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Abstract

The single-index (SI) regression and single-index quantile (SIQ) estimation methods product linear combinations

of all the original predictors. However, it is possible that there are many unimportant predictors within the original

predictors. Thus, the precision of parameter estimation as well as the accuracy of prediction will be effected by the

existence of those unimportant predictors when the previous methods are used.

In this article, an extension of the SIQ method of Wu et al. (2010) has been proposed, which considers Lasso and

Adaptive Lasso for estimation and variable selection. Computational algorithms have been developed in order to

calculate the penalized SIQ estimates. A simulation study and a real data application have been used to assess the

performance of the methods under consideration.
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1. Introduction

In many applications the linear relationship does not hold. So the use of linear regression to describe the relations in

these cases is not suitable. The SI model is an extension of the linear regression to deal with nonlinear relationships.

It is more elastic than the parametric models and retains their good properties. Besides its ability to reduce the

risk of miss-pacifying the link function, it helps to overcome the “Curse of Dimensionality” (CD). Due to the

index XTγ aggregates the high dimensionality of X, many researchers have used the SI model to deal with the

CD problem. The notion of the CD was reported by Richard Bellman (1961). It is caused by the exponential

increase in volume associated with adding extra dimensions to an associated mathematical space. This means that

the increasing of the sparsity will be exponential, given a fixed amount of data points. This problem causes the

standard statistical tools to break down quickly in high dimensional data.

The single-index technique has been proven over the years to be an active and efficient method to deal with high-

dimensional estimation problems in standard mean regression. It has gained much attention in recent years because

of its usage in many fields. For example, discrete choice analysis in econometrics and dose–response models in

biometrics (Härdle et al., 1993). It has the following form:

y = g
(
XTγ
)
+ ε . (1)

Where y is the univariate response variable and X is a vector of p-dimensional covariates, g(·) is an unknown

univariable measurable function, ε is a random error satisfying E (ε/X) = 0, and γ is the unknown SI vector

coefficient satisfying ‖γ‖ = 1 and the first component γ1 is positive for the sake of model identifiability. Here ‖ · ‖
denotes the Euclidean norm.

There are three types of methods that have been suggested to estimate γ in the literature. The first type utilizes

the truth that γ is proportional to the
∂g(x)

∂x = γg
′ (x γ), which includes the average derivative estimation method

(Härdle & Stoker, 1989), the structure adaptive method (Hristache et al., 2001) and the outer product of gradients

(OPG) method (Xia et al., 2002). The second type contains methods that estimate g and γ in the same time. For

example, the semiparametric least squares estimation method (Ichimura, 1993) and the MAVE method (Xia et al.,

2002). The third type consist of methods that use regressing X on y instead of regressing y on X and were originally
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proposed to deal with the sufficient dimension reduction (SDR).

For the sake of reducing the predictor dimension without losing any regression information, the SDR theory (Cook,

1998) has been proposed. Many methods have been developed to estimate the SDR space. Some of these methods

focusing on the central subspace which is denoted by Sy|X. These methods try to find an answer to the question,

“how does the conditional distribution of y|X change when the value assumed by X changes?” For example, the

sliced inverse regression method (SIR) (Li, 1991), the sliced average variance estimation method (SAVE) (Cook

& Weisberg, 1991) and the directional regression (Li & Wang, 2007).

The majority of known estimation approaches for model (1) were constructed on either least squares or likelihood

based methods. Thus, these approaches are expected to be sensitive to outliers. In contrast to the stated approaches,

quantile regression (QR) (Koenker & Bassett, 1978) provides a robust alternative. It supplies us with a full statis-

tical analysis of the stochastic relationships among the predictors and the response variable. QR has been applied

in different fields such as econometrics, finance, microarrays, medical and agricultural studies–see Koenker (2005)

and Yu et al. (2003) for more details. Many researchers have studied the QR methods in the literature; see for

example, He and Shi (1996), He et al. (2002), Lee (2003), Cai and Xu (2009), Wang et al. (2010), Kai et al.

(2011), among others.

A lot of work exists on nonparametric standard mean regression, however, very little exists on nonparametric

QR. Nonparametric QR includes local linear methods and the spline methods. The local linear QR method for

univariate QR is proposed by Yu and Jones (1998), see Koenker (2005) and Koenker et al. (1994) for more details.

Theoretically, while the extension of nonparametric conditional quantiles from univariate to higher dimension

cases is quite clear, its practical success is impeded by the “curse of dimensionality”. Therefore, the challenge is

to reduce the p-dimensional predictor X without the loss of any information on the conditional distribution of y|X
and without needing a pre-specified parametric model.

Recently, dimension reduction methods for nonparametric QR models have received a lot of attention in the statis-

tical literature. Many approaches attempt to reduce the p-dimensional predictor X without losing information and

then estimate the conditional quantile. Chaudhuri (1991), Gooijer and Zerom (2003), Yu and Lu (2004), Horowitz

and Lee (2005), Dette and Scheder (2011), and Yebin et al. (2011) used variants of the adaptive model in order to

reduce the dimension and thereafter estimate the conditional quantiles. To introduce a more efficient estimator of

conditional quantiles, Gannon et al. (2004) used the SIR to reduce the dimensionality of the covariates. Recently,

Wu et al. (2010) proposed the SIQ. A practical algorithm is introduced where the authors used the local linear QR

to estimate the unknown link function and linear QR to estimate the parametric index. Jiang et al. (2012) proposed

the local linear composite QR estimator for a single-index model. Hua et al. (2012) developed a Bayesian method

for fitting models with a single-index using conditional QR.

The selection of predictors plays a crucial role in building a multiple regression model. The choice of a suitable

subset of predictors can help to improve prediction accuracy. Also, in practice, the interpretation of a smaller

subset of predictors is often easier to understand and interpret (Li et al., 2010). Variable selection by penalizing

the classical least squares has attracted significant research interest. See for example, least absolute shrinkage

and selection operator Lasso (Tibshirani, 1996), smoothly clipped absolute deviation SCAD (Fan & Li, 2001) and

Adaptive Lasso (Zou, 2006).

Because SI methods produce linear combinations of all of the original predictors, the variable selection approaches

become very necessary for SI modelling when the number of predictor variables is large and when there are unim-

portant predictors. Some researchers suggested to generalize a number of classical variable selection procedures

from linear regression to the SI model such as the Akaike information criterion and cross-validation (AIC) and

others, see for example, Naik and Tsai (2001) and Kong and Xia (2007). These procedures are computationally

intensive and unstable.

Some research has proposed to generalize the Lasso (Tibshirani, 1996) under the SI model assumptions. Under

the framework of sufficient dimension reduction, Li and Yin (2008) combined the idea of Lasso with the SIR.

Recently, Wang and Yin (2008) suggested the sparse MAVE (sMAVE). The authors proposed to add an l1 penalty

term λ
∑p

k=1
|γk | to the MAVE loss function to obtain the sMAVE. The idea of combining MAVE and Lasso, which

is proposed in Wang and Yin (2008), was exploited by Zeng et al. (2012) by proposing an l1 penalty function that

penalizes the γ and the norm of the
∂g(x)

∂x together.

Koenker (2004) proposed to use the regularization in QR. In order to shrink individual effects towards a common

value, the author put an l1 penalty onto the random effects in a mixed-effect QR model. Li and Zhu (2008) evolved
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a piecewise linear solution path for the l1 penalized QR. Moreover, Wu and Liu (2009) proposed penalized QR

with the SCAD and the Adaptive Lasso penalties. Yuan and Yin (2010) proposed a Bayesian approach to shrink

the random effects towards a common value by introducing an l2 penalty to the usual QR check function. Li et

al. (2010) suggested Bayesian regularized QR. They proposed different penalties such as Lasso, group Lasso and

elastic net penalties. Alhamzawi et al. (2012) extended the Bayesian Lasso QR reported in Li et al. (2010) to

Bayesian Adaptive Lasso QR by using different penalization parameters for different regression coefficients.

In this article, we propose an extension of the SIQ model of Wu et al. (2010) by considering Lasso and Adaptive

Lasso for estimation and variable selection. Computational algorithms have been developed in order to calculate

the penalized SIQ estimates. Our motivating example is an analysis of the Boston housing data which is previ-

ously analyzed by many researchers and available in the package (‘MASS’) in R. The objective of this study is

to investigate the relationship between the median value of owner-occupied homes in $1000s and 13 statistical

measurements on the 506 census tracts in suburban Boston from the 1970 census. In this paper we are interested

in selecting the most significant statistical measurements of the 13 statistical measurements for the SIQ model,

relating to the median value of owner-occupied homes in $1000s. A certain correlation is present between the

predictors in the Boston housing data. For example, the correlation coefficient is (-0.7692) between the nitric

oxides concentration and the weighted mean of distances to five Boston employment centres, (0.7636) between

the nitric oxides concentration and the proportion of non-retail business acres per town, (-0.7478) between the

weighted mean of distances to five Boston employment centres and proportion of owner-occupied units built prior

to 1940 and so on. The selection of variables is important in this application, in order to know which predictors

have coefficients that vary among subjects. The high correlation between the predictors is an argument to use the

Adaptive Lasso because the procedure deals with correlated predictors by using adaptive weights for the different

predictors.

The remainder of the paper is organized as follows. A brief review of the SIQ method is given in section 2.

Penalized SIQ with Lasso and Adaptive Lasso are introduced in section 3 and section 4 respectively. Simulation

studies are conducted under different settings in section 5. The applications of the methods using real data are

reported in section 6. Lastly, the conclusions are summarized in section 7.

2. Single-Index Quantile Regression (SIQ)

Given τ ∈ (0, 1), Wu et al. (2010) proposed the SIQ for the τth conditional quantile θτ (X) of y given X as follows

θτ (X) = g
(
XTγ
)

(2)

Where y is a real valued response variable and X is a vector of d-dimensional covariates, g(·) is an unknown

univariable measurable function, γ is the unknown SI vector coefficient satisfying ‖γ‖ = 1 and the first component

γ1 is positive for the sake of model identifiability.

By replacing the nonparametric counterpart g
(
XTγ
)

in model (2) with XTγ, we obtain the linear QR of Koenker

and Basset (1978). For the SIQ model (2), note g(·) should be gτ(·) and γ should be γτ. For notational convenience

the subscript τ was omitted.

Let {Xi, yi} be an independent identically distributed (i.i.d) sample from (X, y). For XT
i γ close to u, the τth condi-

tional quantile at XT
i γ can be approximated by

g
(
XT

i γ
)
≈ g (u) + g′ (u)

(
XT

i γ−u
)
= a + b

(
XT

i γ−u
)
. (3)

Where

a def
= g (u) and b def

= g′ (u) .

Wu et al. (2010) proposed an estimation procedure for estimating γ and g(·) as follows:

Step 0. Obtain the initial γ̂(0) from the average derivative estimate (ADE) of Chaudhuri et al. (1997). Standardize

the γ̂(0) such that ‖γ‖ = 1 and γ̂1>0.

Step 1. Given γ̂, obtain
{
â j ,b̂ j

}n
j=1

by solving the following

min
a j ,b j

n∑

i=1

ρτ

(
yi − a j−b j

(
Xi−X j

)T
γ̂
)
ωi j (4)
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Where ρτ(·) is the check function defined by ρτ (u) = τuI[0,∞) (u) − (1 − τ) uI(−∞,0) (u), the weight function ωi j =

K
(

XT
i γ̂−XT

j γ̂

h

)
/
∑n

i=1 K
(

XT
i γ̂−XT

j γ̂

h

)
, K(·) is a kernel function with the bandwidth h chosen to be optimal.

Step 2. Given
{
â j ,b̂ j

}n
j=1

, obtain γ̂ by solving

min
γ

n∑

j=1

n∑

i=1

ρτ

(
yi − â j−b̂ j

(
Xi−X j

)T
γ
)
ωi j = arg min

γ

n∑

j=1

n∑

i=1

ρτ
(
y∗i j − X∗i j

T γ
)
ω∗i j . (5)

Where

y∗i j = yi − â j,X∗i j = b̂ j

(
Xi−X j

)
, and ω∗ij = ωij evaluated at the current estimate of γ.

In step 2, γ is estimated through the linear QR without intercept on n2 observations
{
y∗i j,X

∗
i j

}n
i, j=1

with known

weights
{
ω∗i j

}n
i, j=1

evaluated at the estimate of γ from the previous iteration.

Step 3. Continue repeating the steps 1 and 2 until convergence.

The standardization of γ̂ is done as γ = sign1γ/‖γ‖, where sign1γ is the sign of the first component of γ. The final

estimate of g(·) is ĝ
(
u; h, γ̂

)
= â where

(
â, b̂
)
= arg min

(a,b)

n∑

i=1

ρτ
(
yi − a−b

(
XT

i γ̂−u
))

K
⎛⎜⎜⎜⎜⎝

XT
i γ̂−u
h

⎞⎟⎟⎟⎟⎠ (6)

3. Single-Index Quantile Regression with Lasso Penalty (LSIQ)

The Lasso is proposed by Tibshirani (1996) for simultaneous variable selection and parameter estimation. Accord-

ing to the Lasso, the residual sum of squares is minimized subject to the
∑p

k=1
|γk | being less than a constant. By

assuming this constraint, the Lasso shrinks some coefficients and set other to 0. As an extension to Lasso Tibshirani

(1996), Li and Zhu (2008) suggested Lasso QR for simultaneous estimation and variable selection in QR models

and it is given by:

min
γ

n∑

i=1

ρτ
(
yi − XT

i γ
)
+ λ

p∑

k=1

|γk | (7)

Where λ > 0 is the parameter controlling the value of penalty given. The λ
∑p

k=1
|γk | in (7) is the l1 penalty QR,

which is important for the success of the Lasso.

The LSIQ is proposed here according to an algorithm similar to the algorithm in section 2, except in the initial step

where we obtain the γ̂(0) from the Lasso linear QR from Li and Zhu (2008). Also, in step 2, given
{
â j, b̂ j

}n
j=1

, we

obtain γ̂Lasso by solving

minγ
∑n

j=1

∑n
i=1 ρτ

(
yi − â j−b̂ j

(
Xi−X j

)T
γ
)
ωi j + λ

∑p
k=1
|γk |

= arg minγ
∑n

j=1

∑n
i=1 ρτ

(
y∗i j−X∗i j

T γ
)
ω∗i j + λ

∑p
k=1
|γk |

(8)

The final estimate of g(·) is ĝ
(
u; h, γ̂Lasso

)
= â, where

(
â, b̂
)
= arg min

(a,b)

n∑

i=1

ρτ
(
yi − a−b

(
XT

i γ̂Lasso−u
))

K
⎛⎜⎜⎜⎜⎝

XT
i γ̂Lasso−u

h

⎞⎟⎟⎟⎟⎠ (9)

4. Single-Index Quantile Regression with Adaptive Lasso Penalty (ALSIQ)

Under specific situations, Lasso has been shown to be consistent. Zou (2006) derived a necessary condition for

the Lasso to be consistent. Consequently, the Lasso is inconsistent in other certain conditions. The Adaptive

Lasso, where adaptive weights are used for penalizing different coefficients, is suggested by Zou (2006). The

author showed that the major advantage of the Adaptive Lasso estimator, compared to the Lasso estimator is that

the Adaptive Lasso estimator has the oracle property. Zou (2006) stated that the LARS algorithm can be used

for solving the Adaptive Lasso. Wu and Liu (2009) proposed the Adaptive Lasso QR method, which solves the

following minimization problem

min
γ

n∑

i=1

ρτ
(
yi − XT

i γ
)
+ λn

p∑

k=1

ω̃k |γk | (10)
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Where the weights are set to be ω̃k = 1/|̃γk |δ, k = 1, . . . , p, γ̃ is the non-penalized QR estimate and δ > 0.

The ALSIQ has been proposed according to the algorithm similar to the algorithms in section 2 and 3, except in

the initial step we obtained the γ̂(0) from the Adaptive Lasso linear QR of Wu and Liu (2009). Also, in step 2,

given
{
â j, b̂ j

}n
j=1

, we obtained γ̂ALasso by solving

minγ
∑n

j=1

∑n
i=1 ρτ

(
yi − â j−b̂ j

(
Xi−X j

)T
γ
)
ωi j + λn

∑p
k=1
ω̃k |γk |

= arg minγ
∑n

j=1

∑n
i=1 ρτ

(
y∗i j−X∗i j

T γ
)
ω∗i j + λn

∑p
k=1
ω̃k |γk |

(11)

So we can obtain γ̂ALasso by solving the minimization problem in (11) with Adaptive Lasso linear QR by using

LARS algorithm. See Wu and Liu (2009).

The final estimate of g(·) is ĝ
(
u; h, γ̂ALasso

)
= â where

(
â, b̂
)
= arg min

(a,b)

n∑

i=1

ρτ
(
yi − a−b

(
XT

i γ̂ALasso−u
))

K
⎛⎜⎜⎜⎜⎝

XT
i γ̂ALasso−u

h

⎞⎟⎟⎟⎟⎠ (12)

The R codes for the proposed methods are available from the authors.

5. A Simulation Study

Many simulations have been implemented in order to check the performance of the suggested methods and some

examples are reported below:

Example 1 R = 200 data-sets were generated with size n = 300 observations from the following model where the

error term follows an asymmetric (exponential) distribution:

y = 5cos (u) + exp
(
−u2
)
+ ε

Where u = XTγ, X = (x1, . . . , x5)T, γ = (1, 2, 0, 0, 0)T /
√

5, xi i.i.d. ∼ Unif (0, 1); i = 1, 2, . . . , 5, the error term

ε ∼ Exp (0.5), x′
i
s and ε are mutually independent. The γ is estimated for τ = (0.10, 0.25, 0.50, 0.75, 0.90).

Table 1. The mean and standard division of MSE (mean squared error) for XT γ̂ which is estimated by the ALSIQ,

LSIQ and SIQ based on the model in example 1 and for τ = (0.10, 0.25, 0.50, 0.75, 0.90)

SIQ LSIQ ALSIQ

τ = 0.10
M.MSE 0.0014 0.0006 0.0005

SD.MSE 0.0011 0.0005 0.0004

τ = 0.25
M.MSE 0.0046 0.0022 0.0020

SD.MSE 0.0049 0.0026 0.0022

τ = 0.5
M.MSE 0.0138 0.0046 0.0046

SD.MSE 0.0128 0.0064 0.0065

τ = 0.75
M.MSE 0.0467 0.0335 0.0311

SD.MSE 0.0593 0.0454 0.0443

τ = 0.90
M.MSE 0.0661 0.0581 0.0509

SD.MSE 0.0857 0.0734 0.0702

Example 2 R = 200 data-sets were generated with size n = 300 observations from the following model with

homoscedastic errors.

y = sin
{
π (u − A )

C − A

}
+ 0.5 ε

where u=XTγ, X=(x1, . . . , x6)T, γ=(1, 1, 0, 0, 0, 0)T /
√

3. A=
√

3
2
− 1.645√

12
and C=

√
3

2
+ 1.645√

12
. xi i.i.d. ∼ Unif; (0, 1)

i = 1, 2, . . . , 6; ε∼ N (0, 1); x′
i
s and ε are mutually independent. The γ is estimated for τ = (0.10, 0.25, 0.50, 0.75,

0.90).
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Table 2. The mean and standard division of MSE for XT γ̂ which is estimated by the ALSIQ, LSIQ and SIQ based

on the model in example 2 and for τ = (0.10, 0.25, 0.50, 0.75, 0.90)

SIQ LSIQ ALSIQ

τ = 0.10
M.MSE 0.0294 0.0372 0.0136

SD.MSE 0.1025 0.0396 0.0220

τ = 0.25
M.MSE 0.0077 0.0067 0.0047

SD.MSE 0.0086 0.0070 0.0045

τ = 0.5
M.MSE 0.0044 0.0043 0.0042

SD.MSE 0.0048 0.0048 0.0048

τ = 0.75
M.MSE 0.0169 0.0072 0.0031

SD.MSE 0.0198 0.0108 0.0048

τ = 0.90
M.MSE 0.0197 0.0070 0.0018

SD.MSE 0.0230 0.0080 0.0025

Example 3 R = 200 data-sets were generated with size n = 300 observations from the model y = exp
(
XTγ
)
+ ε,

where X = (x1, . . . , x10)T are generated as i.i.d standard normals. The error term is assumed to be ε∼ N (0, 1) and

that it is independent of X. γ = (1, 1, 1, 0, 0, 0, 0, 0, 0, 0)T /
√

3 is used. The γ is estimated for τ = (0.10, 0.25, 0.50,

0.75, 0.90).

Table 3. The mean and standard division of MSE for XT γ̂ which is estimated by the ALSIQ, LSIQ and SIQ based

on the model in example 3 and for τ = (0.10, 0.25, 0.50, 0.75, 0.90)

SIQ LSIQ ALSIQ

τ = 0.10
M.MSE 0.0688 0.0565 0.0412

SD.MSE 0.0434 0.0479 0.0343

τ = 0.25
M.MSE 0.0494 0.0452 0.0367

SD.MSE 0.0325 0.0278 0.0197

τ = 0.5
M.MSE 0.0403 0.0336 0.0330

SD.MSE 0.0455 0.0300 0.0206

τ = 0.75
M.MSE 0.0495 0.0370 0.0360

SD.MSE 0.0747 0.0298 0.0272

τ = 0.90
M.MSE 0.0489 0.0453 0.0406

SD.MSE 0.0298 0.0345 0.0285

We analyzed each simulated data set using three methods. The LSIQ and ALSIQ methods, which are described

in sections 3 and 4 respectively, are compared with the SIQ. The rq(y∗ ∼ X∗, tau,method = “lasso”) function in

the quantreg package is used to obtain γ̂ALasso in Equation (8). The ALassoQR function from the code of Wu and

Liu (2009) (Personal communication with Wu) is used to obtain γ̂ALasso in Equation (11). Similar to Wu and Liu

(2009), the λ was chosen via a grid search based on the tuning error in terms of the mean squared error evaluated

on the data. This means that the λ value has been chosen to minimize the mean squared error.

According to the mean and the standard deviation of the MSE for XT γ̂, from Tables 1, 2 and 3 and Figure 1, it

can be seen that the proposed methods (ALSIQ and LSIQ) perform better than the SIQ method described in Wu et

al. (2010) for all the models under consideration. This indicates that the proposed methods give precise estimates

even when the error distribution is asymmetric. Most noticeably, when τ= 0.10 and τ= 0.90 the ALSIQ and LSIQ

are significantly more efficient than the SIQ method.
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Figure 1. Plots explain the mean of MSE for XT γ̂ which is estimated by the ALSIQ, LSIQ and SIQ based on the

model in examples 1, 2 and 3 respectively and for τ = (0.10, 0.25, 0.50, 0.75, 0.90)
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Table 4. The mean and MSE for the coefficients γ̂ which are estimated by the ALSIQ, LSIQ and SIQ based on the

model in example 1 and for τ = (0.10, 0.25, 0.50, 0.75, 0.90)

γ̂1 γ̂2 γ̂3 γ̂4 γ̂5

τ = 0.10 SIQ Mean 0.4750 0.8776 0.0081 0.0049 0.0122

MSE 0.0017 0.0006 0.0005 0.0016 0.0012

LSIQ Mean 0.4609 0.8859 0.0037 0.0021 0.0037

MSE 0.0016 0.0005 0.0003 0.0006 0.0003

ALSIQ Mean 0.4667 0.8829 0.0021 0.0050 0.0010

MSE 0.0021 0.0006 0.0002 0.0002 0.0002

τ = 0.25 SIQ Mean 0.4865 0.8651 -0.0019 -0.0117 0.0097

MSE 0.0038 0.0016 0.0018 0.0042 0.0069

LSIQ Mean 0.4737 0.8759 -0.0009 -0.0050 0.0010

MSE 0.0039 0.0013 0.0010 0.0016 0.0021

ALSIQ Mean 0.4727 0.8766 0.0013 -0.0020 0.0029

MSE 0.0042 0.0013 0.0009 0.0013 0.0020

τ = 0.50 SIQ Mean 0.4482 0.8664 -0.0149 0.0029 -0.0083

MSE 0.0098 0.0032 0.0114 0.0111 0.0154

LSIQ Mean 0.4658 0.8725 -0.0026 0.0043 0.0016

MSE 0.0089 0.0027 0.0049 0.0027 0.0044

ALSIQ Mean 0.4654 0.8727 -0.0028 0.0060 -0.0008

MSE 0.0088 0.0027 0.0048 0.0026 0.0045

τ = 0.75 SIQ Mean 0.5429 0.7331 0.0158 0.0058 -0.0230

MSE 0.0247 0.0531 0.0426 0.0592 0.0323

LSIQ Mean 0.5053 0.7881 0.0308 -0.0265 -0.0020

MSE 0.0359 0.0290 0.0303 0.0268 0.0227

ALSIQ Mean 0.5486 0.7660 0.0407 -0.0433 -0.0059

MSE 0.0412 0.0339 0.0305 0.0211 0.0181

τ = 0.90 SIQ Mean 0.5659 0.6591 -0.0229 -0.0099 -0.0299

MSE 0.1015 0.0824 0.0456 0.0401 0.0202

LSIQ Mean 0.5943 0.6474 -0.0016 -0.0078 -0.0418

MSE 0.1012 0.0923 0.0332 0.0385 0.0114

ALSIQ Mean 0.6029 0.6443 0.0140 0.0017 -0.0420

MSE 0.0988 0.1017 0.0288 0.0324 0.0123
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Table 5. The mean and MSE for the coefficients γ̂ which are estimated by the ALSIQ, LSIQ and SIQ based on the

model in example 2 and for τ = (0.10, 0.25, 0.50, 0.75, 0.90)

γ̂1 γ̂2 γ̂3 γ̂4 γ̂5 γ̂6

τ = 0.10 SIQ Mean 0.6702 0.6924 -0.0253 0.0163 0.0132 -0.0421

MSE 0.0217 0.0175 0.0136 0.0053 0.0189 0.0192

LSIQ Mean 0.7686 0.4655 -0.0068 0.0072 -0.0077 0.0054

MSE 0.1217 0.1222 0.0011 0.0011 0.0016 0.0027

ALSIQ Mean 0.8211 0.5174 -0.0014 -0.0007 0.0086 0.0143

MSE 0.0723 0.0447 0.0001 0.0003 0.0012 0.0052

τ = 0.25 SIQ Mean 0.7753 0.5937 0.0008 0.0238 0.0108 -0.0021

MSE 0.0517 0.0172 0.0031 0.0054 0.0021 0.0076

LSIQ Mean 0.7771 0.5915 -0.0040 0.0160 0.0031 0.0008

MSE 0.0551 0.0211 0.0017 0.0040 0.0014 0.0042

ASIQ Mean 0.6971 0.7016 0.0074 0.0165 0.0228 -0.0032

MSE 0.0168 0.018 0.0031 0.0043 0.0054 0.0045

τ = 0.50 SIQ Mean 0.6884 0.7125 0.0059 0.0125 0.0211 -0.0102

MSE 0.0143 0.0198 0.0028 0.0045 0.0056 0.0024

LSIQ Mean 0.7750 0.6099 0.0010 0.0197 0.0114 0.0062

MSE 0.0472 0.0118 0.0003 0.0035 0.0022 0.0032

ALSIQ Mean 0.7738 0.6115 0.0015 0.0202 0.0115 0.0061

MSE 0.04667 0.01183 0.0003 0.0035 0.0022 0.0032

τ = 0.75 SIQ Mean 0.7154 0.6355 0.0187 0.0330 0.0114 0.0232

MSE 0.0368 0.0247 0.0058 0.0121 0.0110 0.0182

LSIQ Mean 0.6981 0.7016 0.0193 0.0103 0.0137 -0.0042

MSE 0.0163 0.0172 0.0035 0.0044 0.0043 0.0052

ALSIQ Mean 0.7343 0.6680 0.0056 0.0115 0.0060 0.0074

MSE 0.0274 0.0113 0.0009 0.0028 0.0017 0.0035

τ = 0.90 SIQ Mean 0.7045 0.6420 0.0264 0.0447 0.0246 0.0247

MSE 0.0819 0.0843 0.0079 0.0160 0.0143 0.0189

LSIQ Mean 0.7019 0.6936 0.0087 -0.0038 0.0072 -0.0045

MSE 0.0176 0.0155 0.0061 0.0057 0.0053 0.0057

ALSIQ Mean 0.7606 0.6430 0.0015 0.0068 -0.0023 0.0024

MSE 0.0357 0.0075 0.0003 0.0015 0.0004 0.0008
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Table 6. The mean and MSE for the coefficients γ̂ which are estimated by the ALSIQ, LSIQ and SIQ based on the

model in example 3 and for τ = (0.10, 0.25, 0.50, 0.75, 0.90)

γ̂1 γ̂2 γ̂3 γ̂4 γ̂5 γ̂6 γ̂7 γ̂8 γ̂9 γ̂10

τ = 0.10 SIQ Mean 0.5775 0.5570 0.5365 -0.0112 -0.0030 0.0008 0.0208 0.0047 0.0092 0.0023

MSE 0.0078 0.0070 0.0099 0.0042 0.0056 0.0049 0.0069 0.0072 0.0119 0.0075

LSIQ Mean 0.5564 0.5784 0.5483 -0.0152 -0.0236 0.0188 0.0226 -0.0175 0.0221 -0.0275

MSE 0.0051 0.002 0.0027 0.0088 0.0058 0.0068 0.0078 0.0074 0.0061 0.0061

ALSIQ Mean 0.5939 0.5380 0.5650 0.0013 -0.0068 -0.0168 0.0006 0.0033 0.0015 0.0127

MSE 0.0089 0.0050 0.0062 0.0031 0.0019 0.0027 0.0032 0.0027 0.0032 0.0050

τ = 0.25 SIQ Mean 0.5716 0.5540 0.5633 0.0058 0.0008 0.0171 -0.0108 0.0130 -0.0035 0.0207

MSE 0.0042 0.0038 0.0032 0.0045 0.0040 0.0084 0.0057 0.0038 0.0069 0.0071

LSIQ Mean 0.5698 0.5716 0.5519 -0.0272 -0.0142 -0.0234 0.0187 0.0105 -0.0089 -0.0215

MSE 0.0032 0.0024 0.0033 0.0055 0.0039 0.006 0.0048 0.006 0.0072 0.0042

ALSIQ Mean 0.5685 0.5506 0.5810 0.0025 -0.0051 -0.0170 0.0061 0.0114 -0.0125 0.0025

MSE 0.0050 0.0066 0.0042 0.0023 0.0034 0.0026 0.0047 0.0041 0.0032 0.0023

τ = 0.50 SIQ Mean 0.5574 0.5779 0.5627 -0.0073 0.0013 0.0236 0.0041 -0.0028 -0.0054 -0.0058

MSE 0.0033 0.0012 0.0077 0.0026 0.0046 0.0042 0.0018 0.0042 0.0048 0.0072

LSIQ Mean 0.5958 0.5735 0.5330 0.0045 0.0053 -0.0137 0.0351 0.0003 -0.0157 -0.0112

MSE 0.0027 0.0012 0.0038 0.0019 0.0014 0.0029 0.0079 0.0040 0.0057 0.0046

ALSIQ Mean 0.5737 0.5512 0.5770 -0.0047 -0.0084 0.0094 -0.0025 0.0023 -0.0095 0.0152

MSE 0.0018 0.0036 0.0021 0.0027 0.0037 0.0032 0.0049 0.0056 0.0051 0.0033

τ = 0.75 SIQ Mean 0.5788 0.5446 0.5645 -0.0036 -0.0162 -0.0020 -0.0001 -0.0056 -0.0004 -0.0006

MSE 0.0020 0.0083 0.0026 0.0102 0.0034 0.0032 0.0036 0.0049 0.0061 0.0084

LSIQ Mean 0.5833 0.5600 0.5558 0.0166 -0.0081 0.0100 0.0106 -0.0140 -0.0128 0.0046

MSE 0.0026 0.0042 0.0026 0.0022 0.0050 0.0058 0.0046 0.0065 0.0052 0.0021

ASIQ Mean 0.5747 0.5514 0.5742 -0.0110 0.0069 0.0125 0.0195 -0.0015 -0.0093 0.0071

MSE 0.0019 0.0071 0.0041 0.0033 0.0039 0.0054 0.0029 0.0028 0.0045 0.0022

τ = 0.90 SIQ Mean 0.5577 0.5646 0.5671 0.0043 -0.0235 -0.0154 0.0265 0.0087 0.0116 -0.0235

MSE 0.0041 0.0054 0.0031 0.0041 0.0067 0.0052 0.0066 0.0033 0.0051 0.0074

LSIQ Mean 0.5866 0.5553 0.5512 0.0099 0.0060 0.0074 0.0072 -0.0184 -0.0169 0.0092

MSE 0.0040 0.0054 0.0045 0.0039 0.0037 0.0039 0.0057 0.0041 0.0089 0.0025

ALSIQ Mean 0.5939 0.5559 0.5457 -0.0177 0.0034 -0.0067 -0.0043 -0.0097 -0.0111 0.0020

MSE 0.0065 0.0064 0.0090 0.0039 0.0018 0.0017 0.0031 0.0048 0.0028 0.0036
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Figure 2. Plots explain the MSE for the coefficients γ̂ which are estimated by the ALSIQ, LSIQ, and SIQ based

on the model in example 1 and for τ = (0.10, 0.25, 0.50, 0.75, 0.90)
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Figure 3. Plots explain the MSE for the coefficients γ̂ which are estimated by the ALSIQ, LSIQ, and SIQ based

on the model in example 2 and for τ = (0.10, 0.25, 0.50, 0.75, 0.90)
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Figure 4. Plots explain the MSE for the coefficients γ̂ which are estimated by the ALSIQ, LSIQ, and SIQ based

on the model in example 3 and for τ = (0.10, 0.25, 0.50, 0.75, 0.90)

According to the MSE for the coefficients γ̂, from Tables 4, 5 and 6 and Figures 2, 3 and 4, it can be observed that

in the majority of the estimated coefficients, the proposed methods produce a lower mean squared error than the

SIQ method. Furthermore, one can see that the coefficients estimators of the proposed methods are close to the

true values.

The variations in the ALSIQ and LSIQ estimates are similar in the majority of cases and less than the variations in

the estimate of the SIQ method.

6. Boston Housing Data

In this section, the methods are illustrated through an analysis of the Boston housing data. The data consist of

n = 506 observations on 14 variables; medv is the median value of owner-occupied homes and it refers to the

response variable. The dataset consist of 13 predictors on the 506 census, which is available in the package

(‘MASS’) in R. In our analysis, the dummy variable (chas) and the categorical variable (rad) were excluded. The

predictors under consideration are crime average (x1), ratio of residential land zoned for lots over 25,000 sq.ft.
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(x2), ratio of non-retail business acres per town (x3), nitric oxides concentration (x4), rate number of rooms per

dwelling (x5), ratio of owner-occupied units built prior to 1940 (x6), weighted mean of distances to five Boston

employment centres (x7), tax average of the property (x8), pupil-teacher proportion by town (x9), black population

ratio town (x10), and lower status of the population (x11). The response variable medv and the predictor variables

were also standardised.

Table 7. The estimated coefficients γ̂ which are estimated by the ALSIQ, LSIQ and SIQ based on Boston housing

data for τ = (0.10, 0.25, 0.50, 0.75, 0.90)

γ̂1 γ̂2 γ̂3 γ̂4 γ̂5 γ̂6 γ̂7 γ̂8 γ̂9 γ̂10 γ̂11

τ = 0.10 SIQ 0.351 0.012 -0.104 0.169 -0.494 0.191 0.228 0.311 0.220 -0.139 0.584

LSIQ 0.342 -0.022 -0.059 0.296 -0.372 0.079 0.279 0.250 0.227 -0.202 0.644

ALSIQ 0.446 0 0 0 -0.354 0 0.013 0.181 0.175 -0.158 0.767

τ = 0.25 SIQ 0.647 -0.028 -0.030 0.031 -0.489 0.177 0.213 0.067 0.166 -0.166 0.451

LSIQ 0.153 0 0 0.243 -0.513 0.042 0.228 0.266 0.314 -0.246 0.609

ALSIQ 0.123 0 0 -0.252 0.659 -0.146 -0.254 -0.325 -0.328 0.250 -0.354

τ = 0.50 SIQ 0.335 -0.009 -0.026 0.055 -0.500 0.130 0.217 0.059 0.206 -0.246 0.681

LSIQ 0.110 -0.014 0 0.198 -0.597 0.092 0.246 0.165 0.325 -0.225 0.583

ALSIQ 0.108 -0.014 0 0.198 -0.597 0.093 0.247 0.165 0.325 -0.224 0.583

τ = 0.75 SIQ 0.234 -0.032 -0.006 0.085 -0.585 0.109 0.283 -0.002 0.214 -0.308 0.601

LSIQ 0.084 -0.046 0 0.155 -0.715 0.090 0.282 0.063 0.295 -0.192 0.490

ALSIQ 0.112 -0.003 0 0.190 -0.656 0.069 0.235 0.009 0.338 -0.217 0.547

τ = 0.90 SIQ 0.174 -0.042 0.065 0.165 -0.461 -0.029 0.302 -0.090 0.204 -0.235 0.726

LSIQ 0.033 -0.016 0.045 0.155 -0.722 0 0.187 0 0.379 -0.132 0.505

ALSIQ 0.001 -0.057 0.053 0.069 -0.781 0 0.219 0 0.355 -0.135 0.432

Table 8. The MSE for estimated quantiles curves ĝ
(
XT γ̂
)

which are estimated by the ALSIQ, LSIQ and SIQ based

on Boston housing data for τ = (0.10, 0.25, 0.50, 0.75, 0.90)

τ = 0.10 τ = 0.25 τ = 0.50 τ = 0.75 τ = 0.90

SIQ 0.508 0.378 0.090 0.014 0.312

LASSO-SIQ 0.451 0.296 0.041 0.014 0.283

ALASSO -SIQ 0.440 0.261 0.039 0.013 0.292
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Figure 5. Plots explain the estimated coefficients γ̂ which are estimated by the ALSIQ, LSIQ and SIQ based on

Boston housing data for τ = (0.10, 0.25, 0.50, 0.75, 0.90)
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Figure 6. The MSE for the smooth estimated quantiles curves ĝ
(
XT γ̂
)

which are estimated by the ALSIQ, LSIQ

and SIQ based on Boston housing data for τ = (0.10, 0.25, 0.50, 0.75, 0.90)

Figure 7. Plots for the smooth estimated quantiles curves ĝ
(
XT γ̂
)

which are estimated by the ALSIQ, LSIQ and

SIQ respectively from the right to the left based on Boston housing data for τ = (0.10, 0.25, 0.50, 0.75, 0.90)

The estimated γ̂ using all the methods under consideration based on the Boston housing data are given in Table 7

and explained in Figure 5. The estimated coefficient is treated as zero if its absolute value is smaller than 10−12.

Table 8 and Figure 6 present the MSEs for estimated quantile curves ĝ
(
XT γ̂
)

which are estimated by the proposed

methods and the SIQ method based on the Boston housing data for different quantile values. From Table 8 and

Figure 6, it is clear that the proposed methods outperform the SIQ method in fitting the Boston housing data set.

Again, it can be seen that when τ = 0.10 and τ = 0.90 the proposed methods are significantly more efficient than

the other methods.

Figure 7 shows the smooth estimated quantile curves ĝ
(
XT γ̂
)

which are estimated by all the methods under con-

sideration based on the Boston housing data for different quantile values.

Similar to Wu et al. (2010) possible quantile curves crossing at both tails can be seen, which due to the sparsity of

data in the region concerned.

The results of the real data example confirm the results of the simulation studies that the proposed methods perform

well.
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7. Conclusions

In this study, the LSIQ and ALSIQ methods have been proposed. The effectiveness of the proposed methods is

explained via many simulation examples, as well as a real data analysis. From the simulation study and the real

data example, it can be concluded that the proposed methods perform well in comparison to the SIQ method. The

authors believe that the proposed methods would supply helpful dimension reduction tools. Also, it would support

the applicability of shrinkage methods to the SIQ models.
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