81 research outputs found

    Partial ovoids and partial spreads in symplectic and orthogonal polar spaces

    Get PDF
    We present improved lower bounds on the sizes of small maximal partial ovoids and small maximal partial spreads in the classical symplectic and orthogonal polar spaces, and improved upper bounds on the sizes of large maximal partial ovoids and large maximal partial spreads in the classical symplectic and orthogonal polar spaces. An overview of the status regarding these results is given in tables. The similar results for the hermitian classical polar spaces are presented in [J. De Beule, A. Klein, K. Metsch, L. Storme, Partial ovoids and partial spreads in hermitian polar spaces, Des. Codes Cryptogr. (in press)]

    Partial ovoids and partial spreads in finite classical polar spaces

    Get PDF
    We survey the main results on ovoids and spreads, large maximal partial ovoids and large maximal partial spreads, and on small maximal partial ovoids and small maximal partial spreads in classical finite polar spaces. We also discuss the main results on the spectrum problem on maximal partial ovoids and maximal partial spreads in classical finite polar spaces

    Constant rank-distance sets of hermitian matrices and partial spreads in hermitian polar spaces

    Full text link
    In this paper we investigate partial spreads of H(2n1,q2)H(2n-1,q^2) through the related notion of partial spread sets of hermitian matrices, and the more general notion of constant rank-distance sets. We prove a tight upper bound on the maximum size of a linear constant rank-distance set of hermitian matrices over finite fields, and as a consequence prove the maximality of extensions of symplectic semifield spreads as partial spreads of H(2n1,q2)H(2n-1,q^2). We prove upper bounds for constant rank-distance sets for even rank, construct large examples of these, and construct maximal partial spreads of H(3,q2)H(3,q^2) for a range of sizes

    A geometric proof of the upper bound on the size of partial spreads in H(4n+1, q²)

    Get PDF
    We give a geometric proof of the upper bound of q(2n+1) + 1 on the size of partial spreads in the polar space H(4n + 1, q(2)). This bound is tight and has already been proved in an algebraic way. Our alternative proof also yields a characterization of the partial spreads of maximum size in H(4n + 1, q(2))

    Partial Ovoids and Partial Spreads of Classical Finite Polar Spaces

    Get PDF
    2000 Mathematics Subject Classification: 05B25, 51E20.We survey the main results on ovoids and spreads, large maximal partial ovoids and large maximal partial spreads, and on small maximal partial ovoids and small maximal partial spreads in classical finite polar spaces. We also discuss the main results on the spectrum problem on maximal partial ovoids and maximal partial spreads in classical finite polar spaces.The research of the fourth author was also supported by the Project Combined algorithmic and the oretical study of combinatorial structur es between the Fund for Scientific Research Flanders-Belgium (FWO-Flanders) and the Bulgarian Academy of Science

    Slices of the unitary spread

    Get PDF
    We prove that slices of the unitary spread of Q(+)(7, q), q equivalent to 2 (mod 3), can be partitioned into five disjoint classes. Slices belonging to different classes are non-equivalent under the action of the subgroup of P Gamma O+(8, q) fixing the unitary spread. When q is even, there is a connection between spreads of Q(+)(7, q) and symplectic 2-spreads of PG(5, q) (see Dillon, Ph.D. thesis, 1974 and Dye, Ann. Mat. Pura Appl. (4) 114, 173-194, 1977). As a consequence of the above result we determine all the possible non-equivalent symplectic 2-spreads arising from the unitary spread of Q(+)(7, q), q = 2(2h+1). Some of these already appeared in Kantor, SIAM J. Algebr. Discrete Methods 3(2), 151-165, 1982. When q = 3(h), we classify, up to the action of the stabilizer in P Gamma O(7, q) of the unitary spread of Q(6, q), those among its slices producing spreads of the elliptic quadric Q(-)(5, q)
    corecore