9,898 research outputs found

    Cost modelling and concurrent engineering for testable design

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.As integrated circuits and printed circuit boards increase in complexity, testing becomes a major cost factor of the design and production of the complex devices. Testability has to be considered during the design of complex electronic systems, and automatic test systems have to be used in order to facilitate the test. This fact is now widely accepted in industry. Both design for testability and the usage of automatic test systems aim at reducing the cost of production testing or, sometimes, making it possible at all. Many design for testability methods and test systems are available which can be configured into a production test strategy, in order to achieve high quality of the final product. The designer has to select from the various options for creating a test strategy, by maximising the quality and minimising the total cost for the electronic system. This thesis presents a methodology for test strategy generation which is based on consideration of the economics during the life cycle of the electronic system. This methodology is a concurrent engineering approach which takes into account all effects of a test strategy on the electronic system during its life cycle by evaluating its related cost. This objective methodology is used in an original test strategy planning advisory system, which allows for test strategy planning for VLSI circuits as well as for digital electronic systems. The cost models which are used for evaluating the economics of test strategies are described in detail and the test strategy planning system is presented. A methodology for making decisions which are based on estimated costing data is presented. Results of using the cost models and the test strategy planning system for evaluating the economics of test strategies for selected industrial designs are presented

    The Penn State ORSER system for processing and analyzing ERTS and other MSS data

    Get PDF
    The author has identified the following significant results. The office for Remote Sensing of Earth Resources (ORSER) of the Space Science and Engineering Laboratory at the Pennsylvania State University has developed an extensive operational system for processing and analyzing ERTS-1 and similar multispectral data. The ORSER system was developed for use by a wide variety of researchers working in remote sensing. Both photointerpretive techniques and automatic computer processing methods have been developed and used, separately and in a combined approach. A remote Job Entry system permits use of an IBM 370/168 computer from any compatible remote terminal, including equipment tied in by long distance telephone connections. An elementary cost analysis has been prepared for the processing of ERTS data

    Application of advanced technology to space automation

    Get PDF
    Automated operations in space provide the key to optimized mission design and data acquisition at minimum cost for the future. The results of this study strongly accentuate this statement and should provide further incentive for immediate development of specific automtion technology as defined herein. Essential automation technology requirements were identified for future programs. The study was undertaken to address the future role of automation in the space program, the potential benefits to be derived, and the technology efforts that should be directed toward obtaining these benefits

    Optimization of Cell-Aware Test

    Get PDF

    Optimization of Cell-Aware Test

    Get PDF

    Optimizing Test Pattern Generation Using Top-Off ATPG Methodology for Stuck–AT, Transition and Small Delay Defect Faults

    Get PDF
    The ever increasing complexity and size of digital circuits complemented by Deep Sub Micron (DSM) technology trends today pose challenges to the efficient Design For Test (DFT) methodologies. Innovation is required not only in designing the digital circuits, but also in automatic test pattern generation (ATPG) to ensure that the pattern set screens all the targeted faults while still complying with the Automatic Test Equipment (ATE) memory constraints. DSM technology trends push the requirements of ATPG to not only include the conventional static defects but also to include test patterns for dynamic defects. The current industry practices consider test pattern generation for transition faults to screen dynamic defects. It has been observed that just screening for transition faults alone is not sufficient in light of the continuing DSM technology trends. Shrinking technology nodes have pushed DFT engineers to include Small Delay Defect (SDD) test patterns in the production flow. The current industry standard ATPG tools are evolving and SDD ATPG is not the most economical option in terms of both test generation CPU time and pattern volume. New techniques must be explored in order to ensure that a quality test pattern set can be generated which includes patterns for stuck-at, transition and SDD faults, all the while ensuring that the pattern volume remains economical. This thesis explores the use of a “Top-Off” ATPG methodology to generate an optimal test pattern set which can effectively screen the required fault models while containing the pattern volume within a reasonable limit
    • …
    corecore