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ABSTRACT 

 

The ever increasing complexity and size of digital circuits complemented by 

Deep Sub Micron (DSM) technology trends today pose challenges to the efficient 

Design For Test (DFT) methodologies.  Innovation is required not only in designing the 

digital circuits, but also in automatic test pattern generation (ATPG) to ensure that the 

pattern set screens all the targeted faults while still complying with the Automatic Test 

Equipment (ATE) memory constraints. 

DSM technology trends push the requirements of ATPG to not only include the 

conventional static defects but also to include test patterns for dynamic defects.  The 

current industry practices consider test pattern generation for transition faults to screen 

dynamic defects.  It has been observed that just screening for transition faults alone is 

not sufficient in light of the continuing DSM technology trends.  Shrinking technology 

nodes have pushed DFT engineers to include Small Delay Defect (SDD) test patterns in 

the production flow.  The current industry standard ATPG tools are evolving and SDD 

ATPG is not the most economical option in terms of both test generation CPU time and 

pattern volume.  New techniques must be explored in order to ensure that a quality test 

pattern set can be generated which includes patterns for stuck-at, transition and SDD 

faults, all the while ensuring that the pattern volume remains economical. 

This thesis explores the use of a “Top-Off” ATPG methodology to generate an 

optimal test pattern set which can effectively screen the required fault models while 

containing the pattern volume within a reasonable limit. 
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1.  INTRODUCTION  

 

Design for test (DFT) plays a vital role in the successful manufacture and 

shipment of defect free VLSI circuits.  As technology nodes continue to push towards 

smaller feature sizes on chips, the size of circuits that can be accommodated on the 

silicon wafer have increased significantly [1][2][3][4][5].  This challenges the designers 

to come up with methodologies to test the digital circuits while addressing automated 

test equipment (ATE) memory constraints [3].  Typically all of the test patterns needed 

to test a chip design must fit into the ATE memory.  If the pattern volume exceeds the 

tester memory, then we must re-load the tester memory with the remaining patterns 

while testing each chip, which will result in a large increase in test time and cost of the 

chip. This situation is clearly not desirable in today’s competitive market. 

The smaller feature sizes of today’s technology nodes give rise to Deep Sub 

Micron (DSM) effects [1][2].  The result is that DFT engineers now need to address not 

only the traditional static defects, but also dynamic defects in the chip.  A dynamic 

defect is the one that will cause the speed of the chip to be different than expected. Test 

patterns are shifted in and applied at relatively slow speed (known as DC scan) to screen 

out parts with static defects.  AC scan or delay test is used to screen out parts with 

dynamic defects.  Delay test plays a pivotal role in screening out the parts that fail to 

work at the specified and expected clock frequencies.  The most popular dynamic defect 

model used today is the transition fault (TF) model.  In a transition fault, the state of a 

logic node is slow to rise from a logic zero to a logic one, or fall from a logic one to a 
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logic zero [1].  It has been shown that the transition fault model was good enough to 

catch most dynamic defects, but today DSM effects have mandated the use of another 

fault model, called the Small Delay Defect (SDD) model [4].  SDD defects are small 

enough to escape capture by traditional transition delay fault test but are large enough to 

cause circuit failure.  The cost of failures increases tenfold after each stage of testing 

starting from the wafer level, to package test, to system level test to field test, i.e. it is 

much more expensive to catch a failure in the field than it is to catch a failure at the 

wafer level [3].  It is thus desirable to catch as many defects as possible during wafer 

test.  This implies that there is a need to screen out SDDs at wafer level test.  To do so 

we need to include SDD test patterns in the production wafer test. At the same time we 

must ensure that the total test pattern volume meets the stringent ATE memory limits. 

In this thesis we explore the options to optimize test pattern generation using 

Top-Off ATPG methodologies.  A novel technique to do SDD Top-Off ATPG is also 

explored, which will result in an overall smaller test pattern volume while still having 

reasonable defect coverage. 
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2.  FAULT MODELING 

 

A fault model is a logic level abstraction of the electrical behavior of a defect in 

an integrated circuit [1][3].  Various fault models are used to identify the static and 

dynamic defects in a circuit.  The static defects are modeled by the stuck-at fault model 

while for dynamic defects, the fault models that can be used include transition, path 

delay, small delay defect, and dynamic bridging [3].  Typically a DFT engineer tries to 

target stuck-at faults for static defects and transition faults for dynamic defects.  The 

terms DC scan for static defects and AC scan for dynamic defects is commonly used to 

designate the scan methodologies for detecting these defects. The term scan is used 

because the flip-flops and latches in a design are configured into shift registers for 

scanning test patterns in and test results out of the chip. 

 

2.1 Stuck-At Fault Model 

A stuck-at fault model is one which results in a logic node constantly maintaining 

a state without being affected by the surrounding state of the design.  This means that a 

node stuck-at-zero (SA0) will stay at logic value zero regardless of the state of the 

surrounding nodes and a node stuck-at-one (SA1) would stay at logic value one 

regardless of the state of the surrounding nodes.  The stuck-at faults can arise due to 

many reasons. If a node is shorted to the ground (GND) rail of the chip, it results in a 

SA0 fault, while is the node is shorted to the VCC rail of the chip, a SA1 fault results.  

Figure 1 shows the effect of a stuck-at fault on a circuit. 
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Figure 1. Stuck-at Fault. 
 

 Figure 1 shows the node which has been shorted to ground having a permanent 

stuck 0 on it.  This stuck-at-0 will result in the output stuck-at -1 regardless of the inputs. 

 

2.2 Transition Fault Model 

A transition fault is used to model dynamic defects in a chip.  If a node fails to 

change its state within the stipulated amount of time then we say that there is a transition 

fault at that node.  The transition can be from a logic 0 to 1 (slow-to-rise transition fault) 

or from a logic 1 to 0 (slow-to-fall transition fault).  A transition fault is assumed to be 

large enough that it is detected on any propagation path through the fault site. Transition 

faults can occur for various reasons: inconsistent wire length, on chip process variation, 

change in doping, resistive short or resistive open [3].  Transition fault test generation is 

well developed in the industrial ATPG tools, building on top of stuck-at test 

 

 

 

 

 

Gnd 

0 

X 

X 

X 

X 

X 

1 



 

5 

 

infrastructure, and is the most popular method employed to screen out delay defects [1].  

Figure 2 shows the effect of a slow-to-fall transition fault on a circuit. 

 

Figure 2. Transition Fault. 
 

 Figure 2 shows a slow-to-fall (STF) transition fault on a node will delay the 

falling output transition sufficiently that it is not captured within the stipulated clock 

period of the design.  This will cause errors in the operation of the chip. 

 

2.3 Small Delay Defects 

Small delay defects are a type of delay defect that is smaller than transition faults 

and often not caught by transition test patterns [4].  They may then cause field failures.  

They may occur on a critical path (a path which limits circuit speed), but this path is not 

tested by transition fault patterns. This defect will then only be detected in the field. The 

DSM effects exhibited by today’s technology nodes have made designers give more 

importance to SDD screening than compared to the past.  SDD ATPG is still not as 
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developed as transition fault ATPG and is very expensive in terms of test generation 

CPU time and pattern volume.  There is a need to come up with better ways to target 

these SDD faults without inflating the pattern count to impractical levels. 

 

2.4 User Defined Fault Model 

The User Defined Fault Model (UDFM) is an option provided by commercial 

ATPG tool vendors for users to define the tests that they want to apply at the boundary 

of logic cells [6][7].  Each design firm uses their own preferred cells and the cell internal 

structures are not standard throughout the industry.  The cell internals are modeled at the 

gate level by the ATPG tool. Faults on this internal model can be targeted by the ATPG 

tools. However, the internal model does not necessarily match the internal physical 

structure of the cell, and this internal structure may be different for different cells 

implementing the same function, and so having the same model. As a result, testing the 

internal model may miss defects on the cell internal structure. To effectively target the 

cell internal defects, the commercial ATPG tools have the option for the user to 

designate tests that they want to apply to the cell boundary. These tests are described by 

the UDFM.  The ATPG tool reads in a UDFM file, which guides the tool to apply the 

right tests at the boundary of the cell, thereby targeting cell internal defects.  The UDFM 

files are generated in a preprocessing step by the cell library developers, using circuit 

simulation to accurately model cell behavior in the presence of defects, such as resistive 

shorts or opens.  The UDFM ATPG can target either static or dynamic defects, using the 
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existing stuck-at fault and transition fault ATPG infrastructure.  UDFM test is also called 

Cell Aware ATPG [7].   

 

2.5 Path Delay Fault Model 

The path delay fault model, like the transition fault model, is used to model 

dynamic defects in a chip [8][9].  Unlike the transition fault model, which tries to catch a 

dynamic defect at a node, a path delay fault catches the dynamic defect on a path in the 

chip.  Transition fault ATPG is much faster than path delay ATPG, and builds on stuck-

at fault ATPG. The path delay fault ATPG requires a separate infrastructure to 

incorporate timing information. Path delay fault ATPG is fundamentally more difficult 

than transition fault test, since it is targeting the longest paths, rather than any path 

through a fault site. Due to the high path delay fault test generation time, transition fault 

model is the primary delay test used today, with path delay test limited to the longest 

paths in the design.   
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3.  ATPG METHODS 

 

The common terms used to designate the ATPG methodologies are DC scan for 

detecting static defects and AC scan for detecting dynamic defects.   

 

3.1 DC Scan 

DC scan involves loading the scan chains with a test pattern to bring the circuit 

nodes to designated values.  Then once the scan enable goes low, returning the flip-flops 

to functional operation, a capture pulse is employed to capture the response of the circuit 

in the flip-flops. These values can then be scanned out while the next test pattern is 

scanned in. In this way, the DC scan tests ensure that the circuit is free of static defects 

and all the nodes in the circuit can be brought to the required static states for each test.  

DC scan is used to apply stuck-at fault tests or low-speed stuck-at-open or bridge fault 

tests.  Figure 3 shows the sequence of signal transitions done for DC scan. 
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Figure 3. DC Scan. 
  

 Figure 3 shows the DC Scan test where a clock pulse is used to capture the state 

of the design.  DC scan is used for static defects since only the state of the design can be 

captured, i.e.  if all the output nodes are at their required logic values for the particular 

test. 

 

3.2 AC Scan 

AC scan is used to detect any dynamic defects in the circuit.  The AC scan ensure 

that transitions are able to propagate to the required nodes within the specified amount of 

time.  If they are late, then there is a dynamic defect in the chip and the chip will not 

function at the rated clock frequency.  The two popular AC scan methodologies are 

Launch On Shift (LOS) and Launch On Capture (LOC).   
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3.2.1 Launch On Capture (LOC) 

In LOC, the scan chains are first loaded with the test pattern that initializes the 

design to launch the required transitions.  Once the initialization is done, then two at-

speed clock pulses are applied to the design.  The first pulse launches the input 

transitions to the circuit and the second pulse captures the output transitions at the flip-

flops.  The captured result can then be scanned out to determine if any dynamic defects 

are present in the design.  Figure 4 shows the LOC scan waveforms.  The two at-speed 

capture pulses happen in the functional/capture mode of the design with the scan enable 

(SE) low. In LOC the functional path is used to generate the transitions. 

 

 

Figure 4. AC Scan using LOC. 
 

 Figure 4 shows the AC Scan using LOC where two capture pulses are used, the 

first one launches transitions into the circuit and the second pulse captures the output 

transitions.  If the output transitions do not make it to the target flip-flops in time, then a 
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defect has been detected, which causes the circuit to operate at lower than its rated 

speed. 

 

3.2.2 Launch On Shift (LOS) 

In LOS, the last shift cycle is used to launch the transitions into the circuit.  Once 

the transitions have been launched, an at-speed capture pulse is used to capture the 

response of the design.  The result is then scanned out to determine if there are any 

dynamic defects present in the chip.  In this case only one capture pulse is used in the 

functional/capture mode of the design with the scan enable (SE) set to 0.  Figure 5 shows 

the functional waveforms of the LOS scan. LOS uses the shift path to generate the 

transition. 

 

Figure 5. AC Scan using LOS. 
 

 Figure 5 shows the AC scan using LOS. Here to launch the transitions the last 

shift pulse of the clock is used.  After applying the launch pulse the scan enable (SE) is 

clk 

SE 
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set low and the design comes in the functional/capture mode.  The effect of the input 

transitions is then captured by an at-speed capture pulse.  If the transitions failed to reach 

the target flip-flops before the at-speed capture pulse then we can say that the design is 

not working at the rated frequency and the AC patterns have failed. 

 

In LOS, the first launch pulse comes in the scan mode of the design.  This gives 

the ATPG tool total control over all the scan flops in the design.  LOS test is therefore 

usually easy to generate.  In contrast, LOC tests require one sequential test cycle, and so 

require more CPU time to generate. In general, LOS tests can target more fault sites than 

LOC tests, although these extra sites are functionally-redundant. 

The scan enable signal has to go to all the scan flops in the design.  This leads to 

a heavy capacitive load on this signal, similar to the global clock.  The LOS tests require 

the scan enable to transition at speed, which involves overhead of routing, power, and 

extra design effort to compensate for the heavy load on the scan enable signal.  In LOC 

the scan enable need not transition at speed, which means timing goals are easier to meet 

for LOC, and the extra design effort required by LOS is not needed. For this reason, 

LOC test is used for most high-speed designs. 

 

3.3 AC Scan For Transition Faults - Shortcomings For SDD Detection 

Transition fault ATPG is the preferred method used by designers to detect 

dynamic defects since it is fast and effective.  Transition fault test generation is well 

developed in the commercial ATPG tools.  However, transition fault ATPG is inefficient 

when it comes to screening out Small Delay Defects [4].  A transition fault test involves 



 

13 

 

launching and capturing the transition at the rated speed of the circuit.  The rated speed 

of the circuit is determined by the slowest paths in the circuit, which means many paths 

in the circuit have a certain amount of timing slack in them, and the transition fault 

ATPG may propagate the test along one of these shorter paths.  If an SDD was present at 

the target fault site, but was smaller than the timing slack of the chosen path, then it 

would escape detection. In order to ensure detection, the longest path through the SDD 

fault site must be tested. Figure 6 explains the effect of slack on the transition fault test 

path and the SDD fault escape. 

 

Figure 6. Slack and the Transition Fault Test. 
 

 Figure 6 explains the relationship between the slack and Transition Fault Test. In 

this example, the slow-to-fall transition fault can be targeted by three different paths A, 
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B and C.  The transitions arrive time at the capture flop will depend on the length of the 

target path.  Path A has the highest slack and thus the greatest chance that if there was a 

SDD present, then the delay caused by the SDD would not be enough to cause a failure.  

Path C is the longest path with minimal slack and least probability of letting a SDD 

escape. 

 Another reason transition fault ATPG is not suitable for SDD screening is that 

the Transition fault ATPG algorithm will try and find the easiest/fastest solution to 

launching a transition at a node.  It cannot be guaranteed that the path chosen by the tool 

will be the longest or the most optimal.  So if a node can be targeted by multiple paths, 

transition fault ATPG will try and target it through a short path, which results in larger 

slack on the path, resulting in poor SDD screening.   

Commercial ATPG tools today are now able to target SDD faults through 

specific algorithms which ensure that the transition faults are targeted through long paths 

and thus the chances of SDD faults escaping due to slack on the paths is reduced.  This is 

called Timing Aware ATPG [9].  The SDD (Timing Aware) ATPG is quite expensive in 

terms of CPU time and pattern volume [4].  There is a need to come up with ways to do 

SDD ATPG without increasing the pattern count to impractical levels. 
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4.  TOP-OFF ATPG 

 

As explained in Section 3.3, AC scan for transition faults will try to launch a 

transition at the targeted node and then capture the resulting output transition.  This 

means that the node goes through a transition of 1 to 0 for a slow-to-fall transition fault.  

If there happened to be a stuck-at-0 fault on that node, then the transition would fail to 

occur (Figure 7).   

 

 

Figure 7. Stuck-at Faults Screened by Transition Patterns. 
 

 Figure 7 demonstrates the effect of Stuck-at faults on Transition patterns. The 

presence of the stuck-at fault on the path of the transition path will prevent the transition 

from occurring at the target node.  This will cause the transition pattern to fail and detect 

the presence of the stuck-at fault. 

  This means that transition test patterns will fortuitously screen some stuck-at 

faults.  If we identify the stuck-at faults that are screened by transition test patterns, then 
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we need not generate test patterns for these stuck-at faults.  To identify the stuck-at 

faults detected by transition fault patterns, we need to fault simulate the transition test 

patterns against the stuck-at fault list, get the list of stuck-at faults covered and then 

generate stuck-at test patterns for the faults that are not covered by the sransition test 

patterns.  These stuck-at test patterns are called “top-off” test patterns and this 

methodology is called Top-Off ATPG.   

Top-Off ATPG is very useful in the industrial production scenario where the goal 

is to ensure that the chip is working properly.  We are not concerned about how or where 

the failure is in the design, we just want to make a quick “go/no go” decision on the 

manufactured part.  In order to determine the location of a defect in a chip, we need to 

generate and apply a complete diagnostic test pattern set.  This specialized exhaustive 

test pattern set will try and target the faults through different paths and then narrow 

down on the cause of the failure by analyzing the failing test patterns. Diagnostic tests 

are only applied to a small subset of chips, due to its high cost. 

Top-Off ATPG can be extended to other fault models in addition to stuck-at and 

transition faults.  Transition fault patterns target faults on cell boundaries, with no 

knowledge of cell internals. Since the cell internals depend on the particular cell library 

and technology being used, the transition fault tests may not detect all internal defects. 

Static and dynamic UDFM test patterns guarantee application of the cell boundary 

conditions that detect static and dynamic cell internal faults.  

 Dynamic UDFM patterns try to apply user-defined transitions at the cell 

boundaries and propagate the results to a scan cell.  As was the case with transition 
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patterns, any static defects that suppress the transitions will cause these patterns to fail. 

Moreover, a transition fault in the circuit may also cause the dynamic UDFM test to fail, 

if it causes a late arrival of the output transition.  If we determine the transition and 

stuck-at faults that are defected by the UDFM patterns, then we need not separately 

generate patterns for these faults.  We can do Top-Off ATPG of transition and stuck-at 

patterns on top of the base dynamic UDFM pattern set. 

The overall Top-Off ATPG flow is shown in Figure 8. We start off with a base 

pattern set targeting dynamic UDFM faults.  Then we do top-off ATPG of transition 

patterns on this base pattern set followed by top-off ttuck-at ATPG on both of these 

UDFM and transition pattern sets. 

 Figure 8 explains the proposed Top-Off ATPG methodology. We start with a 

dynamic UDFM pattern set and generate Top-Off transition patterns followed by Top-

Off stuck-at patterns.  Fault simulation is done to determine the faults that are screened 

by the previous pattern sets.  All of these steps can be performed by commercial ATPG 

tools. 
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Figure 8. Top-Off ATPG Flow Chart. 
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5.  OPTIMIZING TEST PATTERN GENERATION 

 

ATPG is an expensive process in terms of both CPU time and the pattern 

volume.  Today designers must make sure that the patterns are generated in the most 

optimal manner (both in terms of CPU time and pattern volume) while ensuring the 

exacting fault screening standards are met.  Since pattern volume is directly related to 

test time, it is desirable to reduce the pattern volume to the minimum in order to 

minimize test cost.  Pattern compression solutions are use to reduce the pattern volume.  

Test pattern compression solutions are available both in hardware and software form.   

 

5.1 Hardware Test Compression 

Test compressions solutions are available from ATPG vendors that can be 

integrated in the design to reduce test time.  The hardware test compression solutions use 

multiple parallel short scan chain stumps connected to a limited number of scan inputs 

and outputs [10].  The decompression/compression logic is present at the start/end of the 

scan stumps (Figure 9).  The decompression logic fans out the data from the input scan 

chains to the internal scan stumps.  The compression logic compresses the data back into 

the scan outputs from the internal scan chains.  The use of shorter scan chains reduces 

the scan shift time of the design by orders of magnitude, and thus reduces test time.  The 

reason that the scan patterns can be compressed is because the care bit density i.e.  the 

number of bits that are required to test the targeted faults in the pattern is usually low 

compared to the “don’t care” bits.  This way the decompression logic is able to fan out 
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the data to the multiple internal scan stumps and the ATPG tool ensures that the non-

conflicting patterns are packed together to reduce the test time. 

 

Figure 9. Hardware Test Compression. 
 

 Figure 9 explains the layout of the Hardware Test compression scheme. The 

shaded area represents the chip boundary.  An “n” bit scan port connects the tester to the 

compression logic.  The scan in from the tester goes to the decompression logic which 

fans out the data to “k” internal scan chains.  The internal scan chains then get 

“compressed” again into an n-bit scan output port.  In the hardware compression bypass 

mode, the compression logic is re-configured to connect the “k” internal scan chains in 

“n” long bypass chains.  The scan shift time is reduced by a factor of around k/n in case 

of a balanced scan compression scheme. 
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5.2 Software Test Pattern Compression 

Since the care bit density of the test patterns is low, it is possible to pack multiple 

non-conflicting tests together into one single test pattern.  This is done by the ATPG tool 

and is a means of software test compression [11]. This is also known as test compaction. 

Typically the first test patterns can contain tests for many thousands of faults, and later 

patterns can still test for tens or hundreds of harder-to-detect faults. 

 

5.3 Top-Off ATPG To Reduce Test Pattern Volume 

The use of software and hardware test compression results in a smaller test 

pattern set for the individual fault models.  Top-Off ATPG can be employed to reduce 

the overall pattern volume for the different fault models being targeted.  As explained in 

Section 4, in our analysis we started off with a base pattern set of dynamic UDFM faults, 

followed by a Top-Off of transition test patterns and a final Top-Off of the stuck-at test 

patterns on these two pattern sets.  These experiments were run on a portion of an 

industrial microprocessor design, comprising approximately 1.1M cells. This is a large 

design with enough architectural diversity to increase confidence that these experiments 

reflect the results that should be expected from similar designs. 
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Table 1. Results of the Top-Off ATPG methodology explained in Section 4.  The values 
correspond to hardware compression bypassed mode. 

 

Mode Patterns CPU 
Time (s) 

Test 
Coverage 

(%) 
UDFM 1250 3373 91.18 

Transition FS  27.8 95.74 
Transition TO 560 104.1 98.24 

Stuck FS  6.75 99.41 
Stuck TO 97 92.56 99.55 

Total 1907 3604.21  
 

In Table 1, the results of the Top-Off methodology explained earlier are 

displayed.  The design used here is in hardware compression bypass mode, so there are 

no input constraints.  The compression places constraints on the ATPG. The second row 

corresponds to the base UDFM pattern set. The coverage listed is for the UDFM fault 

model. The next row corresponds to the fault simulation (FS) of transition faults on the 

base UDFM pattern set. Fault simulation is much faster than ATPG. The UDFM patterns 

screen 95.74% of the transition faults.  The next row corresponds to the transition Top-

Off (TO) ATPG run.  The coverage for transition faults jumps with the Top-Off ATPG.  

The next row corresponds to the fault simulation of stuck-at faults against the UDFM 

and transition Top-Off pattern sets.  99.41% of the stuck-at faults are already screened 

by the UDFM and transition Top-Off pattern sets. This is to be expected, since the 

requirements to detect UDFM and transition faults are more extensive than stuck-at 

faults. The next row corresponds to the stuck-at Top-Off ATPG.  The last 0.14% in 

stuck-at coverage is recovered by the Top-Off ATPG, using 97 additional patterns.  The 

last row corresponds to the total pattern count and CPU time for the entire process. 



 

23 

 

To get an idea of how the Top-Off ATPG fares against traditional ATPG, Table 2 

collates the results of targeting each fault model separately. 

 
Table 2. Traditional ATPG pattern count and test coverage.  The values correspond to 

hardware compression bypass mode. 
 

Mode Patterns CPU 
Time (s) 

Test 
Coverage 

(%) 
UDFM 1250 3373 91.18 

Transition 1282 332 98.07 
Stuck 347 437 99.59 
Total 2879 4142  

 

In Table 2, the three rows correspond to the individual ATPG runs for the three 

fault models.  The last row is the sum of all the test pattern volume and the CPU time.  

By comparing Tables 1 and 2, it can be deduced that the Top-Off ATPG methodology 

results in 34% fewer total patterns and takes 13% less CPU time.  The final transition 

fault coverage is higher for Top-Off ATPG while the final stuck-at coverage is slightly 

lower for Top-Off ATPG. These coverage variations are expected, since the ATPG 

algorithms are not complete – they will give up on some faults, even though a test may 

exist, and some of these faults may be fortuitously detected during fault simulation. 

The same experiments when done with hardware compression bypassed, 

eliminating the compression constraints.  Table 3 shows the corresponding results for 

Top-Off ATPG and Table 4 shows the results for traditional ATPG. 
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Table 3. Top-Off ATPG results for the design in hardware compression mode.   
 

Mode Patterns CPU 
Time (s) 

Test 
Coverage 

(%) 
UDFM 2015 4098.9 92.91 

Transition FS  45.7 95.20 
Transition TO 991 126.5 97.86 

Stuck FS  11 99.11 
Stuck TO 157 124.7 99.20 

Total 3163 4406.8  
 

The number of patterns is higher in hardware compression mode due to the input 

constraints, but since the pattern lengths are smaller, the overall pattern volume is much 

less than the hardware compression bypassed mode. The fault coverage is higher for 

UDFM but lower for transition and stuck-at faults. As discussed above, this variation is 

normal. The results also indicate that the hardware compression in this design leaves 

enough flexibility to the ATPG to generate tests for most faults. 

 

Table 4. Traditional ATPG pattern count and coverage for the hardware compression 
mode. 

 

Mode Patterns CPU 
Time (s) 

Test 
Coverage 

(%) 
UDFM 2015 4098.9 92.91 

Transition 2073 467.6 97.97 
Stuck 744 462.4 99.47 
Total 4832 5028.6  

 

The overall pattern reduction for Top-Off ATPG in the hardware compression 

case is 34.5% while the total CPU time is reduced by 12.4%.  The benefit of Top-Off 
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ATPG is easy to see from these experiments.  It should be noted that since the Top-Off 

ATPG is a sequential process where we have to first generate the UDFM base patterns, 

followed by transition and then stuck-at Top-Off.  In traditional ATPG we can do all the 

steps in parallel.  The CPU time reduction should therefore be more carefully analyzed.  

If all the runs are executed in parallel, then the traditional ATPG will finish faster than 

the Top-Off ATPG, but the overall CPU time used by the methodology would be less for 

Top-Off ATPG. 

 

5.4 SDD ATPG 

SDD ATPG is expensive in terms of CPU time and pattern volume. EDA 

vendors are constantly trying to come up with new methods of optimizing SDD ATPG 

in terms of both the pattern volume and the CPU time.  The methodologies being 

explored include long path delay test, which ensure that the faults are targeted at the 

longest paths.  Targeting faults through the longest paths ensures that the slack on the 

given path is minimum, which results in better SDD screening 

[12][13][14][15][16][17][18]. 

Since SDD ATPG takes a lot more time compared to transition fault ATPG and 

both the ATPGs are basically AC scan, experiments have been done to show how we 

can use transition fault ATPG to generate patterns which have high SDD fault screening 

capability.  One such approach has been the use of n-detect transition fault ATPG.  The 

use of n-detect guarantees that the same fault is targeted at least n times in the pattern 

set.  Commercial ATPG tools do not guarantee that the fault will be targeted on different 



 

26 

 

paths but with higher n-detect the chances of the fault being detected on different paths 

and with different local excitation conditions increases.  This means that there is a 

greater chance that the transition fault will be detected through a longer path than the 

optimal path chosen by basic transition fault ATPG (Figure 6).  The detection through 

longer paths reduces the slack on the target node, thus improving SDD detection.   

In our experiments we generated different n-detect transition fault test patterns 

and computed their SDD coverage using two commercial tools.  We used an industrial 

design with around 970K cells.  Paths longer than 90% of the clock cycle time were 

targeted for the SDD ATPG. The SDD coverage in both tools points is computed as the 

proportion of fault sites that are tested by the longest path through that fault site. An 

SDD coverage of 100% would imply that all the transition faults targeted are being 

tested through the longest possible paths.  These settings were held consistent throughout 

the experiments.   

Figure 10 shows the plot of SDD coverage for the different n-detect transition 

fault test (TFT) pattern sets.  We can see that there is a general trend of increasing SDD 

coverage with the increase in the value of n.  The specific SDD ATPG patterns have 

greater SDD coverage than the 1-Detect transition pattern set. The SDD coverage in all 

cases is low, however we do not know if this is due to the ATPG algorithms, the 

presence of false paths, or other reason that would prevent testing on the longest paths. 
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Figure 10. n-Detect Transition ATPG and SDD Coverage. 
 

 The Figure 10 collates the result for two commercial ATPG tools.  An increase in 

n increases the SDD coverage for both tools. 

 

 Table 5 shows the number of patterns for each of the pattern sets listed in Figure 

10.  The pattern volume increases significantly with an increase in n, particularly for 

Tool 1.  Clearly n-detect is not a viable option for effectively screening SDDs. 

 
Table 5. Number of patterns for the two ATPG tools for different n-Detects. 

 

Pattern Set Tool 1 Tool 2 
TF 1-Detect  2856 2011 
TF 3-Detect 25027 2758 
TF 5-Detect 41179 4104 
TF 7-Detect 56736 5380 

SDD 1693 2293 
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5.5 SDD Top-Off ATPG 

There is no direct method to do SDD Top-Off ATPG.  Efforts of doing an 

indirect SDD Top-Off ATPG have been shown where the fault list is trimmed based on 

the slack available on the fault path [19][20][21].  This method requires post processing 

the fault list and is based on the fact that the SDD pattern volume will reduce if the 

number of faults to be targeted is reduced. 

 

5.6 Fortuitous Detections in 1-Detect Transition Pattern Set 

Even in a 1-Detect transition pattern set there will be multiple fortuitous 

detections of many faults.  These are purely fortuitous detections that result due to the 

location of the fault and are not intended by the tool.  Figure 11 shows the plot of the 

number of faults vs. their detections in a 1-Detect transition pattern set on the 970K cell 

design. 

 Figure 11 demonstrates that the number of faults with high number of detects 

falls with an increase in the number of detects.  Many faults with more than 20 detects 

were observed in the 1-Detect Transition pattern set. 
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Figure 11. Fortuitous Detections of the Faults in the 1-Detect Transition Pattern Set. 
 

The number of faults that get detected multiple number of times steadily 

decreases with the increase in the number of detections for those faults.  It was observed 

that 10.3% of all faults were detected 200 or more times, which is an indicator even in a 

1-Detect transition fault test set, many faults can have a large number of detections. Such 

sites are likely to have high fortuitous detect coverage. 

 

5.7 SDD Coverage Of Faults Based On Detections 

In Section 5.4 we explored the relationship of the n-detect ATPG with the SDD 

coverage.  It was observed that the increase in n-etect increases the SDD coverage of the 

pattern set.  We also know that there are faults which get detected multiple times in the 

1-Detect transition pattern set.  There should be a difference in the SDD coverage of 

these faults based on the number of detects.  To evaluate this, we segregated the faults 
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into different buckets based on their number of detects.  After this segregation, we 

performed SDD fault simulation on these separate populations with the 1-Detect 

transition pattern sets.  Fault simulation revealed the SDD coverage of these fault 

populations.  Figure 12 shows the plot of the SDD coverage of these fault populations 

alongside the number of transition fault detects of the faults. 

 

Figure 12. Number of Detects and SDD Coverage for Tool 1. 
 

 Number of detects of faults against their SDD coverage for Tool 1, using the 1-

Detect transition fault test set.  The SDD coverage follows an interesting curve where it 

initially decreases and then increases for the faults with increasing number of detects. 
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Figure 12 shows that the 1-Detect transition fault test set achieves good SDD 

coverage for most fault buckets. However, the high detect buckets comprise a relatively 

small fraction of the faults, as shown in Figure 11. In order to increase overall SDD 

coverage, we need to perform SDD ATPG for faults in buckets with low SDD coverage. 

Since this is only a subset of all faults, the SDD ATPG will take less CPU time and 

produce fewer patterns than SDD ATPG on the entire fault population. 

Our proposed SDD Top-Off ATPG methodology is based on the above 

assumption that the test pattern count is dependent on the number of faults that are being 

targeted.   

In our experiments we targeted the SDD ATPG for the faults with the number of 

detects from 2 to 25.  This corresponds to faults with less than 50% SDD coverage. 

Table 6 shows the results of this exercise where we do SDD ATPG for a selective fault 

population. 

 
Table 6. SDD Top-Off ATPG results for the proposed methodology for Tool 1. 

 

Pattern Set Patterns SDD Coverage 
TF 1-Detect 2856 36.80 

SDD 1693 38.64 
SDD TO 736 34.09 

TF + SDD 4549 38.67 
TF + SDD TO 3592 37.87 

 

In Table 6, the first data row corresponds to the transition 1-Detect transition 

fault pattern set.  The second row corresponds to the SDD pattern set targeting all fault 

sites.  The third row shows the results of the SDD Top-Off (targeting selective fault 

population).  The SDD coverage is lower than the complete SDD test since only a subset 
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of faults is targeted. The fourth row shows the base 1-Detect transition fault plus the 

complete SDD pattern sets combined coverage and the number of patterns.  The SDD 

coverage is higher than SDD patterns alone due to fortuitous detections. The fifth row 

shows the 1-Detect transition fault pattern set plus the SDD Top-Off patterns combined 

SDD coverage and the total number of patterns.  It can be seen that the Top-Off 

methodology produces an SDD pattern set which is 56.5% smaller than the complete 

SDD pattern set.  The combined coverage for SDD Top-Off and transition faults patterns 

is acceptably close to the combined coverage of complete SDD and transition fault 

patterns.   

It is interesting to note that in Figure 9 the SDD coverage for faults that get 

detected only once is around 65% and then it drops off before increasing again.  The 

faults that get detected only once are possibly a result of targeted fault detection instead 

of fortuitous detections.  If a fault is detected only once, then quite possibly it can be 

detected only through one path.  If there is no other path through which it can be 

detected, then the single path through which it is detected is the longest path and thus 

these faults will have 100% SDD coverage. 

The SDD coverage graph experiences dip in SDD coverage at faults with 85 to 

90 detections.  There are 3000 faults in this bucket.  This is a relatively small number 

and most of these faults lie in a particular module of the design.  It may be that this 

module of the design has some design characteristic that prevents it from attaining good 

SDD coverage with the ATPG algorithms.   
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We repeated the same experiment using Tool 2.  The SDD coverage vs. the 

number of fault detects is shown in Figure 13. The pattern is quite different than Tool 1. 

The coverage starts lower and then gradually rises, without the large dip. It also has a dip 

around 85 detects. Overall, the coverage in any one high-detect bucket is not as high as 

Tool 1, but there is not the dip in fewer-detect, but more fault buckets, which leads to 

higher overall SDD coverage, as shown in Figure 10. 

 

Figure 13. Number of Detects and SDD Coverage for Tool 2. 
 

 SDD coverage against the number of fault detects for Tool 2.  Here the initially 

high SDD coverage for faults with two detects as observed for Tool 1 is not observed.  

The SDD coverage increases until 30 detect, and then experiences a dip at around 85 

detects. 
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We selected the range of 1 to 30 detects for SDD Top-Off ATPG. We chose this 

range since the SDD coverage levels off above 30 detects. The results of Top-Off ATPG 

for Tool 2 are presented in Table 7. 

 
Table 7. SDD Top-Off ATPG results for the proposed methodology on ATPG Tool 2. 
 

Pattern Set Patterns SDD Coverage ATPG Time (s) 
TF 1-Detect 2011 46.66 7494 

SDD 2293 49.38 10322 
SDD TO 1797 43.48 3556 

TF + SDD 4304 49.39 17816 
TF + SDD TO 3808 48.37 11050 

 

The SDD Top-Off pattern set is 21.63% smaller than the complete SDD pattern 

set.  The total 1-Detect transition fault plus SDD Top-Off patterns are 11.52% smaller 

than the 1-Detect transition fault and complete SDD pattern set.  The SDD coverage of 

the complete pattern sets is acceptably close to the complete SDD pattern set. 

In Tool 2 the SDD coverage steadily increases until 30 detects and then remains 

constant until it droops at around the number of detects of 85.  This droop in SDD 

coverage was also observed in Tool 1.  This consistency does point to a design specific 

feature which results in these particular faults to have a low SDD coverage. 
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6.  CONCLUSIONS AND FUTURE WORK 

 

Design for Test is important in ensuring that the manufactured VLSI chips are 

free of defects.  The test patterns applied to the design directly result in test cost which 

contributes towards the total cost of the chip.  It is required in this competitive world to 

keep the test cost as low as possible.  Reducing the test patterns directly reduces the test 

time and consequently the test cost. 

 Test pattern reduction can be done by pattern compaction schemes which are 

available both in hardware and software form.  To reduce the overall pattern count Top-

Off ATPG proves beneficial.  We explored the Top-Off ATPG experiments on industrial 

designs for the common production fault models.  Results of Top-Off ATPG on UDFM, 

transition and stuck-at faults showed that the total pattern count can be reduced by 

approximately 33% for both hardware compressed and bypassed scan configurations. 

 SDD ATPG is important in the prevalent technology nodes where the small 

feature sizes result in DSM effects to interfere with the operation of the circuit.  SDD or 

timing aware transition fault ATPG results in a high pattern count.  There is no direct 

way to do Top-Off ATPG for SDD faults.  In this thesis we explored the relationship 

between the n-detect transition fault patterns and their SDD coverage.  This relationship 

coupled with the observation of fortuitous multiple detections of faults in the 1-Detect 

transition fault pattern set helped us propose a novel SDD Top-Off ATPG methodology.   

 The SDD Top-Off methodology proposed in this work helped reduce the SDD 

test pattern set by around 56% with a loss in overall SDD coverage of only 1%.  The 
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methodology was demonstrated on two commercial tools that have quite different SDD 

and n-detect transition fault test generation behaviors. 

 Top-Off ATPG is a very useful technique to reduce the overall test pattern 

volume and can help in reducing the total cost of the VLSI circuits.  It was shown that 

Top-Off ATPG can be done for the cell aware and timing aware ATPG methodologies 

as well with exciting results. 

 In an ideal environment the Top-Off ATPG should produce equal, if not better, 

test coverage than the traditional ATPG.  This was observed for the direct Top-Off 

ATPG experiments for the UDFM, Transition and Stuck-at patterns but the SDD Top-

Off patterns showed a slight decrease in the SDD coverage.  One observation which 

might explain the decrease in SDD coverage is that for both the ATPG tools we did not 

include the faults around 85 detects, which had low SDD coverage.  In the future it 

would be interesting to experiment with different criteria to select the fault buckets on 

which to do SDD Top-Off ATPG.  Perhaps inclusion of the low SDD coverage fault 

buckets (faults with 85 detects in our example) might improve the SDD coverage of the 

Top-Off SDD patterns and the difference between the Top-Off SDD test coverage and 

the complete SDD coverage might reduce to zero. 
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