributions among the work on partially-static data.

2 DEFINING PARTIALLY-STATIC STRUCTURES

How might we build implementations of algebraic operations that support computation with
partially-static data? This section sketches a general approach to defining these partially-static
algebras that can be used as drop-in replacements for standard instances in type-class polymorphic
code. ğ4 describes the implementation of this approach as a high-level, modular and extensible
library, which applies directly to several examples drawn from the literature.
We start with the simplest non-trivial algebraic structure. A magma consists of a set a along

with a binary operation. We define a Haskell class Magma and introduce a picture form, representing
the binary constructor • as a binary branch in a tree:

class Magma a where (•) :: a → a → a

•
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There are many instances of Magma, since any binary operation for a type forms a magma. The
most general instance simply represents the tree structure directly:

data Tree a where

Leaf :: a → Tree a

Branch :: Tree a → Tree a → Tree a

instance Magma (Tree a) where

(•) = Branch

Here is a second Magma instance, for multiplication for integers, using a type isomorphism Int× to
distinguish the instance from magmas for other integer operations such as addition or subtraction:

newtype Int× = Int× Int

instance Magma Int× where (Int× x) • (Int× y) = Int× (x × y)

Then we can define trees using the Magma operation together with integer values, and interpret
those trees using the Magma instance for Int×:

•

•

32

1

×

×

32

1

6
instantiate reduce

So the reduced form of a magma term instantiated to Int× is (isomorphic to) a single integer.
We would also like to compute with open terms containing free variables x1, x2, such as these:

x0

•

x11

•

•

x23

2

•

x4x3

The type Tree (Either Int (Code Int)) gives a simple representation for these mixed trees.
However, this representation keeps all trees, even those without free variables, in unreduced form.

Free Variables and Binding-Time Analysis. In our setting free variables correspond to what are
called dynamic variables in the partial evaluation literature, and integer values correspond to static

values. The division into static and dynamic also extends to terms: dynamic terms are terms that
mention some dynamic variables; other terms are static.

•

•

32

•

1xdy
n
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at
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Fig. 1. Binding-time analysis

A classification of terms into static and dynamic is called a
binding-time analysis. Fig. 1 shows a binding-time analysis for
a magma tree. The left child contains a dynamic variable, and so it
is classified as dynamic. The right child contains only static values,
and so it is classified as static. The root tree has a dynamic left child,
and so it is classified as dynamic.
The aim of the binding-time analysis is to identify static sub-

terms, since it is only those terms that can be reduced. Here is an
illustration: the right sub-term is static, and consequently reduced,
but no further reduction can take place, since all remaining terms are dynamic:

•

•

32

•

1x

×

×

32

×

1x

×

6×

1x

instantiate reduce

Even before instantiation it was evident that the dynamic terms would block reduction.
We can define a representation for mixed trees that takes binding-times into account, allowing

reduction of static sub-trees. We start with a definition of binding-times, BindingTime, and an
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indexed type BT that reflects BindingTime at the type level, so that we can enforce constraints about
binding-times in representations of data:

data BindingTime =

Sta

| Dyn

data BT :: BindingTime → * where

BTSta :: BT Sta

BTDyn :: BT Dyn

Using BindingTimewe define an indexed type SD to stand in for Either a (Code a), and a function
btSD that computes the binding time for an SD value:

data SD :: BindingTime → * → * where

S :: a → SD Sta a

D :: Code a → SD Dyn a

btSD :: SD bt a → BT bt

btSD (S _) = BTSta

btSD (D _) = BTDyn

Finally, the Mag type represents magma terms that do not contain unreduced static subtrees.
Leaves may be static or dynamic (LeafM); if the left branch of a tree is static then the right must be
dynamic (Br1); if the left branch is dynamic then the right may be static or dynamic (Br2):

data Mag :: BindingTime → * → * where

LeafM :: SD bt a → Mag bt a

Br1 :: Mag Sta a → Mag Dyn a → Mag Dyn a

Br2 :: Mag Dyn a → Mag r a → Mag Dyn a

btMag :: Mag bt a → BT bt

btMag (LeafM m) = btSD m

btMag (Br1 _ _) = BTDyn

btMag (Br2 _ _) = BTDyn

Here is the magma instance itself. The definition of • uses binding times to reduce the number
of cases to the three circumstances of interest: the case where both operands are static (in which
case the elements must be coalesced), and the two cases that correspond to Br1 and Br2:

instance Magma a ⇒ Magma (Exists Mag a) where

E a • E b = case (btMag a, btMag b, a, b) of

(BTSta, BTSta, LeafM (S a), LeafM (S b)) → E (LeafM (S (a • b)))

(BTSta, BTDyn, l, r) → E (Br1 l r)

(BTDyn, _ , l, r) → E (Br2 l r)

The Mag instance uses an existential type to hide the BindingTime index in order to conform
to the Magma interface. Existential types will come in useful on several occasions, so we define a
general Exists type that hides the first parameter b of a binary type constructor f, using kind
polymorphism to support arbitrary index kinds:

data Exists (f :: k1 →k2 →*) a where E :: f b a → Exists f a

Equality and Associativity. Trees are considered equal if they have the same shape and if corre-
sponding leaves are equal. Furthermore, trees are considered equal if they reduce to equal trees.

Adding laws to the algebraic structure groups trees into larger equivalence classes. For example,
an associativity law equates trees with different branching structures:

•

•

cb

a

•

c•

ba

≡

Here a, b, c stand for arbitrary terms.
A magma with an associativity law is called a semigroup. We introduce a corresponding Haskell

class, Semigroup, with the same members as Magma, and an additional obligation for instances, stated
in a comment: the implementation of • must be associative:

class Magma a ⇒ Semigroup a -- a • (b • c) ≡ (a • b) • c
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For example, the instance for integers with multiplication can be made into a valid Semigroup

instance, since multiplication is associative:

instance Semigroup Int×

Magmas for non-associative operations, such as subtraction, do not give rise to semigroups.
Standard Haskell does not provide a way of ensuring that instances obey the laws of their class.

However, some extensions, such as Liquid Haskell, provide various means of checking that instances
are law-abiding.
With the associativity law, trees are equal if they have the same sequence of leaves; branching

structure is no longer relevant.

•

•

•

x4x3

x2

x1

2.0.1 Equivalence and Normal Forms. It is convenient to pick a canonical rep-
resentative of each equivalence class, i.e. a normal form. Without the associativity
law the canonical representative of each class is the tree that has been reduced as
much as possible.
For trees without any free variables the most-reduced tree is a single static

element, such as an element of Int×. For trees with only free variables, there is
no reduction, and a normal form is a fully right-associated tree Ð equivalent to a

non-empty value of type [Code a]. (This is called the free semigroup.)
What is the normal form for a tree with both integers and free variables? For magmas the normal

form is represented by Mag, which ensures that static subtrees are reduced. For semigroups it is
additionally possible to reassociate the tree to make adjacent nodes (i.e. nodes that are adjacent in
the left-to-right leaf order) into siblings (i.e. nodes with the same parent):

•

•

x23

•

2x1

•

•

x2•

32

x1

reassociate

Making adjacent static nodes into siblings makes it possible to reduce the parent node. So a
normal form for trees with both static and dynamic elements is a fully right-associated tree with
no adjacent static nodes:

•

•

x2•

32

x1

•

•

x26

x1

reduce

In the partial evaluation literature, a change in term structure that increases the number of static
terms is called a binding-time improvement.
As with Magma, we can define a datatype for mixed semigroup trees in normal form. Besides

ensuring that there should be no unreduced static subtrees the Semi type adds a new constraint that
all trees are kept in right-associated form, bymaking the first arguments of the two binary-branching
constructors ConsS and ConsD atoms rather than trees:

data Semi :: BindingTime → * → * where

LeafS :: SD bt a → Semi bt a

ConsS :: a → Semi Dyn a → Semi Dyn a

ConsD :: Code a → Semi r a → Semi Dyn a
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It is convenient to define auxiliary functions that add static and dynamic elements to the left
of the tree. The consS function adds a static element to a Semi tree; if there is a static element in
leftmost position already, consS combines the two elements using •:

consS :: Magma a ⇒ a → Exists Semi a → Exists Semi a

consS h (E (LeafS (S s))) = E (LeafS (S (h • s)))

consS h (E t@(LeafS (D _))) = E (ConsS h t)

consS h (E (ConsS s t)) = E (ConsS (h • s) t)

consS h (E t@(ConsD _ _)) = E (ConsS h t)

The consD function is simpler, because dynamic elements may be added to the left of any tree:

consD :: Code a → Exists Semi a → Exists Semi a

consD h (E t) = E (ConsD h t)

Finally, here are Magma and Semigroup instances for Semi:

instance Semigroup a ⇒ Magma (Exists Semi a)

where E (LeafS (S s)) • l = consS s l

E (LeafS (D d)) • l = consD d l

E (ConsS h t) • l = consS h (E t • l)

E (ConsD h t) • l = consD h (E t • l)

instance Semigroup a ⇒

Semigroup (Exists Semi a)

The final two cases of • may traverse the entire left operand to handle the case where the final
static element on the left should be coalesced with the initial static element on the right:

•

•

2x1

1

•

•

4x2

3

•

•

•

•

4x2

2×3

x1

1

•

Commutativity. Adding an associativity law made trees equivalent that were previously distinct
and made trees reducible that were previously irreducible. Adding a second law for commutativity
coalesces more equivalence classes and adds further opportunities for reduction:

•

ba

•

ab≡

The CSemigroup class adds a law to make • commutative:

class Semigroup a ⇒ CSemigroup a -- a • b ≡ b • a

Since many types of element have no notion of ordering, we must represent ordering directly in
the tree structure. We introduce a new tree constructor, with an unordered bag of n children:

a
bc

The ability to reorder subtrees significantly simplifies the normal form. Since all the static
elements can be moved to one end, and subsequently reduced, the normal form for a mixed static-
dynamic commutative semigroup is simply a pair of an optional single static element and an
unordered bag of dynamic variables:
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•

s x1
x2x3

Here is the normal form in Haskell, using the standard multiset to represent bags:

data CSemi a = CSemi (Maybe a) (MultiSet (Code a))

Then l • r is a pair whose components are built from the corresponding parts of l and r using
• for the underlying magma lifted to Maybe values for the static component and multiset union for
the bag of dynamic variables:

instance CSemigroup a ⇒ Magma (CSemi a) where

CSemi s1 d1 • CSemi s2 d2 = CSemi (s1 •? s2) (union d1 d2)

where Nothing •? m = m

m •? Nothing = m

Just m •? Just n = Just (m • n)

3 PARTIALLY-STATIC DATA: A GENERAL INTERFACE

ğ2 introduced the ideas behind computing with partially-static algebras. We now look at how to
turn these ideas from a design pattern into a general abstraction that can be instantiated with
particular algebras to support partially-static computation that turns algebraic equations into
beta reduction. The general abstraction is the core of our Haskell library, frex, which provides
an extensible and modular interface to partially-static data. The ideas behind frex are not tied
to any particular language, and in the extended version of this paper we also describe a second
implementation of frex in MetaOCaml.

3.1 Partially-Static Data: Requirements

With the aim of constructing an interface PS to partially static data, we start with a list of require-
ments, distilled from the discussion up to this point.

First, the PS type is intended to work with a variety of algebraic structures, and so we parameterise
it by an algebraic structure and the type of the data it represents:

PS :: (* → Constraint) → * → *

The first parameter is a constraint that stands for a type class such as Magma or CSemigroup.
Next, it should be possible to use partially-static values in place of either fully-static or fully-

dynamic values, and so PS should support injections from static and dynamic data:

sta :: algebra a ⇒ a → PS algebra a

dyn :: Code a → PS algebra a

(We will extend these type signatures with further constraints in ğ3.3.) In ğ2, sta and dyn took
various forms: LeafM (S -) and LeafM (D -) for magmas, and LeafS (S -) and LeafS (D -) for
semigroups. For commutative semigroups the injections can be written as follows

staCS = λs → CSemi (Just s) empty

dynCS = λd → CSemi Nothing (singleton d)

Furthermore, PS algebra itself should be an instance of algebra, since it is intended to stand in
for contexts where an algebra instance is expected. For example, the partially-static structure for
semigroups should be a semigroup instance.
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class (algebra a, algebra b, algebra (Coprod algebra a b)) ⇒ Coproduct algebra a b

where data family Coprod algebra a b :: *

inl :: a → Coprod algebra a b

inr :: b → Coprod algebra a b

eva :: algebra c ⇒ (a → c) → (b → c) → Coprod algebra a b → c

Fig. 2. The Coproduct interface

3.2 Coproducts

These considerations suggest designing frex around coproducts Ð that is, not the familiar binary
sums that Haskell calls Either, but the more general notion of coproducts in a category, whose
representation varies according to the category.
Fig. 2 defines the coproduct interface as a Haskell type class, Coproduct, with three parameters

and four components.
The three parameters algebra, a, and b, respectively represent a type class for a particular

algebraic structure and the two types that comprise the coproduct. For example, Coproduct
Monoid Int String represents the coproduct of Int and String in the category of monoids. The
first two class constraints algebra a and algebra b constrain the instantiation of the parameters to
types that have instances of algebra. For example, the instantiation Coproduct Monoid Int String

is only allowed if there exist type class instances of Monoid for Int and String.
The first component, Coprod, is the type of values of the coproduct of a and b in the cate-

gory algebra. Coprod is an associated data type [Chakravarty et al. 2005], whose definition varies
with each instance of the Coproduct class. For example a coproduct in the category of monoids,
Coprod Monoid Int String, is an alternating sequence similar to the Semi type of ğ2 (and defined
more precisely in ğ4.1), whereas the type Coprod Set Int String, a coproduct in the category of
sets, is the familiar binary sum type (ğ4.8).
The final class constraint algebra (Coprod algebra a b) ensures that each instantiation of

Coprod is an instance of the algebraic structure algebra Ð for example, there must be a Monoid

instance for the type Coprod Monoid a b. The second and third components, inl and inr, inject
values of a and b into Coprod. The final component eva is a kind of fold that generalizes the standard
either function, producing a value of type c from a value of type Coprod and functions from a and
b to c. For example, if algebra has an operation • then eva behaves as follows:

eva f g (inl s1 • inr d1 • inl s2 • . . . ) { f s1 • g d1 • f s2 • . . .

where the • operations on the left are from Coprod algebra a b and the • operations on the right
are from c. (In particular, eva inl inr is the identity.) The constraint algebra c in the type of eva
ensures that c is also an instance of the algebraic structure associated with the instance: for example,
a coproduct of monoids can only be eliminated into a monoid.

3.3 Free Objects and Free Extensions

ğ3.2 provides a general interface to coproducts. However, computing with partially-static data
requires a particular form of coproduct, where the left type is some type a and the right type is
generated by quoted terms Code a. Furthermore, while there are no constraints on the left algebraic
structure, the right structure is always free, since Code values do not have computational behaviour
or additional equations.
In other words, we are interested in what are called free extensions: coproducts of algebras and

free objects. This section defines a general interface to free algebras and shows how they combine
with Coproduct to give free extensions.
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class algebra (FreeA algebra x) ⇒ Free algebra x where

data family FreeA algebra x :: *

pvar :: x → FreeA algebra x

pbind :: algebra c ⇒ FreeA algebra x → (x → c) → c

Fig. 3. Free algebraic structures, Free

FreeExtC :: (* → Constraint) → * → Constraint

type FreeExtC algebra a = Coproduct algebra a (FreeA algebra (Code a))

FreeExt :: (* → Constraint) → * → *

type FreeExt algebra a = Coprod algebra a (FreeA algebra (Code a))

Fig. 4. Free extensions: constraint alias FreeExtC and type alias FreeExt

Fig. 3 defines a type class Free indexed by a constraint, algebra, and a type x. An instance
Free algebra x represents the free algebra for algebrawith variables in x; for example, Free Semigroup

(Code Int) represents the free semigroup with variables in Code Int.
There are three class members. First, FreeA is the type of values in the free algebra; as with

Coprod, the definition of the type varies with each instance. For instance, the free algebra for
Semigroup is a non-empty list of variables, while the free algebra for CSemigroup is a non-empty
multiset. Second, pvar injects a variable into FreeA. Finally, the monadic pbind maps a value of
FreeA into another algebra c via a function that injects variables into c. The class constraint
algebra (FreeA algebra x) stipulates that there must be an algebra instance for FreeA so that, for
example, the type FreeA Semigroup m must also support the operation • in addition to pvar.

Fig. 4 shows how the Coproduct and Free classes combine to give the definition of a free extension
as a coproduct of an algebra and a corresponding free algebra. There are two definitions: FreeExtC
defines a constraint that may appear to the left of a fat arrow (⇒), while FreeExt names the type
associated with the FreeExtC instance. For example, FreeExt Semigroup Int defines the type of the
free extension of semigroups for integers as an alternating sequence (the coproduct) of integers
and lists of integer code values (the free algebra).
The definitions of Fig. 4 form a crucial part of the general partially-static data interface (ğ3.5).
It is worth emphasizing that the free extension structure may look quite different from both the

static and the dynamic instance. For example, in the semigroup of integers with multiplication each
expression reduces to a single integer; in the free semigroup each expression reduces to a non-empty
sequence of names; in the semigroup free extension each expression reduces to a sequence of integers
and names, with the additional constraint that there are no adjacent integer elements.
These considerations lead to new definitions for sta and dyn. We drop the provisional name PS

in favour of using FreeExt directly, and write:

sta :: (algebra a, FreeExtC algebra a) ⇒ a → FreeExt algebra a

sta = inl

dyn :: (Free algebra (Code a), FreeExtC algebra a) ⇒ Code a → FreeExt algebra a

dyn = inr . pvar

The first definition defines sta, the function that builds partially-static representations from static
values, as the left injection into the free extension of an algebra. The second definition defines dyn
as the composition of the injection into the free object and the injection into the free extension.
The constraints ensure that there are algebra and Free algebra instances available for the static
and dynamic components and FreeExtC algebra instances available for the results.
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Viewing partially-static algebraic structures as free extensions makes explicit some additional
requirements on the implementation of instances. For example, sta should be a homomorphism
with respect to each operation •, i.e.:

sta x • sta y ≡ sta (x • y)

Furthermore, eva should preserve the laws of the algebra, so that terms that are equivalent under
the laws remain equivalent when eva is applied.

3.4 From Partially-Static to Fully Dynamic

The eva function is a general-purpose destructor for coproducts. The most common use of eva with
partially-static data is residualization: turning partially-static values into fully-dynamic values.
A residualization function can be obtained from eva as follows. First, specialize eva to FreeExt,

where the second type parameter to Coproduct is instantiated to FreeA algebra (Code a):

evaFE :: (FreeExtCon algebra a, algebra c) ⇒

(a → c) → (FreeA algebra (Code a) → c) → FreeExt algebra a → c

evaFE = eva

Next, instantiate the return type of evaFE to Code a:

evaCode :: (FreeExtCon algebra a, algebra (Code a)) ⇒

(a → Code a) →(FreeA algebra (Code a) → Code a) →FreeExt algebra a →(Code a)

evaCode = evaFE

Finally, supply suitable arguments for the first two parameters of evaCode. The first argument to eva

converts static values to code; this is the purpose of tlift, a typed variant of Template Haskell’s
lift function that provides an interface to cross-stage persistence:

tlift :: Lift a ⇒ a → Code a

tlift = liftM TExp . lift

The second argument to eva builds Code values from values of a free object; this can be accomplished
with pbind (ğ3.3).

This series of specializations produces the following residualization function, which is the final
component of frex’s general interface to partially-static data.

cd :: (Lift a, Free algebra (Code a), algebra (Code a), FreeExtC algebra a) ⇒

FreeExt algebra a → Code a

cd = eva tlift (`pbind` id)

Here is cd in action:

cd ((dyn JxK • sta 2) • (sta 3 • dyn JyK)) { Jx × 6 × y K

And, of course, cd preserves the laws of the algebra, since eva does, so that equivalent partially-
static computations are residualized to equivalent code.

3.5 Using frex

Fig. 5 summarises frex’s interface to partially-static data.
How does one use frex to write programs? In order to use frex to program with partially-static

representations for an algebraic structure such as Monoid or Ring, two things are needed: a free
extension instance for the structure, and instances of the structure for particular types such as Int
or String. In many cases, these requirements will be met by the combination of frex and existing
Haskell libraries. Here are some common scenarios:
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FreeExtC :: (* → Constraint) → * → Constraint

type FreeExtC algebra a = Coproduct algebra a (FreeA algebra (Code a))

FreeExt :: (* → Constraint) → * → *

type FreeExt algebra a = Coprod algebra a (FreeA algebra (Code a))

sta :: (algebra a, FreeExtC algebra a) ⇒ a → FreeExt algebra a

sta = inl

dyn :: (Free algebra (Code a), FreeExtC algebra a) ⇒ Code a → FreeExt algebra a

dyn = inr . pvar

cd :: (Lift a, Free algebra (Code a), algebra (Code a), FreeExtC algebra a) ⇒

FreeExt algebra a → Code a

cd = eva tlift (`pbind` id)

Fig. 5. frex’s generic interface to partially-static data

3.5.1 Using frex with Existing Instances. Frex includes pre-defined free extensions for a number
of structures, including sets, monoids, commutative rings, distributive lattices, abelian groups, and
F-algebras. If frex already defines a free extension for a structure and some other library provides
instances of the structure for types in the program, using frex is typically simply a matter of
inserting sta, dyn and cd.
For example, since the standard library provides a String instance for Monoid, nothing more is

needed to write programs involving partially-static strings:

cd ((dyn JxK `mappend` sta "abc") `mappend` (sta "def" `mappend` dyn JyK))

{ Jx `mappend` "abcdef" `mappend` yK

3.5.2 Creating New Instances to Use with frex. Similarly, no special work is needed to add new
instances to frex when the free extension is already defined. For example, adding a CMonoid instance
for () (building on the existing Monoid instance) is sufficient to enable frex’s commutative monoid
simplifications:

instance CMonoid ()

3.5.3 Adding New Classes to frex. Finally, adding new structures to frex is a matter of defining
suitable Coproduct and Free instances; again, no modifications to frex internals are needed. ğ4
provides a number of examples, building on the discussion in ğ2.

4 INSTANCES AND APPLICATIONS

With the general interface in place (Fig. 5), we now turn to the implementation of free extensions
for common algebraic structures: monoids (ğ4.1), commutative monoids and abelian groups (ğ4.5),
sets (ğ4.8), commutative rings (ğ4.11), distributive lattices (ğ4.13), and F-algebras (ğ4.15).

In many cases the general coproduct for the structure and the free object can be defined separately,
then combined to give the free extension. However, in some cases (e.g. ğ4.11) where it is not possible
to give a general form for the coproduct, we define the free extension directly.
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class Monoid t where

1 :: t

(⊛) : t → t → t

1 ⊛ x ≡ x ≡ x ⊛ 1

x ⊛ (y ⊛ z) ≡ (x ⊛ y) ⊛ z

Fig. 6. Monoids and their laws

data AorB = A | B

data Alternate :: AorB → * → * → * where

Empty :: Alternate any a b

ConsA :: a → Alternate B a b → Alternate A a b

ConsB :: b → Alternate A a b → Alternate B a b

Fig. 7. An alternating sequence of a and b elements

instance (Monoid a, Monoid b) ⇒ Coproduct Monoid a b where

data Coprod Monoid a b where M :: Alt _ a b → Coprod Monoid a b

inl a = M (ConsA a Empty)

inr b = M (ConsB b Empty)

eva (f :: a → d) (g :: b → d) (M c) = eva' c

where eva' :: Alternate start a b → d

eva' Empty = 1

eva' (ConsA a Empty) = f a

eva' (ConsB b Empty) = g b

eva' (ConsA a m) = f a ⊛ eva' m

eva' (ConsB b m) = g b ⊛ eva' m

Fig. 8. The coproduct of monoids

4.1 Coproduct of Monoids

Fig. 6 defines a Monoid class. The free extension for monoids is an instance of the more general
coproduct of monoids, and a slight variant of the partially-static structure for semigroups (ğ2).

Fig. 8 gives the Coproduct instance for the Monoid class constraint, built from Monoid instances a
and b. As with Semi, the Coprod type is defined as a sequence of alternating a and b elements (Fig. 7),
indexed by the type of the first element in the list, and with the index hidden by an existential
(here M) to allow either a-prefixed or b-prefixed sequences. Unlike semi, the sequence may be empty,
since Monoid adds an identity element. The inl and inr injections create singleton sequences, and
eva is a fold over the sequence, using the ⊛ operation of the target monoid to combine the results.
As a small optimization, eva does not map the Empty constructor to 1 except in the case where the
input sequence has no elements.
The constraints in the Coproduct class specify that each data instance Coprod alg a b is an

instance of alg. For example the type Coprod Monoid a b should be an instance of Monoid.
Fig. 9 defines the Monoid instance for Coprod Monoid a b, where a and b also have instances of

Monoid.
The 1 and⊛ operations respectively construct an empty sequence and concatenate two sequences.

Prepending an a element to an a-prefixed sequence combines the element with the head of the
sequence using the ⊛ operation of the a monoid, and similarly for b, mutatis mutandis.
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instance (Monoid a, Monoid b) ⇒ Monoid (Coprod Monoid a b) where

1 = M Empty

M l ⊛ M r = l `mul` r

where mul :: (Monoid a, Monoid b) ⇒

Alternate s a b → Alternate s' a b → Coprod Monoid a b

mul l Empty = M l

mul Empty r = M r

mul (ConsA a m) r | M m' <- mul m r = M (consA a m')

mul (ConsB b m) r | M m' <- mul m r = M (consB b m')

consA :: Monoid a ⇒ a → Alternate s a b → Alternate A a b

consA a Empty = ConsA a Empty

consA a (ConsA a' m) = ConsA (a ⊛ a') m

consA a r@(ConsB _ _) = ConsA a r

consB :: Monoid b ⇒ b → Alternate s a b → Alternate B a b

consB b Empty = ConsB b Empty

consB b (ConsB b' m) = ConsB (b ⊛ b') m

consB b r@(ConsA _ _) = ConsB b r

Fig. 9. The coproduct of monoids is a Monoid

instance Free Monoid x where

newtype FreeA Monoid x = P [x] deriving (Monoid)

pvar x = P [x]

P [] `pbind` f = 1

P xs `pbind` f = foldr ((⊛) . f) 1 xs

Fig. 10. Free instance for Monoid
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Fig. 11. Partially-static monoid: dropping 1
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Fig. 12. Partially-static monoid: coalescing adjacent static values

4.2 Free Monoids and the Free Extension

Fig. 10 shows the Free instance for Monoid. The free monoid with variables in x is simply a list of x
values. The pbind function maps a free monoid value into any other monoid:

(pvar x1 ⊛ pvar x2 ⊛ ... ⊛ pvar xn) `pbind` f { (f x1 ⊛ f x2 ⊛ ... ⊛ f xn)

Type class resolution combines the Free and Coproduct instances to form the free extension FreeExt.
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class Format f where

type Acc f a :: *

lit :: String → f a a

cat :: f b a → f c b → f c a

int :: f a (Acc f Int → a)

str :: f a (Acc f String → a)

sprintf :: f (Acc f String) a → a

Fig. 13. Format signature

instance Format Fmt where

type Acc Fmt a = a

lit x = Fmt $ \k s →k (s ++ x)

f `cat` g = Fmt (fmt f . fmt g)

int = Fmt $ \k s x →k (s ++ show x)

str = Fmt $ \k s x →k (s ++ x)

sprintf p = fmt p id ""

Fig. 14. An unstaged Format implementation

instance Format FmtS where

type Acc FmtS a = Code a

lit x = FmtS $ \k s →k J $s ++ x K

f `cat` g = FmtS (fmtS f . fmtS g)

int = FmtS $ \k s x →k J $s ++ show $x K

str = FmtS $ \k s x →k J $s ++ $x K

sprintf p = fmtS p id J "" K

Fig. 15. An staged Format implementation

instance Format FmtPS where

type Acc FmtPS a = Code a

lit x = FmtPS $ \k s →k (s ⊛ sta x)

f `cat` g = FmtPS (fmtPS f . fmtPS g)

int = FmtPS $ \k s x →k (s ⊛ dyn J show $x K)

str = FmtPS $ \k s x →k (s ⊛ dyn x)

sprintf (FmtPS p) = p cd 1

Fig. 16. A partially-static Format implementation

Figs. 11 and 12 illustrate how frex’s partially-static monoid performs static reductions using the
monoid laws.

4.3 Example: Improving printf with Partially-Static Monoids

To show the Monoid free extension in action, we consider an example from the functional program-
ming literature [Asai 2009; Danvy 1998]: typed sprintf. It is straightforward to use staging to turn
sprintf from a function into a code generator [Yallop and White 2015]; however, a naive approach
results in code that contains too many catenations.

For example, the following call to sprintf generates a function that prints two integer arguments
with "ab" interposed:

sprintf ((int ++ lit "a") ++ (lit "b" ++ int))

When sprintf is staged using a simple binding time analysis the result contains four catenations:

J λx y →((("" ++ show x) ++ "a") ++ "b") ++ show y K

Since strings form a monoid under catenation, switching to frex’s partially-static operations
generates the following more efficient code:

J λx y →show x ++ ("ab" ++ show y) K

(In fact, as we shall see, Frex can also generate the more efficient code that makes a single call to
an n-ary catenation function).

Fig. 13 gives a minimal interface for formatted printing. The type constructor f represents format
specifications; its two parameters respectively represent the result and the input type of a sprintf

instantiation. The following three operations construct format strings: lit s is a format string that
accepts no arguments and prints s; cat x y catenates x and y; int is a format string that accepts
and prints an integer argument. Finally, sprintf combines a format string with corresponding
arguments to construct formatted output. Asai [2009] gives further details.
Here is an implementation of Fig. 13 in continuation-passing style, using an accumulator:

newtype Fmt r a = Fmt {fmt :: (String → r) → String → a }
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With this implementation, a format string Fmt is a function accepting a continuation argument
of type String → r and an accumulator of type String. Both lit and int call k directly, passing
an extended string; cat is simply function composition. The function sprintf passes the identity
function as a top-level continuation along with an empty accumulator (Fig. 14).
Staging sprintf is straightforward (Fig. 15). We treat format strings statically; arguments and,

consequently, the accumulator, are dynamic. The cat function is unchanged, and the rest of the
implementation is annotated in accordance with the assignment of static and dynamic classifications:

newtype FmtS r a = FmtS {fmtS :: (Code String → r) → (Code String → a)}

The generated code (shown at the beginning of this section) is sub-optimal because the staging
is simplistic: every catenation is delayed, even when both operands are statically available.
Staging using frex’s partially-static monoid is also straightforward (Fig. 16). The steps are as

follows, starting from the unstaged implementation: replace String with FreeExt Monoid String,
replace cat and "" with ⊛ and 1, insert sta and dyn to inject static and dynamic expressions, and
replace the top-level continuation with the residualization function described above:

newtype FmtPS r a = FmtPS { fmtPS :: (PS Monoid String → r) → PS Monoid String → a }

This implementation statically constructs a canonical representation before residualizing, elimi-
nating nesting and redundant catenations with 1; the result (shown at the beginning of this section)
contains only two catenations rather than the original four.
ğ4.4 gives a second residualization function for partially-static string monoids that generates a

single call to n-ary concat rather than a sequence of binary catenations.

4.4 Residualization for Monoids

It is often possible to give a more efficient residualization function for a particular instance of a
structure. Here we sketch how to give an alternative residualization function for the partially-static
monoid of strings. There is no need to step outside the framework provided by frex; it is sufficient
to instantiate the residualizing call to eva with an alternative Monoid instance.
The Monoid interface (Fig. 6) exposes nullary and binary constructors 1 and ⊛. However, for

some monoids it is more efficient to combine more than two elements in a single operation. The
partially-static monoid structure generates the following code for the printf example in ğ4.3:

J s1 ++ $d ++ s2 K

However, depending on the representation of strings, it may be more efficient to generate a single
call to an n-ary catenation function. (For example, n-ary catenation is more efficient in OCaml,
where strings are strict arrays, but not in Haskell, where strings are lazy lists by default.)

J concat [s1, $d, s2] K

It is straightforward to write an alternative to cd specialized to the monoid of strings that generates
this more efficient code.

The opportunity to improve code generation at the point of residualization is one of the advan-
tages of the free extensions view over existing ad-hoc approaches to partially-static representations.
The interface to partially-static data in earlier work (e.g. Kaloper-Meršinjak and Yallop [2016])

typically provides cd as the only way to inspect partially-static data. The coproduct view presented
here improves on this approach, providing two additional ways of inspecting partially-static values:
the eva function and, in the Haskell implementation, the Coprod type. With eva and Coprod it
becomes possible to perform further optimizations at the point of code generation.

ğ6 shows how frex’s simplifications to the code generated by the staged printf function example
lead to significant performance improvements.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 100. Publication date: September 2018.



Partially-Static Data as Free Extension of Algebras 100:17

class Monoid m ⇒ CMonoid m

class CMonoid c ⇒ CGroup c where cinv :: c → c

1 ⊛ x ≡ x

x ⊛ (y ⊛ z) ≡ (x ⊛ y) ⊛ z

x ⊛ y ≡ y ⊛ x

cinv x ⊛ x ≡ 1

Fig. 17. Commutative monoids and abelian groups

instance (CMonoid a, CMonoid b) ⇒ Coproduct CMonoid a b where

data Coprod CMonoid a b = C a b

inl a = C a 1

inr b = C 1 b

eva f g (C a b) = f a ⊛ g b

Fig. 18. The coproduct of commutative monoids

Practical Considerations: Canonicity. Ideally the partially-static representation should be canonical:
expressions that are statically equivalent under the laws of the algebra should have the same
representation in PS.
Unfortunately, it is not always possible to achieve full canonicity; for example, ConsS can store

empty monoid elements, even though these could be eliminated according to the unit elimination
laws. This kind of deviation from canonicity is sometimes unavoidable, since it is not always
possible to determine whether a monoid element should be considered empty. For example, the
monoid of endofunctions does not support equality.

4.5 Coproducts of Commutative Monoids and Abelian Groups

Fig. 17 shows the interface to commutative monoids CMonoid and abelian groups CGroup. The CMonoid
class inherits the methods of Monoid and adds a commutativity law. The only difference between
Monoid and CMonoid is the set of laws tacitly associated with the class.
However, adding the commutativity law to the monoid interface leads to quite a different

coproduct structure (Fig. 18). As with the transition from semigroups to commutative semigroups
(ğ2), applying commutativity to the alternating sequence structure of the monoid coproduct allows
the elements of each constituent monoid to be brought together and coalesced. The alternating
sequence consequently collapses into a two-element sequence Ð i.e. a Cartesian product of sets.
(The coproduct of abelian groups is isomorphic to the commutative monoid coproduct, and not
shown.)

4.6 Free Commutative Monoid and Abelian Group

Fig. 19 shows implementations of free algebras for commutative monoids and abelian groups.
The CMonoid and CGroup free algebras are multisets (bags) and finite maps (dictionaries) with

integer values, respectively:

pvar x ⊛ cinv (pvar y) ⊛ pvar x ⊛ cinv (pvar y) { { x 7→ 2, y 7→ -2 }

In each case the implementation of pbind maps f over each element in the representation and
combines the results using mappend; the pbind implementation for abelian groups additionally
applies cinv to each output element when the count associated with the element is negative:

(pvar x ⊛ cinv (pvar y) ⊛ pvar x ⊛ cinv (pvar y)) `pbind` f

{ f x ⊛ f x ⊛ cinv (f y) ⊛ cinv (f y)
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instance Ord x ⇒ Free CMonoid x where

newtype FreeA CMonoid x = CM (MultiSet x)

pvar = CM . singleton

CM b `pbind` f = emit (toList b)

where emit [] = mempty

emit [x] = f x

emit (x:xs) = f x `mappend` emit xs

instance Ord x ⇒ Free CGroup x where

newtype FreeA CGroup x = CG (Map x Int)

pvar x = CG (singleton x 1)

CG b `pbind` f = emit (toList b)

where emit [] = mempty

emit [(x,1)] = f x

emit ((x,0):xs) = emit xs

emit ((x,n):xs) | n < 0 = cinv (f x) `mappend` emit ((x,n+1):xs)

| otherwise = f x `mappend` emit ((x,n-1):xs)

Fig. 19. Free instances for commutative monoids and abelian groups

As for monoids, the Free and Coproduct instances combine to form the free extension.

4.7 Example: power with Partially-Static Commutative Monoids

We are ready to revisit the staged power function from the introduction. The naively-staged power

function generates code with a linear sequence of multiplications that concludes with an unneces-
sary multiplication by 1:

J \x → $(power JxK 6) K { Jx * (x * (x * (x * (x * (x * 1))))) K

Here is an implementation of power suitable for use with frex:

power :: CMonoid m ⇒ m → Int → m

power x 0 = 1

power x n = x ⊛ power x (n - 1)

This new definition illustrates two benefits of frex. First, there are no more low-level staging
annotations; it is sufficient to make the code more polymorphic by defining power for an arbitrary
commutative monoid, then instantiate with frex’s predefined free extension. Second, frex’s simplifi-
cations improve the generated code. With a cd function specialized to commutative monoids, in
the same vein as the specialized monoid cd of ğ4.4, the six multiplications in the naively-staged
version can be reduced to three:

cdPower (power (dyn JxK) 6) { Jlet y = x*x in let z = y*y in y*z K

As in the previous example, these improvements depend only on a specialized cd; the implemen-
tation of power and the partially-static representations are untouched. The specialized cd can be
implemented in terms of eva by supplying a suitable CMonoid instance, or directly on the CoProd

representation.

4.8 Coproduct of Sets

One special case of an algebraic structure is Set, the structure with no equations.
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class Set a

instance Set a

instance Coproduct Set a b where

data Coprod Set a b = Inl a | Inr b

inl = Inl

inr = Inr

eva f g (Inl x) = f x

eva f g (Inr y) = g y

Fig. 20. The coproduct of structures with no equations

instance Free Set x where

newtype FreeA Set x = F x

pvar = F

F x `pbind` k = k x

Fig. 21. Free instance for Set

Fig. 20 shows the instance for Coproduct in the category of sets. The Set class has no constraints
or methods, and a single instance that encompasses every Haskell type. Consequently, the Coproduct
instance for Set has no constraints, since all the Coproduct class constraints are satisfied by the single
Set instance. The associated Coprod type is simply the familiar type of binary sums (called Either

in the Haskell standard library), with inl and inr as its two constructors, and eva corresponding to
the familiar either function1.

4.9 Free Algebra for Sets

Fig. 21 shows the free algebra for sets, where a value is a single variable, and pbind is application.
Although the Set free extension is a rather impoverished structure, it is perhaps the most fre-

quently used representation for partially-static data in the multi-stage programming literature. The
Set free extension does not take advantage of any equations; nevertheless, switching from a binary
binding-time classification, in which each expression is fixed as always-static or always-dynamic,
to the possibly-static world of the Set free extension, in which an expression may switch between
static and dynamic on different executions, is a significant improvement for many applications.

4.10 Example: Possibly-Static Data

Here is a simple example of possibly-static data. The isDigitPS function classifies a possibly-static
character using the standard isDigit function. If the character is static then the classification is
performed immediately; if it is dynamic then the classification is deferred to the next stage.

isDigitPS :: FreeExt Set Char →FreeExt Set Bool

isDigitPS (Inl c) = Inl (Char.isDigit c)

isDigitPS (Inr c) = Inr JChar.isDigit $c K

Without partially-static data it would be necessary either to have two functions for the static
and dynamic cases, or to convert every character to a dynamic value, losing the opportunity to
perform further static computation on the result.
The idea naturally generalizes to lift arbitrary functions to operate on possibly-static values.

4.11 Free Algebra and Free Extension of Commutative Rings

Fig. 22 shows the interface Ring and the axioms for commutative rings.

1https://hackage.haskell.org/package/base-4.10.0.0/docs/Data-Either.html
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class Ring a where

(⊕), (⊗) :: a → a → a

rneg :: a → a

0, 1 :: a

(a ⊕ b) ⊕ c ≡ a ⊕ (b ⊕ c)

a ⊕ b ≡ b ⊕ a a ⊕ 0 ≡ a

a ⊕ rneg a ≡ 0

(a ⊗ b) ⊗ c ≡ a ⊗ (b ⊗ c)

a ⊗ b ≡ b ⊗ a a ⊗ 1 ≡ a

a ⊗ (b ⊕ c) ≡ (a ⊗ b) ⊕ (a ⊗ c)

Fig. 22. Commutative rings

data Multinomial x a = MN (Map (MultiSet x) a)

instance Ord x ⇒ Free Ring x where

newtype FreeA Ring x = RingA (Multinomial x Int) deriving (Ring)

pvar x = RingA (MN (Map.singleton (MultiSet.singleton x) 1))

RingA xss `pbind` f = evalMN initMN f xss

Fig. 23. Free commutative rings

instance (Ring a, Ord x) ⇒ Coproduct Ring a (FreeA Ring x) where

newtype Coprod Ring a (FreeA Ring x) = CR (Multinomial x a)

inl a = CR (MN (singleton empty a))

inr (RingA (MN x)) = CR (MN (map initMN x))

eva f g (CR c) = evalMN f (g . pvar) c

Fig. 24. The coproduct of a commutative ring and a free commutative ring

Fig. 23 defines the free commutative ring on a set x, defined as multinomials Ð i.e finite sums
of products of variables in x with integer coefficients. The call pvar x builds a representation of
the trivial polynomial x, whose exponent and coefficient are both 1. The call evalMN initMN f in
the definition of pbind interprets both the variables and the coefficients in an arbitrary ring, and
combines the results using the ring operators. The extended version of the paper gives further
details.

It is not always possible to give a closed form for the coproduct of general algebras. However, we
can still sometimes define the free extension, as is the case with commutative rings. The coproduct
of a commutative ring A with a free commutative ring consists of multinomials with coefficients in
A (Fig. 24).

inlmaps an element b ofA to the constant term b, while inrmaps each term with coefficient n to
the same term with coefficient (1 ⊕... ⊕1) (n times, or using ⊖ for negative n). As with the pbind

operation for the free commutative ring, eva evaluates the multinomial using the ring operations
for addition and multiplication:

eva f g (a + bx2y) { f a ⊕ (f b ⊗ g x ⊗ g x ⊗ g y)

A free commutative semiring Ð i.e. an algebra for the operations and axioms of a ring except
those involving ⊖ Ð is the same but with natural number coefficients instead of integers, and the
free extension is defined analogously.

4.12 Example: Linear Algebra with Partially-Static Rings

Linear algebra offers many opportunities for optimization via multi-stage specialization and numer-
ical simplification such as the Fast Fourier Transform [Kiselyov et al. 2004], Gaussian elimination
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dot [sta 1, sta 0, sta 2, dyn JxK] [dyn JxK, dyn JyK, dyn JzK, dyn JxK]

{ (sta 1 ⊗ dyn JxK) ⊕ (sta 0 ⊗ dyn JyK) ⊕ (sta 2 ⊗ dyn JzK) ⊕ (dyn JxK ⊗ dyn JxK)

{ 1x1 + 2z1 + x2 { x + 2*z + x*x

Fig. 25. Reducing partially-static commutative ring expressions

[Carette and Kiselyov 2011a], and matrix-vector multiplication [Aktemur et al. 2013]. The inner
product illustrates the general principle: given a statically-known vector s = [1, 0, 2] and a dy-
namic vector d = [x, y, z], a naively-staged inner product function might generate the following
code:

J (1 * x) + (0 * y) + (2 * z) K

There are clear opportunities for improvement: the multiplication by one in the first summand
can be omitted, and the multiplication by zero should annihilate the middle summand altogether.
As with power (ğ4.7), switching from hand-inserted staging annotations to frex’s high-level

approach means that dot can be written as a polymorphic function with no mention of staging:

dot :: Ring r ⇒ [r] → [r] → r

dot xs ys = sumr (zipWith (⊗) xs ys)

sumr :: Ring r ⇒ [r] → r

sumr = foldr (⊕) 0

Fig. 25 illustrates the behaviour of dot when the Ring constraint is instantiated to frex’s free
extension instance: the call to dot constructs multinomials that residualize to multiplications and
additions. Returning to the example at the beginning of this section, frex’s ring simplifications lead
to the following simpler code:

J x + (2 * z) K

ğ6 considers further examples involving linear algebra, and shows that frex’s simplifications lead
to significant performance improvements.

4.13 Coproduct of Distributive Lattices

A distributive lattice is a commutative semiring (A,0, ⊕,1, ⊗) with additional absorption rules:

a ⊗ (a ⊕ b) ≡ a a ⊕ (a ⊗ b) ≡ a .

For example, booleans form a distributive lattice with && as ⊗ and | | as ⊕.
As in the case of commutative rings, the coproduct of a distributive latticeA and a free distributive

lattice on a set X consists of multinomials over X with coefficients in A. However, the fact that
multiplication is idempotent (a ⊗ a ≡ a) means that duplicates of variables within a term can be
ignored, so the MultiSet of Fig. 24 is replaced with Set. In addition, the second absorption rule
means that any term of the sum which is a multiple of another term with the same coefficient is
redundant and can be dropped.

4.14 Example: all and any with Partially-Static Distributive Lattices

The examples so far all involve constructing and then residualizing partially-static values. It is also
sometimes useful to compute with partially-static values before residualization.

The all function takes a predicate p and a list l, and returns true iff every element of l satisfies
p. Frex supports defining a variant of all that operates on partially-static lists, with interleaved
static and dynamic portions, and that produces partially-static booleans. Since a single element
that does not satisfy p is enough to determine the result of all, the result may be static even where
the input is partially unknown:
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instance Functor f ⇒ Coproduct (Alg f) (FreeA (Alg f) a) (FreeA (Alg f) b) where

newtype Coprod (Alg f) (FreeA (Alg f) a) (FreeA (Alg f) b) =

L (FreeA (Alg f) (Coprod Set a b))

inl x = L (fmap Inl x)

inr y = L (fmap Inr y)

eva g h (L e) = e `pbind` eva (g . pvar) (h . pvar)

Fig. 26. The coproduct of two free F-algebras

allPS even (sta [2, 4] ++ var JxK ++ sta [3])

{ sta (even 2) ⊛ sta (even 4) ⊛ dyn J all even x K ⊛ sta (even 3)

{ sta false

The allPS function operates on frex’s representations, turning a partially-static monoid (the input
list) into a partially-static distributive lattice (the output boolean). The distributive lattice laws,
used in frex’s free extension instance, reduce the expression to the value false, even though one
element in the sequence is dynamic. The dual function anyPS can be defined similarly.

4.15 Coproduct of Initial F-Algebras

In addition to the familiar structures discussed above, the algebraic approach naturally subsumes
earlier work on staged algebraic data types [Jones et al. 1993; Kaloper-Meršinjak and Yallop 2016;
Sheard and Diatchki 2002] that is discussed further in ğ7.
An algebraic data type is the initial algebra for a presentation consisting of a functor F and no

axioms. In other words it is constructed as the free F-algebra over the empty set.
For any algebraic structure, the coproduct of two free algebras is easy to calculate: it is given by

the free algebra on the coproduct of their underlying sets. Fig. 26 shows this coproduct for the case
of F-algebras.
The free extension of an algebraic data type T := FreeA (Alg f) Empty is thus of this form,

where the type a is the empty type and b is Code(T).
For example, the signature functor

IList X := 1 + Int × X

has as initial algebra the type IntList of integer lists. The free extension of IntList is isomorphic
to the free IList-algebra over Code IntList.

4.16 Example: Partially-Static Algebraic Datatypes

More generally, inductive algebraic datatypes can be seen as initial algebras for a multi-sorted

signature, i.e. free algebras of operations without laws. These datatypes are useful in programs that
perform staged computation. Lists with possibly-dynamic tails are a common example of a more
general family of partially-static datatypes [Inoue 2014; Kaloper-Meršinjak and Yallop 2016; Sheard
and Diatchki 2002].

The free extension for F-algebras in frex can be used to define a variant of sum that operates on
partially-static lists by traversing the initial portion of a list, leaving traversal of the dynamic tail
for later:

cd (sumps (1 :s 2 :s 3 :s dyn JtK)) { J6 + sum tK
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4.17 Practical Considerations: Duplicating and Discarding Code

Since the aim of partially-static data structures is to avoid unnecessary computation in generated
code, it is important to avoid duplicating or discarding expressions. In languages where the evalua-
tion of an expression may have side effects, duplication and discarding are even more crucial to
avoid. However, in some of our examples, such as power and dot, quoted expressions injected with
dyn may appear either several times or not at all in the output of cd.

Fortunately, there are standard techniques available to address this issue. It is common in partial
evaluators and multi-stage programming languages to convert programs into a form where every
non-trivial expression is let-bound [Carette and Kiselyov 2011b; Kiselyov 2014; Yallop 2017] using
a function (commonly named genlet) that accepts a dynamic expression e, inserts a let-binding
for e at some higher point in the code, and returns the bound variable:

g (genlet J f x K) { Jlet y = f x in ... $(g JyK)

Automatic conversion to ANF form in the LMS multi-stage programming framework [Rompf 2016]
serves a similar purpose.

let-insertion combines straightforwardly with partially-static data; however, we have omitted
it from the exposition for simplicity. The MetaOCaml implementation described in the extended
version of the paper uses let-insertion to avoid duplication.

5 UNIVERSALITY: FREE EXTENSION OF ALGEBRAS

ğ3 and the examples in ğ4 show that free extensions, i.e. coproducts with free algebras, provide a
natural representation for partially-static data structures. Here we justify more formally why this
representation is valid in terms of the universal property of free extensions. We first recall some
basic universal algebra, which allows us to discuss classes of algebraic structures uniformly.

5.1 Rudimentary Universal Algebra

Like datatypes, descriptions of algebraic structures consist of an interface and a functional specifi-
cation for this interface. The interface is given by an algebraic signature Σ: consisting of a set OΣ of
operation symbols where each symbol is assigned a natural number called its arity. For example,
monoids use the signature where Omon ≔ {1,⊛}, 1 has arity 0, and⊛ has arity 2. Given a signature
Σ, the functional specification is given by a set of axioms: equations between terms built from the
operation symbols in Σ and according to their corresponding arities. For example, the monoid
axioms Axmon are given in Fig. 6.
Put together, the description of an algebraic structure is called a presentation P, given by a

signature ΣP and a set AxP of axioms over this signature. The example signature and axioms above
form mon Ð the presentation of monoids.

An algebra for a presentation is a mathematical implementation of such specifications. Formally,
given a presentation P, a P-algebra A is a pair (|A| ,−A) consisting of a set |A|, called the carrier of
the algebra, and, for each operation symbol f of arity n in ΣP , an n-ary function fA : |A|n →|A|,
such that all the axioms in AxP hold. For example, noting that a nullary function is a constant, a
mon-algebra is a monoid.
Finally, given two P-algebras A, B, a P-homomorphism h : A → B is a function between the

carriers h : |A| → |B | that respects the operations: for each operation symbol f : n in ΣP , and for
every n-tuple ®a = (a1, . . . ,an) of |A|-elements, we have h(fA(a1, . . . ,an)) = fB (h(a1), . . . ,h(an)).
For example, a mon-homomorphism h : A → B is a function that satisfies h(1A) = 1B and
h(x ⊛A y) = h(x)⊛B h(y), i.e. the familiar notion of a monoid homomorphism.

For each presentation P, the collection of P-algebras and P-homomorphisms between them
forms a category P-Alg, with the identities and composition given by the identity functions and
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the usual composition of functions. We have an evident functor |−| : P-Alg → Set that forgets the
algebra structure on objects and the homomorphism requirement on morphisms.

The forgetful functor |−| always has a left adjoint FP : Set → P-Alg, the free P-algebra functor.
Concretely, its object map on a set X yields the term algebra over X : the set of ΣP-terms with
variables in X , quotiented by the deductive closure of AxΣ under the derivations of equational logic.
For example, the free monoid over X is the set of finite sequences with X -elements, as described
in ğ4.2. The unit of the adjunction, ηP : X → |FPX | maps an element x ∈ X to its equivalence
class as a term. For mon, ηmon(x) is the one-element sequence [x]. The adjunction itself assigns
to every function f : X →|A| its homomorphic extension >>=P f : FPX → A, which evaluates
(the equivalence class of) a term in the algebra A, with X -variables substituted according to f . For
example, taking A to be the integers with multiplication:

[x ;y; z] >>=mon {x 7→ 2,y 7→ 3, z 7→ 4} = 2 · 3 · 4 = 24

The categories P-Alg have coproducts A ⊕ B, and their concrete structure is given as follows.
The carrier |A ⊕ B | is the ΣP-term algebra over the disjoint union |A| + |B | quotiented by the
deductive closure of the axioms in P, together with the equations of the form f (ι1a1, . . . , ι1an) ≡
ι1 fA(a1, . . . ,an) for every f of arity n in ΣP , a1, . . . ,an in |A|, and analogous equations for B. The
coproduct injection ι⊕1 : A → A ⊕ B maps a to the equivalence class of ι1a, and similarly for B.
For every pair of homomorphisms h1 : A → C , h2 : B → C , the unique cotupling homomorphism
[h1,h2] : A ⊕ B → C interprets a term over |A| + |B | as the corresponding |C |-element, once each
variable ιix is substituted by hi (x). For example the coproduct of monoids A and B has as its carrier
the set of sequences of alternating elements of |A| and |B |.

A free extension of an algebra A by a set X is the coproduct of the algebra A with the free algebra
over X , namely FreeExt(A,X ) ≔ A ⊕ FPX . The coproduct injection ι : FPX → FreeExt(A,X )
corresponds under the adjunction to a function ιX : X →

�

�FreeExt(A,X )
�

�. So combining the
universal properties of coproducts and adjunctions, a free extension is characterised by an algebra
FreeExt(A,X ) together with a homomorphism ιA : A → FreeExt(A,X ), and a function ιX : X →
�

�FreeExt(A,X )
�

�, such that for every other pair of a homomorphism h : A → C and a function
e : X →|C |, there exists a unique homomorphism eva(h, e) : FreeExt(A,X ) → C satisfying

eva(h, e) ◦ ιA = h
�

�eva(h, e)
�

� ◦ ιX = e .

5.2 Conceptual Justification

Now suppose the algebra A stands for a static datatype, and the set X stands for a collection
of dynamically-known values. ğ3 sets out the minimum requirements we would want for the
corresponding partially-static datatype: an algebra ps(A,X ) together with inclusions

sta : A → ps(A,X ) dyn : X → ps(A,X )

such that sta is an algebra homomorphism, and a residualization map

cd : ps(A,X ) → X

satisfying cd ◦ dyn = id and cd ◦ sta = lift where lift is the function A → X lifting static values to
dynamic ones.
Certainly the free extension FreeExt(A,X ) meets these requirements when X is the algebra

Code A, defining

sta ≔ ιA dyn ≔ ιX cd ≔ eva(lift, id)

as described in 3.4. With just the requirements above it is not the only possible choice. However,
there are at least two ways in which we could impose reasonable extra conditions on the partially-
static datatype which would only be satisfied by the free extension.
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Firstly, we could ask that in addition to residualization partially-static data should allow post-
processing. As ps(A,X ) is an algebra, we can consider homomorphisms from ps(A,X ) into other
algebras C . It is natural to expect that a homomorphism h : A → C and a function e : X → |C |

should lift to a homomorphism eva(h, e) : ps(A,X ) → C acting as expected on purely static and
dynamic values. The homomorphism should be unique for a minimal representation of the data.
This corresponds exactly to the characterization of FreeExt(A,X ) above.

Alternatively, we could impose a uniformity condition on the collection of partially-static
datatypes for all algebras A. The datatype should store representations of static elements in a
uniform way so that homomorphisms of static data lift to homomorphisms of partially-static
datatypes. So assume that given a set X ,

• partially-static datatypes with sta and dyn exist for every algebra A,
• for any instantiation e : X → A of variables in X as elements of A, there is a unique
homomorphism eva(id, e) : ps(A,X ) → A extending e and preserving static values,

• for every pair of algebras A,B and homomorphism h : A → B, there is a unique homomor-
phism ps(h,X ) : ps(A,X ) → ps(B,X ) which acts as h on static values and leaves dynamic
values unchanged.

Then an algebraic argument shows that ps(A,X ) together with sta, dyn and eva(h, e) ≔ eva(id, e) ◦
ps(h,X ) has the universal property of the free extension FreeExt(A,X ).

6 PERFORMANCE EVALUATION

The central contribution of this paper is a unification of various existing optimizations based around
partially-static data, although many of the structures and several of the examples in our study are
novel. Our focus up to this point has been on a rationalised interface to partially-static data, on the
representations for particular algebraic structures, and on the simplifications that they produce
in code generated by multi-stage programs. It is reassuring to discover that the simplifications
introduced by frex lead directly to improved performance over both the original unstaged program
and naively staged versions that make no use of partially-static data.

We consider two representative examples: matrix multiplication, in Haskell, and printf in OCaml.
The measurements in this section were taken on a Debian Linux system running the 4.9.0 kernel

on an AMD FX(tm)-8320 eight-core processor with 16GB memory. Haskell code was compiled with
GHC 8.0.2 using the -O3 optimization flag, and OCaml code with BER MetaOCaml n104.

6.1 Matrix Multiplication

Fig. 27 shows the performance of four implementations of 10x10 matrix multiplication in Haskell.
The naive implementation is a one-line function based on a list-of-lists representation of matrices:

mmmul m n = [[dot a b | b <- transpose n] | a <- m]

The figures for linear represent the performance of a popular Haskell library of the same name, based
on a vector representation. There are two staged implementations, both of which are instantiations
of the one-line function above with appropriate instances. The naive staging unrolls the loop,
turning the list traversal into an arithmetic expression. The partially-static version takes a static
and a dynamic input vector, and converts both to lists of lists before passing them to mmul:

mmmul [ [sta s1, sta s2, . . .]. . .] [[dyn Jd!0!0K, dyn Jd!0!1K . . .]. . .]

Instantiating mmul with frex’s free extension instance results in automatic algebraic simplification.
The graph shows measurements for various sparsities (i.e. for matrices with various proportions

of zero elements). As the sparsity of the matrix increases, the algebraic simplifications performed
by the partially-static version significantly increase its advantage over naive staging.
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Fig. 28. Printf performance improvements

6.2 Printf

Fig. 28 shows the performance of three implementations of the printf function in MetaOCaml Ð a
standard unstaged version, a naively staged version, and a partially-static version that uses frex’s
free extension for monoids with improved residualization (ğ4.4).

In each case the benchmark measures the time to run a call to printf with the given number of
parameters and a format string that parenthesizes each parameter in the output:

sprintf ((lit "(" ++ str ++ lit ")") ++ (lit "(" ++ str ++ lit ")"))

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 100. Publication date: September 2018.



Partially-Static Data as Free Extension of Algebras 100:27

Once again, the partially-static version gains an edge as the opportunities for algebraic simplifi-
cation increase Ð in this case, as the number of subexpressions to reassociate and the number of
adjacent static strings to merge grows.

7 RELATED WORK

We consider two main classes of related work Ð previous structured approaches to partially-static
data and ad-hoc implementations of particular partially-static structures Ð before touching briefly
on the use of partially-static data in supercompilers, optimizing compilers, and other tools.

Structured approaches to partially-static data. The existence of general schemes for partially-static
structures without laws Ð i.e. datatypes Ð is well-known. The standard partial evaluation text-
book [Jones et al. 1993] informally describes how to generalize partially-static list representations
to arbitrary recursive types. Sheard and Diatchki [2002] describe a similar, but more concrete,
scheme for deriving the staged versions of particular datatypes in the multi-stage programming
language MetaML [Taha and Sheard 1997]. Kaloper-Meršinjak and Yallop [2016] turn Sheard’s
scheme into a generic programming framework based on the initial algebra view of datatypes.

The present work builds on these foundations, showing how partially-static datatypes arise as an
instance of the general view of partially-static algebraic structures as free extensions of algebras.

There have been fewer previous attempts to construct a general view of partially-static structures
with laws. Thiemann [2013] considers partially-static operations, which incorporate algebraic laws,
in a partial evaluation context. Thiemann’s vision of specialization that considers algebraic structure
is an inspiration for this work. However, the implementation is quite different: Thiemann’s design
operates via repeated rewriting, whereas the structures described in the present work are reduced
using the evaluation mechanism of the host language. It appears unlikely that this approach to
rewriting is suitable for direct use in multi-stage programming.

Partially-static data in partial evaluation. Partially-static data has been used in partial evaluation
from early times. Mogensen [1988] introduced the concept in a study of partially-static lists, and
several authors followed suit (e.g. [Hughes 1999; Jones et al. 1993]). Sheard and Diatchki [2002]
note that the term acquired the more specific meaning of static containers with dynamic elements.
Glück et al. [1996] describe the application of a partial evaluator for Fortran with support

for partially-static structures to a variety of mathematical algorithms including cubic splines
interpolation, Romberg integration and Chebyshev approximation.

Partially-static data in multi-stage programming. Partially-static data is frequently employed
in multi-stage programming, where eliminating unnecessary operations is an essential aspect of
generating optimal code.

The seminal finally tagless work by Carette et al. [2009] uses a static-dynamic type Ð i.e. a record
that holds a dynamic representation and, optionally, an additional static value of the same value Ð
to improve generated code in a staged embedded lambda calculus. The implementation additionally
uses partially-static representations that implement ring simplification rules for zero addition and
unit multiplication. Similar unit simplifications for vectors are implemented as smart constructors
in Rompf et al.’s [2013] staging-based compiler optimization framework.

Inspired by abstract interpretation, [Kiselyov et al. 2004] build a staged FFT implementation that
uses partially-static representations that distinguish values from computations and that support
simplification using various laws, including the distributive property, and trigonometric identities.
Carette and Kiselyov [2005, 2011b] describe a modular decomposition of Gaussian Elimination

that abstracts over staged and unstaged implementations of numeric signatures and other aspects of
the algorithm. Partially-static data is used pervasively, primarily in the form of static-dynamic values.

Proc. ACM Program. Lang., Vol. 2, No. ICFP, Article 100. Publication date: September 2018.



100:28 Jeremy Yallop, Tamara von Glehn, and Ohad Kammar

Combining the techniques in this paper with Carette and Kiselyov’s [2005] modular approach by
instantiating numeric signatures with free extensions is a promising avenue for future exploration.
Yallop [2017] uses several partially-static structures in the staging of an implementation of

the Scrap Your Boilerplate generic programming library, including a partially-static structure for
monoids that reassociates subexpressions similarly to the free extension presented here.

Drawing lessons from supercompilation, Inoue [2014] uses partially-static data that is updated to
reflect equalities between values during the static exploration of the dynamic branches of a staged
program. The primary partially-static structure is a list with a possibly-dynamic tail.

8 CONCLUSION AND FURTHER WORK

We have used free extensions of algebras as a functional specification of partially-static data, and
described a high-level library, frex, that uses them to produce efficient staged code. Our approach
combines the following attributes:

Extensible and modular: The partially-static interface (sta, dyn, cd) operates uniformly over
algebraic structures. Adding Coproduct and Free instances for an algebraic structure is sufficient
to make the structure available for use in optimizations.
Similarly, adding an instance of an algebraic class interface is sufficient to make the type available
for use in optimizations. For example, since the standard library provides a Monoid instance for
the Maybe type of optional values, frex will use the monoid laws to optimize programs involving
Maybe even though frex itself makes no mention of Maybe.
Unifying: Partially-static data is a well-known technique for binding-time improvement, and
ad-hoc implementations of structures that implement some algebraic simplifications are found
throughout the literature (ğ7). The observation that partially-static data can be viewed as free
extensions of algebras exposes and clarifies the structure underlying these ad-hoc implementations.
Reusable: This paper explores a universal view of partially-static data using a concrete library
(frex) in a particular language (Haskell). However, the underlying ideas can be reused in many
contexts: free extensions can be used to structure optimizers in other multistage languages,
optimizing compilers, partial evaluators, supercompilers, program generators, and so on.
Practical: The effectiveness of algebraic optimization using free extensions for partially-static
data is evident both from the simplified generated code, and from benchmarks (ğ6).

In the future we would like to use free extensions of free theories to partially evaluate code using
effect handlers [Bauer and Pretnar 2015]. We would also like to investigate the extension of this
work to settings with more than two stages, where partially-static structures have already been
successfully applied [Glück and Jùrgensen 1997].
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