6,072 research outputs found

    QoS Provision for Wireless Sensor Networks

    Get PDF
    Wireless sensor network is a fast growing area of research, receiving attention not only within the computer science and electrical engineering communities, but also in relation to network optimization, scheduling, risk and reliability analysis within industrial and system engineering. The availability of micro-sensors and low-power wireless communications will enable the deployment of densely distributed sensor/actuator networks. And an integration of such system plays critical roles in many facets of human life ranging from intelligent assistants in hospitals to manufacturing process, to rescue agents in large scale disaster response, to sensor networks tracking environment phenomena, and others. The sensor nodes will perform significant signal processing, computation, and network self-configuration to achieve scalable, secure, robust and long-lived networks. More specifically, sensor nodes will do local processing to reduce energy costs, and key exchanges to ensure robust communications. These requirements pose interesting challenges for networking research. The most important technical challenge arises from the development of an integrated system which is 1)energy efficient because the system must be long-lived and operate without manual intervention, 2)reliable for data communication and robust to attackers because information security and system robustness are important in sensitive applications, such as military. Based on the above challenges, this dissertation provides Quality of Service (QoS) implementation and evaluation for the wireless sensor networks. It includes the following 3 modules, 1) energy-efficient routing, 2) energy-efficient coverage, 3). communication security. Energy-efficient routing combines the features of minimum energy consumption routing protocols with minimum computational cost routing protocols. Energy-efficient coverage provides on-demand sensing and measurement. Information security needs a security key exchange scheme to ensure reliable and robust communication links. QoS evaluation metrics and results are presented based on the above requirements

    A multi-hop routing protocol for an energy-efficient in wireless sensor network

    Get PDF
    The low-energy adaptive clustering hierarchy (LEACH) protocol has been developed to be implemented in wireless sensor networks (WSNs) systems such as healthcare and military systems. LEACH protocol depends on clustering the employed sensors and electing one cluster head (CH) for each cluster. The CH nodes are changed periodically to evenly distribute the energy load among sensors. Updating the CH node requires electing different CH and re-clustering sensors. This process consumes sensors’ energy due to sending and receiving many broadcast and unicast messages thus reduces the network lifetime, which is regarded as a significant issue in LEACH. This research develops a new approach based on modifying the LEACH protocol to minimize the need of updating the cluster head. The proposal aims to extend the WSN’s lifetime by maintaining the sensor nodes’ energy. The suggested approach has been evaluated and shown remarkable efficiency in comparison with basic LEACH protocol and not-clustered protocol in terms of extending network lifetime and reducing the required sent messages in the network reflected by 15%, and, in addition, reducing the need to reformatting the clusters frequently and saving network resources

    Power Efficient Target Coverage in Wireless Sensor Networks

    Get PDF

    Energy Aware Algorithms for managing Wireless Sensor Networks

    Get PDF
    While the majority of the current Wireless Sensor Networks (WSNs) research has prioritized either the coverage of the monitored area or the energy efficiency of the network, it is clear that their relationship must be further studied in order to find optimal solutions that balance the two factors. Higher degrees of redundancy can be attained by increasing the number of active sensors monitoring a given area which results in better performance. However, this in turn increases the energy being consumed. In our research, we focus on attaining a solution that considers several optimization parameters such as the percentage of coverage, quality of coverage and energy consumption. The problem is modeled using a bipartite graph and employs an evolutionary algorithm to handle the activation and deactivation of the sensors. An accelerated version of the algorithm is also presented; this algorithm attempts to cleverly mutate the string being considered after analyzing the desired output conditions and performs a calculated crossover depending on the fitness of the parent strings. This results in a quicker convergence and a considerable reduction in the search time for attaining the desired solutions. Proficient cluster formation in wireless sensor networks reduces the total energy consumed by the network and prolongs the life of the network. There are various clustering approaches proposed, depending on the application and the objective to be attained. There are situations in which sensors are randomly dispersed over the area to be monitored. In our research, we also propose a solution for such scenarios using heterogeneous networks where a network has to self-organize itself depending on the physical allocations of sensors, cluster heads etc. The problem is modeled using a multi-stage graph and employs combinatorial algorithms to determine which cluster head a particular sensor would report to and which sink node a cluster head would report to. The solution proposed provides flexibility so that it can be applied to any network irrespective of density of resources deployed in the network. Finally we try to analyze how the modification of the sequence of execution of the two methods modifies the results. We also attempt to diagnose the reasons responsible for it and conclude by highlighting the advantages of each of the sequence

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Energy efficient multi-target tracking in heterogeneous wireless sensor networks

    Get PDF
    Title from PDF of title page, viewed on June 3, 2011VitaIncludes bibliographical references (p. 30-32)Thesis (M.S)--School of Computing and Engineering. University of Missouri--Kansas City, 2011Tracking multiple targets in an energy efficient way is an important challenge in wireless sensor networks (WSNs). While most of the prior work consider tracking multiple targets as execution of single target tracking algorithms multiple times and utilize only single parameters for efficient energy consumption, we identify multiple parameters that can influence the energy efficiency of sensors in the WSN. We observe that there are several impacting parameters that can affect the energy efficiency of the sensors in the WSN which are: the relative location of the sensor with respect to the target's motion, multiple targets tracked by the sensor, and the remaining energy in the sensor. These impacting parameters are used to decide the tracking state of the sensors and further, our observations reveal the implications of combining these parameters and we identify that the optimal energy consumption is governed by their usage in particular network conditions. Based on these observations we proceed to propose our Adaptive Multi-Target Tracking (AMTT) algorithm that can identify the local network conditions for individual sensors in distributed environment without any centralized co-ordination, and uses required combination of impacting parameters to achieve energy efficiency.Introduction -- Related work -- Proposed multi-target tracking system -- Simulation setup and results -- Conclusions and future wor

    Unified Role Assignment Framework For Wireless Sensor Networks

    Get PDF
    Wireless sensor networks are made possible by the continuing improvements in embedded sensor, VLSI, and wireless radio technologies. Currently, one of the important challenges in sensor networks is the design of a systematic network management framework that allows localized and collaborative resource control uniformly across all application services such as sensing, monitoring, tracking, data aggregation, and routing. The research in wireless sensor networks is currently oriented toward a cross-layer network abstraction that supports appropriate fine or course grained resource controls for energy efficiency. In that regard, we have designed a unified role-based service paradigm for wireless sensor networks. We pursue this by first developing a Role-based Hierarchical Self-Organization (RBSHO) protocol that organizes a connected dominating set (CDS) of nodes called dominators. This is done by hierarchically selecting nodes that possess cumulatively high energy, connectivity, and sensing capabilities in their local neighborhood. The RBHSO protocol then assigns specific tasks such as sensing, coordination, and routing to appropriate dominators that end up playing a certain role in the network. Roles, though abstract and implicit, expose role-specific resource controls by way of role assignment and scheduling. Based on this concept, we have designed a Unified Role-Assignment Framework (URAF) to model application services as roles played by local in-network sensor nodes with sensor capabilities used as rules for role identification. The URAF abstracts domain specific role attributes by three models: the role energy model, the role execution time model, and the role service utility model. The framework then generalizes resource management for services by providing abstractions for controlling the composition of a service in terms of roles, its assignment, reassignment, and scheduling. To the best of our knowledge, a generic role-based framework that provides a simple and unified network management solution for wireless sensor networks has not been proposed previously

    An Energy Efficient Self-healing Mechanism for Long Life Wireless Sensor Networks

    Full text link
    In this paper, we provide an energy efficient self- healing mechanism for Wireless Sensor Networks. The proposed solution is based on our probabilistic sentinel scheme. To reduce energy consumption while maintaining good connectivity between sentinel nodes, we compose our solution on two main concepts, node adaptation and link adaptation. The first algorithm uses node adaptation technique and permits to distributively schedule nodes activities and select a minimum subset of active nodes (sentry) to monitor the interest region. And secondly, we in- troduce a link control algorithm to ensure better connectiv- ity between sentinel nodes while avoiding outliers appearance. Without increasing control messages overhead, performances evaluations show that our solution is scalable with a steady energy consumption. Simulations carried out also show that the proposed mechanism ensures good connectivity between sentry nodes while considerably reducing the total energy spent.Comment: 6 pages, 8 figures. arXiv admin note: text overlap with arXiv:1309.600
    • …
    corecore