8,861 research outputs found

    Partially linear additive quantile regression in ultra-high dimension

    Get PDF
    We consider a flexible semiparametric quantile regression model for analyzing high dimensional heterogeneous data. This model has several appealing features: (1) By considering different conditional quantiles, we may obtain a more complete picture of the conditional distribution of a response variable given high dimensional covariates. (2) The sparsity level is allowed to be different at different quantile levels. (3) The partially linear additive structure accommodates nonlinearity and circumvents the curse of dimensionality. (4) It is naturally robust to heavy-tailed distributions. In this paper, we approximate the nonlinear components using B-spline basis functions. We first study estimation under this model when the nonzero components are known in advance and the number of covariates in the linear part diverges. We then investigate a nonconvex penalized estimator for simultaneous variable selection and estimation. We derive its oracle property for a general class of nonconvex penalty functions in the presence of ultra-high dimensional covariates under relaxed conditions. To tackle the challenges of nonsmooth loss function, nonconvex penalty function and the presence of nonlinear components, we combine a recently developed convex-differencing method with modern empirical process techniques. Monte Carlo simulations and an application to a microarray study demonstrate the effectiveness of the proposed method. We also discuss how the method for a single quantile of interest can be extended to simultaneous variable selection and estimation at multiple quantiles.Comment: Published at http://dx.doi.org/10.1214/15-AOS1367 in the Annals of Statistics (http://www.imstat.org/aos/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Local Quantile Regression

    Get PDF
    Quantile regression is a technique to estimate conditional quantile curves. It provides a comprehensive picture of a response contingent on explanatory variables. In a flexible modeling framework, a specific form of the conditional quantile curve is not a priori fixed. % Indeed, the majority of applications do not per se require specific functional forms. This motivates a local parametric rather than a global fixed model fitting approach. A nonparametric smoothing estimator of the conditional quantile curve requires to balance between local curvature and stochastic variability. In this paper, we suggest a local model selection technique that provides an adaptive estimator of the conditional quantile regression curve at each design point. Theoretical results claim that the proposed adaptive procedure performs as good as an oracle which would minimize the local estimation risk for the problem at hand. We illustrate the performance of the procedure by an extensive simulation study and consider a couple of applications: to tail dependence analysis for the Hong Kong stock market and to analysis of the distributions of the risk factors of temperature dynamics

    Penalized single-index quantile regression

    Get PDF
    This article is made available through the Brunel Open Access Publishing Fund. Copyright for this article is retained by the author(s), with first publication rights granted to the journal. This is an open-access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/3.0/).The single-index (SI) regression and single-index quantile (SIQ) estimation methods product linear combinations of all the original predictors. However, it is possible that there are many unimportant predictors within the original predictors. Thus, the precision of parameter estimation as well as the accuracy of prediction will be effected by the existence of those unimportant predictors when the previous methods are used. In this article, an extension of the SIQ method of Wu et al. (2010) has been proposed, which considers Lasso and Adaptive Lasso for estimation and variable selection. Computational algorithms have been developed in order to calculate the penalized SIQ estimates. A simulation study and a real data application have been used to assess the performance of the methods under consideration

    Penalized Composite Quasi-Likelihood for Ultrahigh-Dimensional Variable Selection

    Full text link
    In high-dimensional model selection problems, penalized simple least-square approaches have been extensively used. This paper addresses the question of both robustness and efficiency of penalized model selection methods, and proposes a data-driven weighted linear combination of convex loss functions, together with weighted L1L_1-penalty. It is completely data-adaptive and does not require prior knowledge of the error distribution. The weighted L1L_1-penalty is used both to ensure the convexity of the penalty term and to ameliorate the bias caused by the L1L_1-penalty. In the setting with dimensionality much larger than the sample size, we establish a strong oracle property of the proposed method that possesses both the model selection consistency and estimation efficiency for the true non-zero coefficients. As specific examples, we introduce a robust method of composite L1-L2, and optimal composite quantile method and evaluate their performance in both simulated and real data examples

    Intersection Bounds: Estimation and Inference

    Get PDF
    We develop a practical and novel method for inference on intersection bounds, namely bounds defined by either the infimum or supremum of a parametric or nonparametric function, or equivalently, the value of a linear programming problem with a potentially infinite constraint set. We show that many bounds characterizations in econometrics, for instance bounds on parameters under conditional moment inequalities, can be formulated as intersection bounds. Our approach is especially convenient for models comprised of a continuum of inequalities that are separable in parameters, and also applies to models with inequalities that are non-separable in parameters. Since analog estimators for intersection bounds can be severely biased in finite samples, routinely underestimating the size of the identified set, we also offer a median-bias-corrected estimator of such bounds as a by-product of our inferential procedures. We develop theory for large sample inference based on the strong approximation of a sequence of series or kernel-based empirical processes by a sequence of "penultimate" Gaussian processes. These penultimate processes are generally not weakly convergent, and thus non-Donsker. Our theoretical results establish that we can nonetheless perform asymptotically valid inference based on these processes. Our construction also provides new adaptive inequality/moment selection methods. We provide conditions for the use of nonparametric kernel and series estimators, including a novel result that establishes strong approximation for any general series estimator admitting linearization, which may be of independent interest
    corecore