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Abstract

Conditional quantile curves provide a comprehensive picture of a response con-
tingent on explanatory variables. Quantile regression is a technique to estimate
such curves. In a flexible modeling framework, a specific form of the quantile is not
a priori fixed. Indeed, the majority of applications do not per se require specific
functional forms. This motivates a local parametric rather than a global fixed model
fitting approach. A nonparametric smoothing estimate of the conditional quantile
curve requires to consider a balance between local curvature and variance. In this
paper, we analyze a method based on a local model selection technique that pro-
vides an adaptive estimate. Theoretical properties on mimicking the oracle choice
are offered and applications to stock market and weather analysis are presented.

Keywords: Conditional Quantiles; Semiparametric and Nonparametric Methods; Asym-
metric Laplace Distribution; Exponential Risk Bounds; Adaptive Bandwidth Selection.

JEL classification: C00, C14, J01, J31

1 Introduction

Quantile regression is gradually developing into a comprehensive approach for the statis-
tical analysis of linear and nonlinear response models. Since the rigorous treatment of
linear quantile regression by Koenker and Bassett (1978), richer models have been intro-
duced into the literature, among them are nonparametric, semi parametric and additive
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Figure 1: The bandwidth sequence (upper panel), plot of data (x variable scaled to [0, 1])
and the estimated 90% quantile curve (lower panel)

approaches. Quantile regression or conditional quantile estimation is a crucial element
of analysis in many quantitative problems. In financial risk management, the proper
definition of quantile based Value at Risk impacts asset pricing, portfolio hedging and
investment evaluation, see Engle and Manganelli (2004), Cai and Wang (2008), Fitzen-
berger and Wilke (2006). In labor market analysis of wage distributions, education effects
and earning inequalities are analysed via quantile regression. Other fields of applications
of conditional quantile studies include conditional data analysis of children growth and
ecology, where it accounts for the unequal variation of response variables, see James,
Hastie and Sugar (2010).

In applications, the predominantly used linear form of the calibrated models was mainly
determined by practical and numerical reasonings. More flexible functional forms have
been put forward in the literature in only rare cases, Kong, Linton and Xia (2010) and
Yu and Jones (1997).

The aim of this research is to propose an adaptive local quantile regression algorithm that
is easy to implement and works for a wide class of applications. We describe in detail the
adaptation technique that is based on local parametric models. The main conclusion is
that the proposed algorithm is feasible and beneficial for quantile smoothing and helps in
proposing alternatives to more restricted parametric models. Figure 1 presents an example
of our results for analyzing the Lidar data set, see Ruppert, Wand and Carroll (2003). The
presented quantile curve switches smoothness in the middle, and it is naturally reflected
by the bandwidth sequence (upper panel) selected by the proposed technique. In the
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presence of changing to sharper slope of the curve, the bandwidth gets smaller to attain
better estimation.

This article is organized as follows. In Section 2, exponential risk bounds for conditional
quantiles are established using the representation of quantiles as QMLEs of the asym-
metric Laplace distribution. In Section 3, we introduce the adaptation scheme and the
propagation condition to control the significance level and derive theoretical bounds for
critical values. In Section 4, the “Small Modeling Bias” is studied. In Section 5, “Stabiliy”
and “Oracle” properties are given. In Section 6, Monte Carlo simulations are conducted to
illustrate the proposed methodology. In Section 7, we apply our method on checking tail
dependency among portfolio stocks; and on estimation of quantile curves for temperature
risk factors.

2 Parametric Risk Bounds

Consider the MLE for the asymmetric Laplace distribution (ALD), which plays a key role
in quantile estimation. An important advantage of this QMLE representation is that it
and the corresponding fitted likelihood admit a closed form.

A random variable has an ALD(µ, σ, τ) if its pdf is:

f(u|µ, σ, τ) =
τ(1− τ)

σ
exp

{
−ρτ

(
u− µ
σ

)}
, −∞ < u <∞

where ρτ (u) = u{τ1(u ≥ 0) − (1 − τ)1(u < 0)} is a loss function. The parameter
0 < τ < 1 is the level of the quantile, µ a location parameter and σ > 0 a scale parameter,
respectively. In the following, we restrict the analysis to the standardized situation µ =
0, σ = 1 and abbreviate it as ALD(τ). The median, for example, is related to

f

(
u|0, 1, 1

2

)
=

1

4
exp

(
−|u|

2

)
, −∞ < u <∞.

the pdf of a symmetric Laplace distribution.

Theorem 2.1 Let Y1, · · · , Yn be a sample modeled by Yi = θ∗+εi with i.i.d. εi ∼ ALD(τ),
and θ∗ a location parameter. Let Y(1) ≤ Y(2) ≤ · · · ≤ Y(n) denote the order statistics of

{Yi}ni=1. Then the QMLE θ̃ of θ∗ is

θ̃ = Y([nτ ]+1)

Proof. The log-likelihood L(θ) is

L(θ) = log

[
n∏
i=1

τ(1− τ) exp {−ρτ (Yi − θ)}

]

= n log{τ(1− τ)} − 1

2

n∑
i=1

{|Yi − θ|+ (2τ − 1) (Yi − θ)}

= n log{τ(1− τ)}+ (1− τ)
n∑
i=1

(θ − Yi)1(θ > Yi)− τ
n∑
i=1

(Yi − θ)1(θ ≤ Yi).
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Now one computes the derivative w.r.t. θ. Suppose that Y(k) ≤ θ < Y(k+1), k = 0, 1, · · · , n,
where Y(0) < Y(1) and Y(n+1) > Y(n) are any two real values, then

L′(θ) = −(1− τ)k + τ(n− k) = −k + τn.

We have L′(θ) = 0, for k = [nτ ].

Theorem 2.2 For any θ the log-likelihood ratio in quantile QMLE framework is:

L(θ̃, θ) = L(θ̃)− L(θ)

= n(θ̃ − θ)(2τ − 1)/2 +
1

2

n∑
i=1

{
|Yi − θ| − |Yi − θ̃|

}
.

Proof. For any two points θ̃ and θ, the log-likelihood ratio is:

L(θ̃, θ) =
1

2

n∑
i=1

{|Yi − θ|+ (2τ − 1)(Yi − θ)} − {|Yi − θ̃|+ (2τ − 1)(Yi − θ̃)}

=
1

2

n∑
i=1

{|Yi − θ| − |Yi − θ̃|+ (2τ − 1)(θ̃ − θ)}

= n
2τ − 1

2
(θ̃ − θ) +

1

2

n∑
i=1

(|Yi − θ| − |Yi − θ̃|). (1)

Next, consider the Kullback-Leibler divergence K(·, ·) defined for two pdf’s f(y, θ), f(y, θ′)
with parameters θ, θ′:

K(θ, θ′) = E θ log
f(Y, θ)

f(Y, θ′)
.

Theorem 2.3 Let f(y, θ) be the density of Y = θ+ε, ε ∼ ALD(τ). The Kullback-Leibler
divergence K(θ, θ′) is:

K(θ, θ′) =

{
τ
τ−1

+ τ(θ − θ′) + τ
1−τ exp {(1− τ) (θ′ − θ)} , θ ≥ θ′,

τ−1
τ

+ (1− τ)(θ′ − θ) + 1−τ
τ

exp {−τ (θ′ − θ)} , θ < θ′.
(2)

Proof. The theorem may be proved by simple trivial algebraic calculations.

Remark. If θ′ is close to θ, then by Taylor expansion, one sees:

K(θ, θ′) ≈ τ(1− τ)

2
(θ′ − θ)2 (3)

Define tail functions as:

λ+(y) = −(y/τ)−1 log{τ−1P(εi > y)}, y ≥ 0 (4)

λ−(y) = −{y/(1− τ)}−1 log{(1− τ)−1P(εi < y)}, y < 0

4



If we make assumptions on the error distribution (in a QMLE framework), we write λ(.)

for λ+/−(y). Introduce λ0(.) for λ
+/−
0 (y) in the case of true unknown tail function,

Define the rate function as M(µ, θ, θ∗)
def
= − log E λ(.),θ∗ exp{µL(θ, θ∗)} which we abbreviate

for fixed µ as M(θ, θ∗). E λ(.),θ∗ means taking expectation under the distribution λ(.) of
rv. Yi.

Assume λ+(y) and λ−(y) → 0 as y → +/ −∞, and λ+/−(y) is bounded from below by

µ+/−(z) and recall the definition of A(z, θ∗)
def
= {θ : M(θ, θ∗) ≤ z} and µ+(z) > C log z/z

or (µ−(z) < C log z/z).

The bound for the local constant estimator is described in

Theorem 2.4 Let {Yi}ni=1 be defined as Yi = θ∗ + εi, with εi as i.i.d. random noise, and
F−1
ε (τ) = 0.

Then we have
Pλ(.),θ∗{L(θ̃, θ∗) > ξ} ≤ C exp(−ξ) (5)

and for any r > 0
E λ(.),θ∗{|L(θ̃, θ∗)|r} ≤ Rr, (6)

where Rr is defined as the moment bound for the likelihood ratio process.

Proof. See appendix.

Recall that when Yi s do not follow ALD, quantile estimation may be done in a QMLE
framework as in Theorem 2.1. W.L.O.G., assume that θ∗ = 0.

θ̃ = arg max
θ

L(θ) = arg min
θ

n∑
i=1

− log{τ(1− τ)}+ ρτ (Yi − θ),

The general case (θ∗ 6= 0)can be reduced to this one by a simple change of variables.
(4) gives P(Y > y) = exp{−λ+(y)y/τ}τ for y ≥ 0, and for y < 0, P(Y < y) =
exp{−λ−(y)y/(1− τ)}(1− τ), showing that the tail function identifies the cdf of Y .

The case with λ+(y) ≥ λ+
0 > 0 {λ−(y) ≤ λ−0 < 0} corresponds to light tails, while

λ+(y)→ 0 {λ−(y)→ 0} as |y| → ∞ means heavy tails of the distribution P(.).

For example, a random variable Y ∼ Pareto(α, x0), x0 > 0, with density function
αxαm/y

α+1, and P(Y > y) = (xm/y)α has the tail function behavior:

limy→∞λ
+(y) = limy→∞ − (y/τ)−1(α log x0 − α log y − log τ)

= 0,

By contrast the light tail random variable Y ∼ exp(λ) with density function λ exp{−λy}1(y ≥
0) :

limy→∞λ
+(y) = limy→∞ − τy−1(−λy − log τ)

= λτ > 0.

The interesting case of course is the one where λ+(y) is positive and monotonously
decreases to 0 in y > 0, and λ−(y) is negative and monotonously increases to 0 as
y → ∞. Assume further that λ+(y){λ−(y)} is sufficiently regular and its first deriva-
tive λ+′(y){λ−′(y)} is uniformly continuous on R.
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2.1 Local Polynomial Estimation

Let {Xi, Yi}ni=1 be independent random variables, we use the following model for construc-
tion:

Yi = l(Xi) + εi, (7)

the τth quantile curve follows with P(εi > 0) = τ .

We concentrate on X ∈ R1 in this paper. It is not difficult to extend to the d-dimensional
case X ∈ Rd d > 1. For fixed τ ∈ (0, 1) and u ∈ R, assume that the conditional quantile
function F−1

Y |x(τ) = l(x) can be approximated by a polynomial, in the vicinity of u:

l(x) ≈ θ0(u) + θ1(u)(x− u) + θ2(u)(x− u)2 + . . .+ θp(u)(x− u)p. (8)

Then we have the corresponding QMLE :

θ̃(u) = {θ̃0(u), θ̃1(u), . . . , θ̃p(u)}> (9)
def
= argmaxθ∈ΘL(W, θ)

= argmaxθ∈Θ{log τ(1− τ)
n∑
i=1

wi −
n∑
i=1

ρτ (Yi − θ>ψi)wi}

= argminθ∈Θ

∑
i=1

ρτ (Yi − θ>ψi)wi,

where ψi = {1, (Xi − u), (Xi − u)2, . . . , (Xi − u)p}>, wi = K{(Xi − u)/h} and W =
(w1, . . . , wn)>, for i in 1, 2, . . . , n.

We use Theorem 2.8 in Spokoiny (2011) to prove a result similar to (6) for local polynomial
approximations (8), consider the following definitions, (from now on abbreviate Eλ0,θ(.) as
E):

ζ(θ)
def
= L(W, θ)− EL(W, θ) (10)

ζ(θ, θ∗)
def
= ζ(θ)− ζ(θ∗)

N(µ, θ, θ∗)
def
= − log E exp{µζ(θ, θ∗)}

M(µ, θ, θ∗)
def
= − log E exp{µL(W, θ, θ∗)} = − log E exp[µ{L(W, θ)− L(W, θ∗)}]

The two conditions involved are (ED) and (L):

1.(ED)∇ζ(θ) satisfying the condition (ED):

∃λ∗ > 0 and a symmetric positive matrix V 2 s.t. ∀λ, 0 < λ ≤ λ∗,

log E exp{λγ>∇ζ(θ)} ≤ ν0λ
2||V 2γ||2/2, (11)

for some fixed ν0 ≥ 1 and γ ∈ Rp+1.

Set V 2(θ) =
∑n

i=1 ψiψ
>
i pi(ψ

>θ)wi, with pi(.) as the density of Yi.

2. (L) For R > 0, there exists constant a = a(R) > 0 such that it holds on the set
Θ0(R) = {θ : ||V (θ − θ∗)||2 ≤ R}:

−EL(W, θ, θ∗) ≥ a||V (θ − θ∗)||2/2 (12)

6



Restrict to a local central point θ∗. Define the matrix V0 = V (θ∗). Assume that the
density of Yis are uniformly bounded from below in Θ0(R), then we have (12). The
detailed proof of condition (ED) and (L) is deferred to the appendix.

Given (ED) on Θ0(R) with the matrix V0 and λ∗ = N1/2(Ψ)δ∗/C(Ψ, R), where

C(Ψ, R)
def
= sup

γ∈Rp

sup
θ∈Θ0(R)

||V (θ)γ||
||V (θ∗)γ||

.

We may apply Theorem 2.8 of Spokoiny (2011) to obtain:

Theorem 2.5 Let V0 = V (θ∗) and R be so that λ∗ ≥ qR/µ for µ = a/(2ν0q
3). We have

for any 0 < r < R :

P(||V (θ̃ − θ∗)|| > r) ≤ exp{−a2r2/(8ν0q
3) + Q0(p, q)}+ exp{−g(R)}

with Q0(p, q) = pC(q) + q2 + log(q2− q). Moreover, if R ≤ µλ∗/(ν0q), then for any z > 0
with 2z/a ≤ R2, it holds

P{L(θ̃, θ∗) > z} ≤ exp{−za/(ν0q
3)−Q0(p, q)}+ exp{−g(R)}, (13)

where g(R) is defined as:

g(R)
def
= inf

θ∈Θ
sup
µ∈M
{µR + C(µ, θ, θ∗)} (14)

= inf
θ∈Θ

g(R, θ, θ∗) (15)

with

C(µ, θ, θ∗) = q−1M(qµ, θ, θ∗)− (p+ 1) log+{ε−1µ∗||V (θ − θ∗)||} −Q(p, q), (16)

where log{(x)1(x ≥ 1)}.

Q(p, q) = −ν0qε
2/2− log(2 + 2p)− pC(q)− log(1− a−(p+1)), (17)

C(q) = log q log{2(1− q−1)},

q > 1, a, ν0, p, ε are positive real constants.

To achieve a confidence set, we want that exp{−g(R)} in (13) is negligible for moder-
ately large sample size or not so heavy tails. Typically, the tail function is assumed
to hold λ+(θ)θ > C log θ. We need again to bound the rate function from below by a
monotonically increasing function.

Define ε̃i = Yi − ψ>i θ
∗ and their distributions Pi(ε ∈ A) = P{(Yi − ψ>θ∗) ∈ A} for

any Borel set A on the real line. If Yi = ψ>i θ
∗ + εi is the true model, then Pi coincides

with distribution of each εi.For simplicity of presentation, λ+(y){λ−(y)} is assumed to be
sufficient regular and its first derivative is uniform continuous in R. Therefore as in the
local constant case, we have |yλ+

i (y)|′ ∈ [0, 1] and |yλ′+i (y)| < 1. Define

M∗(θ, θ∗)
def
= sup

µ
M(µ, θ, θ∗)

7



Theorem 2.6 We can achieve, with y > 0, and µi = λ+
i (y)/(2τ)

M∗(θ, θ∗) ≥M(µ, θ, θ∗) ≥
n∑
i=1

log{1+ψ>i (θ−θ∗)λ+(θ)/τ}+
n∑
i=1

{(2τ − 2)(ψ>i θ − ψ>i θ∗)λ+(θ)

2τ
}.

Proof. See appendix.

The moment bounds for the likelihood ratio process can be obtained by the following
theorem:

Theorem 2.7 Define the positive loss function |L(θ̃, θ∗)|r (r > 0). Then

E λ(.),θ∗|L(θ̃, θ∗)|r ≤ Rr,

where Rr > 0 is a constant.

Proof. See appendix.

3 Propagation and Bounds for Critical Values

In section 2, we derived the parametric risk bounds for local constant and local poly-
nomial quantile estimates. These bounds provide us a fundament on which to carry
out a local adaptive procedure. For fixed x, a sequence of ordered weights W (k) =
(w

(k)
1 , w

(k)
2 , . . . , w

(k)
n )> is defined w

(k)
i = Khk(x − Xi), where (h1 < h2 < . . . < hK). The

weights of a local model determine a local estimation of l(x) as well as the derivatives
l̂(i)(x) of l(x), see (9). Note that θ̂k(x) is a p+1 dimensional vector, with l̂(i)(x) = i!θ̂k,i(x)

and i ∈ 1, . . . , p. θ̂k,i(x) is the ith component of θ̂k(x).

The adaptation algorithm is described by:

- Start with θ̂1(x) = θ̃1(x).

- For k ≥ 2, θ̃k(x) is accepted and θ̂k(x) = θ̃k(x), if θ̃k−1(x) was accepted and

L{W (`), θ̃`(x), θ̃k(x)} ≤ z`, ` = 1, . . . , k − 1, (18)

where θ̂k(x) is the latest accepted estimate after the first k steps. Note that (18) is
equivalent to say that θ̃k(x) is covered in all the confidence set of θ̃`(x) (` < k).

The implementation of the procedure requires to fix the set of critical values of z1, . . . , zk−1.
The proposed approach suggests to tune these parameter by the so called propagation
condition. For every step k, we require that the estimate at step k θ̂k(x) is sufficiently
close to the MLE in step k : θ̃k, in the sense that:

E λ(.),θ∗|L{W (k), θ̃k(x), θ̂k(x)}|r ≤ αRr (19)

α and r are two hyper-parameters. The role of α is similar to the significance level of a
test, while r denotes the power of the loss function. A larger r and a smaller α would lead
to an increase in critical values. Note that (19) relies on the artificial parametric model
Pλ(.),θ∗ not the true model Pλ0(.),θ(.). A choice of critical values zl(l ∈ 1, 2, . . . , k) can be
based on the following steps:
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- Consider first only z1 and let z2 = . . . = zK−1 = ∞, leading to the estimates θ̂k(x)
for k = 2, . . . , K.

- The value z1 is selected as the minimal one for which

sup
θ∗

E λ(.),θ∗
|L{W (k), θ̃k(x), θ̂k(z1, x)}|r

Rr

≤ α

K − 1
, k = 2, . . . , K.

- Set zk+1 = . . . = zK−1 =∞ and fix zk, which leads to the set of parameters z1, . . . , zk,
∞, . . . ,∞ and the estimates θ̂m(z1, . . . , zk) for m = k + 1, . . . , K. Select zk s.t.

sup
θ∗

E λ(.),θ∗
|L{W (k), θ̃m(x), θ̂m(z1, z2, . . . , zk, x)}|r

Rr

≤ kα

K − 1
,

m = k + 1, . . . , K.

The theorem below assures the existence of critical values constructed via the above
technique by presenting upper bounds for the critical values.

Assume that for some constants 0 < u0 < u < 1, it holds 0 < ‖V −1
k V 2

k−1V
−1
k ‖∞ ≤ u < 1,

define hk = C1C
k
2 , k = 1, . . . , K.

Theorem 3.1 Suppose that r > 0, α > 0. Under the assumptions of probability bounds
in (13), there are a0, a1, a2, s.t. the propagation condition is fulfilled with the choice of
zk = a0r log(ρ−1) + a1r log(hK/hk) + a2 log(nhk).

Proof.

We need
E λ(.),θ∗{|L(W (k), θ̃k(x), θ̂k(x))|r} ≤ αRr, (20)

first we prove,

E λ(.),θ∗{|L(W (k), θ̃l(x), θ̂k(x))|r} ≤ α(3||Vk/Vl||ak/alu−1
0 [zl

+Q0{p}] + u−1
0 [zk + Q0{p}])r, (21)

To prove (21), we apply the following:

Theorem Spokoiny (2011) Suppose (ED) and (L) on Θ0(R), where R ≤ µ0λ
∗/(ν0q) for

µ0 = a/(2ν0q). Then for any z > 0 on a random set of probability at least 1− e−z it holds
for all θ ∈ Θ0(R)

L(θ, θ∗) ≤ −a‖V0(θ − θ∗)‖2/4 + µ−1
0 {zk + Q0(p)}

Similarly, if
−E λ(.),θ∗L(W, θ, θ∗) ≥ a1||V0(θ − θ∗)||2/2 (22)

then it holds on the same random set

L(θ, θ∗) ≥ −3a1||V0(θ − θ∗)||2/4− µ−1
0 {zk + Q0(p)}, θ ∈ Θ0(R)

9



To prove (21), we have for u > 0,

|L(W (k), θ̃l, θ
∗)| ≤ max{L(W (k), θ̃l, θ

∗),−L(W (k), θ̃l, θ
∗)}

≤ max{L(W (k), θ̃l, θ
∗),−L(W (k), θ̃l, θ

∗)}+ uL(W (l), θ̃l, θ
∗)

≤ max
θ
{max{L(W (k), θ, θ∗),−L(W (k), θ, θ∗)}+ uL(W (l), θ, θ∗)}

≤ max{−ak||Vk(θ − θ∗)||2 + µ−1
0 [zk + Q0(p)],

3a′k||Vk(θ − θ∗)||2/4 + µ−1
0 [zk + Q0(p)]}

−ual||Vl(θ − θ∗)||2/4 + uµ−1
0 [zl + Q0(p)]

Using u > 3||Vk/Vl||a′k/al to guarantee |L(W k, θ̃l, θ
∗)| <∞, the proof follows.

To prove (20), define {Bk : k̂ = k − 1}, by Cauchy-Schwartz inequality,

E λ(.),θ∗ [|L{W (k), θ̃k(x), θ̂k(x)}|r] =
k∑
l=1

E λ(.),θ∗{|L(W (k), θ̃k(x), θ̃l−1(x))|2r}1/2P(Bl)
1/2

≤
k∑
l=1

2(2r−1)+ [E λ(.),θ∗ |L{W (k), θ̃k(x), θ∗}|2r + E λ(.),θ∗|{W (k), θ̃l(x), θ∗}|2r]P(Bl)
1/2

≤
k∑
l=1

C{R2r}(a′k||Vk/Vl||/al)2r exp{−C1zl/2}

4 “Small Modeling Bias” Condition

Now we extend the condition (20) to the situation when the parametric assumption is not
precisely fulfilled but the deviation from it is small in a modeling bias sense. We measure
the deviation via the Kullback Leibler divergence between the nonparametric measure
and the assumed parametric measure:

∆λ(.),λ0(.)(W
(k), θ) =

n∑
i=1

K{Pθ(Xi),λ0(.),Pθ,λ(.)}1{w(k)
i > 0},

where Pθ(Xi),λ0(.),Pθ,λ(.) correspond to the marginal distributions of Yi with respect to θ(.)
and θ. Here we tacitely assume that a misspecified λ0(.) will not induce a big deviation,
see Section 6 for evidence on this assumption, so assume:

∆λ(.),λ0(.)(W
(k), θ) ≈ ∆λ(.),λ(.)(W

(k), θ)

We define a bound by the following “small modeling bias” (SMB) condition:

∆λ(.),λ0(.)(W
(k), θ) ≤ ∆, (23)

and the oracle k∗
def
= arg maxk{∆λ(.),λ0(.)(W

(k), θ) ≤ ∆}.

Lemma 1 Let P , P0, be two measures s.t. E log(dP/dP0) ≤ ∆ < ∞, For any random
variable z, with E z <∞, we have E log(1 + z) ≤ ∆ + E 0z.

10



Proof: f(x) = xy − x log x+ x attains maximum at the point x = ey, thus f(x) ≤ f(ey),
and we have xy ≤ x log x− x+ ey. Let x = dP/dP0 and y = log(1 + z),

E 0dP/dP0 log(1 + z) = E log(1 + z)

≤ E 0(dP/dP0 log dP/dP0 − dP/dP0 + 1 + z)

≤ E log
dP

dP0

+ E 0z

≤ ∆ + E 0z

From the above lemma and (23), we can derive the from the propagation condition the
propagation property:

E λ0(.),θ(.) log{1 + |L(θ̃k, θ̂k)|r/Rr} ≤ ∆ + α, (24)

when the SMB condition is fulfilled:

∆λ(.),λ0(.)(W
(k), θ) ≤ ∆,∀k < k∗.

5 Stability and Oracle Property

Due to the “propagation” result (20), the accuracy of the sequential test is guaranteed
when the SMB assumption is fulfilled. In addition, we also need to make sure that when
our final estimated step k̂ overshoots the oracle k∗ (k̂ > k∗), the estimate does not vary
too much. The stability condition shows that in the case of overshooting k̂ > k∗, the
estimate is accurate enough in the sense that,

L(W (k∗), θ̃k∗ , θ̂k̂)1{k̂ > k∗} ≤ zk∗ .

The “stability” property naturally follows from the setup of our test.

Combination of the “propagation” and “stability” statements implies the “oracle” prop-
erty, under the SMB condition,

E log{1 +
L(W (k∗), θ̃k∗(x), θ)r

Rr

} ≤ ∆ + 1 (25)

E log{1 +
|L(W (k∗), θ̃k∗(x), θ̃k̂(x))|r

Rr

} ≤ ρ+ ∆ (26)

.

Proof. (25) is a trivial consequence of (24) and “stability”. We now prove (26).

E λ0(.),θ(.) log{1 +
|L{W (k∗), θ̃k∗(x), θ̃k̂(x)}|r

Rr

}

= E λ0(.),θ(.) log{1 +
|L{W (k∗), θ̃k∗(x), θ̃k̂(x)}|r

Rr

}1(k̂ ≤ k∗)

+E λ0(.),θ(.) log{1 +
|L{W (k∗), θ̃k∗(x), θ̃k̂(x)}|r

Rr

}1(k̂ > k∗)

≤ ∆ + E λ0(.),θ(.)

|L{W (k∗), θ̃k∗(x), θ̃k̂(x)}|r

Rr

+ log(1 +
|L{W (k∗), θ̃k∗(x), θ̃k̂(x)}|r

Rr

1(k̂ > k∗)

≤ ∆ + ρ+ log(1 + zk∗/Rr)

11



Table 1: Critical Values with different r and α

α = 0.25, r = 0.5 6.123 2.333 0.987 3.678e-05 0.000
α = 0.5, r = 0.5 4.616 1.578 0.357 2.472e-05 0.000
α = 0.6, r = 0.5 3.203 0.679 0.025 0.006 7.278e-05
α = 0.25, r = 0.75 9.127 3.288 1.031 0.126 5.675e-05
α = 0.25, r = 1 12.75 4.280 1.224 1.095e-04 0.000

Table 2: Critical Values with Different τ

τ = 0.05 6.464 2.204 0.620 3.345e-05 0.000
τ = 0.5 7.997 3.089 0.986 0.300e-05 0.000
τ = 0.75 9.203 3.910 1.106 0.123 7.254e-05
τ = 0.95 8.589 5.452 1.904 0.334 1.203e-05

6 Monte Carlo Simulation

This section aims at illustrating the local quantile estimation technique at different levels
τ = 0.05, 0.5, 0.75, 0.95 and for different noise distributions. Tail functions we select from
a) Laplace, b) normal and c) student t(3) distribution, the errors brought by misiden-
tification of the noise distribution are also studied. The global bandwidth selection for
quantile regression follows the proposal of Yu and Jones (1998), in which they consider
a rule of thumb bandwidth based on the assumption that the quantiles are parallel. We
also compare with the proposals of Cai and Xu (2008), where an approach based on a
nonparametric version of the Akaike information criterion (AIC) is implemented. Global
bandwidth selectors are compared with the localizing technique presented here.

6.1 Critical Values

The critical values are simulated via the “propagation condition” (19).

Table 1 shows the critical values with several choices of α and r with τ = 0.75, m = 10000
Monte Carlo samples, and bandwidth sequence (8, 14, 19, 25, 30, 36, 41, 52, 63)∗0.001. Crit-
ical values decrease when α increases, and increase when r increases. The critical values
for the last 3 bandwidths is actually equal to 0.

The bandwidth sequence in Table 2 displays the values of different critical values with
different τ , α = 0.25, r = 0.5, m = 10000 Monte Carlo samples, bandwidth sequence
(8, 14, 19, 25, 30, 36, 41, 52, 63) ∗ 0.001, and normal noise.Critical values are roughly of the
same level with respect to different τ .

Table 3 displays the critical values for three alternative bandwidth sequences, i.e.
(8, 16, 25, 36, 49, 63, 79, 99) ∗ 0.001, (5, 8, 14, 19, 27, 36, 46, 58, 66) ∗ 0.001,
(8, 14, 19, 25, 30, 36, 41, 52, 63) ∗ 0.001, with α = 0.25, r = 0.5, and τ = 0.85. We see
that different bandwidth sequence would return us different level of critical values. In
applications, critical values are chosen therefore in a scenario based fashion.

The critical values in Table 4 are simulated under t-distribution with three degree of

12



Table 3: Critical Values with Different Bandwidth Sequences

hseq1 11.33 1.243 6.933e-05 0.000 0.000
hseq2 18.39 6.479 2.230 0.469 8.738e-05
hseq3 6.123 2.333 0.987 3.678e-05 0.000

freedom, normal distribution and ALD(0, 1,0.5). The critical values apparently increase
when the distribution tails get fatter.

Table 4: Critical Values with Different Noise Distributions

N(0,1) 11.50 4.924 2.514 1.313 2.765e-05
ALD(0,1,0.5) 14.05 6.554 3.304 1.443 5.879e-05
t(3) 15.42 8.707 2.370 0.342 3.898e-05

In Table 5, critical values are shown in the same circumstances as in Table 4 except for
changing to the local linear case. Since we introduce one more variable (trend) to estimate,
critical values doubled or tripled compared to the local constant case. The behavior with
respect to tail functions stays the same.

Table 5: Local Linear

N(0,1) 29.97 58.64 43.21 33.41 19.43 07.40
ALD(0,1,0.5) 45.28 74.51 66.43 50.42 31.42 13.50
t(3) 51.77 84.94 59.28 44.99 29.07 11.57

6.2 Comparison of Different Bandwidth Selection Techniques

We illustrate our proposal by considering x ∈ [0, 1], and estimation of the conditional
quantile function lτ (x) at point x = 0.5, τ = 0.75. The sample with (n = 1000) are
simulated under three scenarios:

f [1](x) =


0 if x ∈ [0, 0.333];
8 if x ∈ (0.333, 0666];
−1 if x ∈ (0.666, 1]

f [2](x) = 2x(1 + x)

f [3](x) = sin(k1x) + cos(k2x)1{x ∈ (0.333, 0.666)}+ sin(k2x)

The noise distributions considered are:

- Normal distribution with 0 mean and 0.03 as variance

13



- ALD(0,2,0.5)

- t-distribution with 3 degree of freedom

Figure 2 presents pictures with different noise distributions and comparison of boxplots
of difference between estimations and the true curves in the local constant case. Figure
3 and 4 show in the local linear case function estimations and the first derivatives as
well. The adaptive method always outperforms methods with fixed bandwidth, especially
in the presence of jump. Table 6 further confirms our conclusion, by errors using four
methods are evaluated with 1000 samples.

Table 6: Comparison of Monte Carlo errors at x = 0.5 with 1000 samples

Fixed bandw Local Constant Local linear Fixed bandw (Cai)
f [1](x) 0.654 0.172 0.169 0.378

f [2](x) 0.206 0.008 0.008 0.245

f [3](x) 0.137 0.021 0.019 0.123

Table 7 offers an evaluation of misidentification errors with critical values simulated from
ALD distribution while data are simulated from other distributions. Table 7 gives L1

errors between l̂ and l and lets us conclude that misspecification of tail loss would not
contaminate our results significantly.

Table 7: Comparison of Error Misspecification

Local Constant {N(0,1)} Local Constant {t(3)} Local linear {N(0,1)}
f [1](x) 0.252 0.220 0.169

f [2](x) 0.070 0.016 0.043

f [3](x) 0.009 0.021 0.019

7 Application

In the study of financial products, it is very important to detect and understand tail
dependence among underlyings such as stocks. In particular, the tail dependence structure
represents the degree of dependence in the corner of the lower-left quadrant or upper-right
quadrant of a bivariate distribution. Hauksson, Michel, Thomas, Ulrich and Gennady
(2001) and Embrechts and Straumann (1999) provide good access to the literature on
tail dependence and Value at Risk. With the adaptive quantile technique, we provide an
alternative approach to study tail dependence.

Figure 5 shows the shape of conditional quantile curves from a bivariate normal random
sample. The correlation is calibrated from real data as given in Figure 6, where X is
standardized returns from stock “clpholdings” from Hong Kong Hangseng Index, and Y
is returns from stock “cheung kong”. Figure 6 and Figure 7 show the empirical condi-
tional quantile curves actually deviate from the one calculated from normal distributions
in Figure 5, which implies non normality The motivation of doing adaptive bandwidth
selection is clear to see, from Figure 6 and Figure 7, the dependency structure change is

14
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Figure 2: The bandwidth sequence (upper left panel), the data with noise (blue) , the
adaptive estimation of 0.75 quantile (red), the quantile smoother with fixed optimal band-
width = 0.06 (yellow); boxplot of block residuals fixed bandwidth (upper right), adaptive
bandwidth (lower right)
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Figure 3: The bandwidth sequence (upper left panel), the data with t(3) noise (blue),
the adaptive estimation of 0.75 quantile (blue), the quantile smoother with fixed optimal
bandwidth = 0.06 (yellow); The blocked residual (right)
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Figure 4: The bandwidth sequence (upper panel), the data with ALD(0,2,0.5) noise (blue),
the adaptive estimation of 0.85 quantile (blue), the quantile smoother with fixed optimal
bandwidth = 0.06 (yellow)
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Figure 5: Plot of quantile curve for two normal random variables with ρ = 0.3204, τ = 0.75

more obvious compared with the fixed bandwidth curve. Moreover, the flexible adaptive
curve is not a consequence of overfitting since it still mostly lies in the confidence bands
produced by fixed bandwidth estimation, see Härdle and Song (2010).

Figure 8 shows the first derivative curve for above example. The curve gets more volatile
while x increases until a drastically change, then it turns flat.

We measure deviation from normality by accumulated L1 distance and examine different
combination of stocks from Hong Kong Hangseng Index. The results is summarized in
Table 8.

Table 8: Summary of Combination of Stocks

Chalco Cosco pacific Bank of China
New world devo 0.252 0.220 0.169
Sino land 0.070 0.016 0.043
Swire pacific A 0.009 0.021 0.019

Another application of quantile function estimation is in temperature data analysis, which
is of key interest to price temperature derivatives. Quantile regression can provide a more
flexible and complete approach to understand the temperature risk drivers.

Denote daily temperature as T 7→ (t, j), with t = 1, · · · , τ = 365 days, j = 0, · · · , J years.
The time series decomposition for Tt,j is given as:

Xt,j = Tt,j − Λt

Xt,j =
L∑
l=1

βlXt−l,j + σtεt,j

εt,j ∼ N(0, 1), (27)

ε̂t,j = X365j+t −
L∑
l=1

β̂lX365j+t−l (28)
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where Tt,j is the temperature at day t in year j, Λt denotes the seasonality effect and σt
the seasonal volatility.

We are interested specifically in the stochastic risk drivers εt,j, Figure 9 presents a time
series plot of ε̂t,j/σ̂t, and the estimated 90% quantile function. By zooming in the curve,
we observe a very interesting phenomena: an increase of trend of the standardized residual
over years, which implies the existence of a potentially non stationarity trend possibly
caused by global warming.

To further understand the risk factors, we analyze the quantile functions of ε̂2
t,j over 12

years, and average the over every 4 years for comparison, see Figure 10 and Figure 11.
The differences between Berlin and Kaoshiung are easy to see, the variance function peaks
from Jan-Feb , while for Berlin the peaks come more in summer. Moreover, there is a
tendency for Kaoshiung to be more volatile while this phenomenon does not appear in
Berlin.

Table 9 summarizes statistics from the normality test of standardized residuals from three
methods in Kaoshiung. The first method is to estimate σ̂ via median curve, the second
method is to estimate σ̂ by {lε,0.75 − lε,0.25}/1.34 (1.34 is the inter quartile range of a
standard normal distribution), the third method is to get the conditional mean. The
fixed mean (fourth method) and adaptive bandwidth are compared.

A general fact from Table 9 and 10 is that Berlin has more normal residuals than Kaoshi-
ung. Our method three mean regression is always better in getting more normal residuals,
and method two from adaptive quantile is compatible with method three. It means quan-
tiles at higher or lower levels are better to explain the extreme happened in volatility
function. The fix bandwidth as usual performs poorly. Therefore we conclude that our
adaptive technique is useful in modeling temperature residuals.
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Figure 10: Estimated 90% quantile of variance functions, Berlin, average over 1995−1998,
1999− 2002 (red), 2003− 2006 (green)
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Figure 11: Estimated 90% quantile of variance functions, Kaoshiung, average over 1995−
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Table 9: P-values of Normality Tests:Berlin

AD JB KS
1 0.000 0.010 0.060
2 0.062 0.000 0.020
3 0.054 0.487 0.171
4 0.009 0.000 0.002

8 Appendix

8.1 The Local Constant Case

The tail function behavior implies that {yλ+(y)}′ ∈ [0, 1] ({yλ−(y)}′ ∈ [−1, 0]) and hence:

|yλ+′(y)| =
∣∣{yλ+(y)}′ − λ+(y)

∣∣ < 1.

Let

m(θ)
def
= E λ(.),θ∗ρτ (|Y − θ|),

q(θ)
def
= P(Y ≤ θ)− P(Y > θ)

q(1)(θ)
def
= (1− τ)P(Y ≤ θ)− τP(Y ≥ θ)

and observe m′(θ)
def
= (1− τ)P(Y < θ)− τP(Y ≥ θ).

Next, define `(y, θ, 0) as the likelihood ratio function for one observation,

`(y, θ, 0) = (2τ − 1)θ − {|Y − θ| − |Y |}
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Table 10: P-values of Normality Tests:Kaoshiung

AD JB KS
1 0.000 0.000 0.000
2 1.03e-05 0.077 0.043
3 2.37e-06 0.742 0.674
4 0.000 0.021 0.019

It is also clear that |q(θ)| ≤ 1. For θ ≥ 0, it holds

`′(y, θ, 0)
def
=
∂

∂y
`(y, θ, 0) =

{
2, y ∈ (0, θ),

0, otherwise,

and `(y, θ, 0) = 2τθ − 2θ for y < 0. Therefore, integration by parts yields

E λ(.),θ∗ exp{µ`(Y, θ, 0)} = −
∫

exp{µ`(y, θ, 0)} dP (Y > y)

= exp{µ(2τθ − 2θ)}+ 2µ

∫ θ

0

`′(y, θ, 0) exp{µ`(y, θ, 0)}P (Y > y) dy

= exp{µ(2τθ − 2θ)}+ µ

∫ θ

0

exp{µ(2τθ − 2θ + 2y)}τ exp{−1

τ
yλ+(y)} dy

= exp{µ(2τθ − 2θ)}+ 2µτ exp{µ(2τθ − 2θ)}
∫ θ

0

exp[(y/τ){λ+(θ)− λ+(y)}] dy,

where we fix µ(θ) = λ+(θ)/{2τ}. Monotonicity of λ+(y) implies

E λ(.),θ∗ exp{µ(θ)`(Y1, θ, 0)} ≤ exp{µ(2τθ − 2θ)}(1 + 2µτθ)

= exp{λ+(θ)(2τθ − 2θ)/2τ}(1 + λ+(θ)θ).

Therefore, for θ > 0,

M(θ, 0) = − log E λ(.),θ∗ exp{µ(θ)`(Y, θ, 0)} ≥ − log{1+θλ+(θ)}+(
−2τ + 2

2τ
)θλ+(θ). (29)

For θ < 0, take µ = λ−(θ)/2(1− τ) the monotonicity of λ−(y) implies

M(θ, 0) = − log E λ(.),θ∗ exp{µ(θ)`(Y, θ, 0)} ≥ − log{1 + θλ−(θ)}+ { τ

(1− τ)
}θλ−(θ)

(29) states the identifiability of the function, now we prove the other condition to achieve
the risk bound in Golubev and Spokoiny (2009).

Define

h(δ, γ; θ)
def
= log E λ(.),θ∗ exp{2δγ

>,∇ζ0(θ)√
γ>v(θ)γ

}

where

v(θ)
def
= E∇ζ0(θ)>∇ζ0(θ).
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The smoothness condition is shown as:

h(δ, γ; θ) ≤ 2ν2
0δ

2, δ < δ̄, ν0 ≥ 1. (30)

To prove (30), define,

ζ0(θ)
def
= E λ(.),θ∗(−|Y − θ|+ |Y |)− (−|Y − θ|+ |Y |),

Then, for θ > 0,

∇ζ0(θ) = 1(Y ≤ θ)− 1(Y > θ)− q(θ)
E λ(.),θ∗ |∇ζ0(θ)|2 = 1− q2(θ)

Var∇ζ0 = Var

∫ θ

0

∇ζ0(u)du ≤ θ

∫ θ

0

E λ(.),θ∗ |∇ζ0(u)|2du = θ

∫ θ

0

{1− q2(u)}du

and

θ−2 Var ζ0(θ) = θ−1

∫ θ

0

{1− q2(u)}du→ 0, θ →∞

because q(θ)→ 1. Therefore,

∇ζ1(θ) = ∂ζ1(θ)/∂θ = λ+(θ)∇ζ0(θ) + θλ+′(θ)ζ0(θ)/θ.

The conditions |∇ζ0(θ)| ≤ 1, |ζ0(θ)/θ| ≤ 1, |θλ+′(θ)| ≤ 1, λ+(θ)→ 0 and Var{ζ0(θ)/θ
}
→

0 as θ → ∞, easily imply h(δ, γ; θ) ≤ 2ν2
0δ

2 for some fixed δ < δ̄, ν0 ≥ 1, thus the
smoothness condition (30) is satisfied.

Moreover, if E λ(.),θ∗|Y1|γ <∞ for some γ > 0, which leads to bound for the loss ũ = |θ̃−θ∗|:

Define
Ω(ρ, s)λ(.),θ∗

def
= E λ(.),θ∗ sup

θ∈Θ
exp[ρ{µ(θ)L(θ, θ∗) + sM(θ, θ∗)}]

The conditions of Theorem 3.2 in Golubev and Spokoiny (2009) are therefore satisfied, so
we have

Ω(ρ, s) ≤ C ′|(1− ρ)(1− s)|−1/2

and we can have further,

E λ(.),θ∗ exp{ρ2n
[
ũλ+(ũ)− log{1 + ũλ+(ũ)}

]}
≤ C

(1− ρ)

with some fixed constant C ′, C provided that n exceeds some minimal sample size n0.

To prove (5), we assume that λ+(θ) is bounded from below by µ+(z) > 0 in every set

A(z, θ∗)
def
= {θ : M(θ, θ∗) ≤ z}. Then we have:

P{L(θ̃, θ∗) > z} ≤ P{L(θ̃, θ∗) > z, θ̃ ∈ A(z, θ∗)}+ P(θ̃ 6∈ A(z, θ∗))

≤ Ω(ρ, 0) exp{−ρµ+(z)z}+ Ω(ρ, s) exp{−ρsz}

Set µ+(z)z = sz, then

P{L(θ̃, θ∗) > z} ≤ 2Ω(ρ, s) exp{−ρµ+(z)z}
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For the moment bound, we have:

E λ(.),θ∗ |L(θ̃, θ∗)|r

≤ r

∫
z≥0

zr−1Pθ∗,λ(.){L(θ̃, θ∗) > z}dz

≤ r

∫
z≥0

zr−1Pθ∗,λ(.){θ∗ 6∈ ε(z), θ̃ ∈ A(z(z), θ∗)}dz + r

∫
z≥0

zr−1P[θ̃ 6∈ A{z(z), θ∗}]dz

≤ r

∫
z≥0

zr−1Ω(ρ, 0) exp[−ρµ+{z(z)}z]dz + r

∫
z≥0

zr−1Ω(ρ, s) exp{−ρsz(z)}dz

= B1 +B2

when µ+(z)z = sz, z(z) > log(z), then we have B1 < ∞, B2 < ∞. So we conclude that
exists 0 < τr <∞ such that E λ(.),θ∗|L(θ̃, θ∗)|r <∞.

8.2 Proof of risk bound

8.2.1 Proof of (ED)

We know that

∇L(W, θ) = −
n∑
i=1

ρ′τ (Yi − θ>ψi)wi

=
n∑
i=1

ψi[τ − 1{(Yi − θ>ψi) < 0}]wi

Thus, we have,

E λ(.),θ∗{∇L(W, θ)} − ∇L(W, θ) =
n∑
i=1

ψi(P{(Yi − θ>ψi) < 0} − 1{(Yi − θ>ψi) < 0})

Denote εi(θ) = P{(Yi − θ>ψi) < 0} − 1{(Yi − θ>ψi) < 0}.

ζ(θ) = E λ(.),θ∗{∇L(W, θ)} − ∇L(W, θ)

=
n∑
i=1

ψiwiεi(θ)

If εi(θ) are identically distributed, 1{(Yi−θ>ψi) < 0} is a Bernoulli random variable, and
P{(Yi − θ>ψi) < 0} = p. Suppose 0 < δ < δ∗ < 1, and we have,

log E λ(.),θ∗ exp{δε} = log[exp{δ(p− 1)}p+ exp(δp)(1− p)]
≤ p(1− p)ν0δ

2/2,
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note that ν0 depends on δ∗ only. Therefore it holds for any γ ∈ Rp and ρ > 0 with
ρ|ψ>i γ| ≤ 1 that,

log E λ(.),θ∗ exp{ργ>∇ζ(θ)} ≤ log E λ(.),θ∗ exp{ρ
n∑
i=1

γ>wiψiεi(θ)}

≤
n∑
i=1

log E λ(.),θ∗ exp{ργ>wiψiεi(θ)}

≤
n∑
i=1

ρ2(γ>ψiwi)
2σ{pi(θ)}2{εi(θ)}ν0/2

≤ ν0ρ
2||V (θ)γ||2

where σ{pi(θ)}2 ≤ 1/4 and

V 2(θ) =
n∑
i=0

σ2(ψ>i θ)ψiψ
>
i w

2
i .

Denote also V 2 = (1/4)
∑n

i=1 ψiψ
>
i w

2
i , and V (θ) ≤ V for all θ. Then the condition (ED)

is fulfilled with the matrix V and λ∗ = δ∗N1/2(Ψ) for N(Ψ) defined as:

N−1/2(Ψ)
def
= max

i
sup
γ∈Rp

γ>ψiwiσi
||V γ||

8.2.2 The (L) Condition

We know that

∂ E λ(.),θ∗L(W, θ)

∂θ
= −

n∑
i=1

ψi[τ − P{(Yi − θ>ψi) < 0}]wi

and
∂2 E λ(.),θ∗L(W, θ)

∂2θ
=

n∑
i=1

ψiψ
>
i pi(ψ

>
i θ)wi

def
= H2(θ)

Recall that−∇E λ(.),θ∗L(W, θ∗) = 0. Now we take Taylor expansion of−E λ(.),θ∗L(W, θ, θ∗),
we conclude that, there is θo ∈ [θ, θ∗] such that

−E λ(.),θ∗L(W, θ, θ∗) =
n∑
i=1

|ψ>i (θ − θ∗)|2pi(ψ>i θo)wi

= (θ − θ∗)>H2(θo)(θ − θ∗).

Thus the condition (L) is fulfilled in H(θ)− aV (θ∗) ≥ 0 p.d. for θ ∈ Θ0(R).

8.2.3 Bound for the rate function

Next, for θ ≥ θ∗, it is also clear that ψ>θ ≥ ψ>θ∗.

`(y, θ, θ∗) = (2τ − 1)(ψ>θ − ψ>θ∗)− {|Y − ψ>θ| − |Y − ψ>θ∗|}
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`′(y, θ, θ∗)
def
=
∂

∂y
`(y, θ, θ∗) =

{
2, y ∈ (ψ>θ∗, ψ>θ),

0, otherwise.

Therefore, define Ay = [y,∞), integration by parts yields

E λ(.),θ∗ exp{µ`(Y, θ, θ∗)} = −
∫

exp{µ`(y, θ, θ∗)} dP (Ay)

= exp{µ(2τ − 2)(ψ>i θ − ψ>i θ∗)}+ µ

∫ ψ>i θ

ψ>i θ
∗
`′(y, θ, θ∗) exp{µ`(y, θ, θ∗)}P (Ay) dy

= exp{µ(2τ − 2)(ψ>i θ − ψ>i θ∗)}

+2µ

∫ ψ>i θ

ψ>i θ
∗

exp[µ{(2τ − 2)(ψ>i θ − ψ>i θ∗) + 2Y − 2ψ>i θ
∗}]P (Ay) dy

= exp{µ(2τ − 2)(ψ>i θ − ψ>i θ∗)}

+2µ

∫ ψ>i θ

ψ>i θ
∗

exp[µ{(2τ − 2)(ψ>i θ − ψ>i θ∗) + 2Y − 2ψ>i θ
∗}]τ exp{−λ+(y)y/τ} dy

= exp{µ(2τ − 2)(ψ>i θ − ψ>i θ∗)}+ 2µτ(exp[µ{(2τ − 2)(ψ>i θ − ψ>i θ∗)− 2ψ>i θ
∗}])∫ ψ>i θ

ψ>i θ
∗

exp{y(−λ+
i (y)/τ + 2µ)} dy,

= exp{µ(2τ − 2)(ψ>i θ − ψ>i θ∗)}+ 2µτ(exp[µ{(2τ − 2)(ψ>i θ − ψ>i θ∗)− 2ψ>i θ
∗}])∫ ψ>i θ

ψ>i θ
∗

exp{y(−λ+
i (y)/τ + 2λ+

i (θ)/2τ)} dy,

where we fix µ(θ) = λ+
i(θ)/{2τ}. Monotonicity of λ+(y) implies

E λ(.),θ∗ exp{µ(θ)`(Y1, θ, 0)} ≤ {1 + 2µτψ>i (θ − θ∗) exp(−2µψ>i θ
∗)}

exp{µ(2τ − 2)(ψ>i θ − ψ>i θ∗)}
= {1 + 2µτψ>i (θ − θ∗)}

exp{µ(2τ − 2)(ψ>i θ − ψ>i θ∗)},

Therefore, for θ ≥ θ∗,

M∗(θ, θ∗) ≥
n∑
i=1

log{1 + ψ>i (θ − θ∗)λ+(θ)/τ}+
n∑
i=1

{(2τ − 2)(ψ>i θ − ψ>i θ∗)λ+(θ)

2τ
}.

The case for θ ≤ θ∗ can be proved in the same fashion.
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8.2.4 Moment bounds

E λ(.),θ∗|L(θ̃, θ∗)|r1(|L(θ̃, θ∗)|r > R) = −
∫ ∞

0

zrdP{L(θ̃, θ∗) ≥ z}

= r

∫ ∞
0

zr−1P{L(θ̃, θ∗) ≥ z}dz

= r

∫ ∞
0

zr−1P{L(θ̃, θ∗) ≥ z, θ̃ ∈ Θ0(R)}dz

+r

∫ ∞
0

zr−1P{L(θ̃, θ∗) ≥ z, θ̃ 6∈ Θ0(R)}dz

≤ r

∫ ∞
0

zr−1 exp{−[{µ1z −Q0(p)}+]dz

+r

∫ ∞
0

zr−1 exp{−g(R)}dz

≤ Rr
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