77 research outputs found

    Degree of Satisfiability in Heyting Algebras

    Full text link
    Given a finite structure MM and property pp, it is a natural to study the degree of satisfiability of pp in MM; i.e. to ask: what is the probability that uniformly randomly chosen elements in MM satisfy pp? In group theory, a well-known result of Gustafson states that the equation xy=yxxy=yx has a finite satisfiability gap: its degree of satisfiability is either 11 (in Abelian groups) or no larger than 58\frac{5}{8}. Degree of satisfiability has proven useful in the study of (finite and infinite) group-like and ring-like algebraic structures, but finite satisfiability gap questions have not been considered in lattice-like, order-theoretic settings yet. Here we investigate degree of satisfiability questions in the context of Heyting algebras and intuitionistic logic. We classify all equations in one free variable with respect to finite satisfiability gap, and determine which common principles of classical logic in multiple free variables have finite satisfiability gap. In particular we prove that, in a finite non-Boolean Heyting algebra, the probability that a randomly chosen element satisfies x¬x=x \vee \neg x = \top is no larger than 23\frac{2}{3}. Finally, we generalize our results to infinite Heyting algebras, and present their applications to point-set topology, black-box algebras, and the philosophy of logic.Comment: 22 pages, 2 figures. To appear in Journal of Symbolic Logic. Changes: Final version, w/ streamlined proofs and minor changes throughou

    Satisfiability in multi-valued circuits

    Full text link
    Satisfiability of Boolean circuits is among the most known and important problems in theoretical computer science. This problem is NP-complete in general but becomes polynomial time when restricted either to monotone gates or linear gates. We go outside Boolean realm and consider circuits built of any fixed set of gates on an arbitrary large finite domain. From the complexity point of view this is strictly connected with the problems of solving equations (or systems of equations) over finite algebras. The research reported in this work was motivated by a desire to know for which finite algebras A\mathbf A there is a polynomial time algorithm that decides if an equation over A\mathbf A has a solution. We are also looking for polynomial time algorithms that decide if two circuits over a finite algebra compute the same function. Although we have not managed to solve these problems in the most general setting we have obtained such a characterization for a very broad class of algebras from congruence modular varieties. This class includes most known and well-studied algebras such as groups, rings, modules (and their generalizations like quasigroups, loops, near-rings, nonassociative rings, Lie algebras), lattices (and their extensions like Boolean algebras, Heyting algebras or other algebras connected with multi-valued logics including MV-algebras). This paper seems to be the first systematic study of the computational complexity of satisfiability of non-Boolean circuits and solving equations over finite algebras. The characterization results provided by the paper is given in terms of nice structural properties of algebras for which the problems are solvable in polynomial time.Comment: 50 page

    A doctrinal approach to modal/temporal Heyting logic and non-determinism in processes

    Get PDF
    The study of algebraic modelling of labelled non-deterministic concurrent processes leads us to consider a category LB , obtained from a complete meet-semilattice B and from B-valued equivalence relations. We prove that, if B has enough properties, then LB presents a two-fold internal logical structure, induced by two doctrines definable on it: one related to its families of subobjects and one to its families of regular subobjects. The first doctrine is Heyting and makes LB a Heyting category, the second one is Boolean. We will see that the difference between these two logical structures, namely the different behaviour of the negation operator, can be interpreted in terms of a distinction between non-deterministic and deterministic behaviours of agents able to perform computations in the context of the same process. Moreover, the sorted first-order logic naturally associated with LB can be extended to a modal/temporal logic, again using the doctrinal setting. Relations are also drawn to other computational model

    An Approach to Fuzzy Modal Logic of Time Intervals

    Get PDF
    Temporal reasoning based on intervals is nowadays ubiquitous in artificial intelligence, and the most representative interval temporal logic, called HS, was introduced by Halpern and Shoham in the eighties. There has been a great effort in the past in studying the expressive power and computational properties of the satisfiability problem for HS and its fragments, but only recently HS has been proposed as a suitable formalism for artificial intelligence applications. Such applications highlighted some of the intrinsic limits of HS: Sometimes, when dealing with real-life data one is not able to express temporal relations and propositional labels in a definite, crisp way. In this paper, following the seminal ideas of Fitting and Zadeh, among others, we present a fuzzy generalization of HS that partially solves such problems of expressive power, and we prove that, as in the crisp case, its satisfiability problem is generally undecidable

    One-Variable Fragments of First-Order Many-Valued Logics

    Get PDF
    In this thesis we study one-variable fragments of first-order logics. Such a one-variable fragment consists of those first-order formulas that contain only unary predicates and a single variable. These fragments can be viewed from a modal perspective by replacing the universal and existential quantifier with a box and diamond modality, respectively, and the unary predicates with corresponding propositional variables. Under this correspondence, the one-variable fragment of first-order classical logic famously corresponds to the modal logic S5. This thesis explores some such correspondences between first-order and modal logics. Firstly, we study first-order intuitionistic logics based on linear intuitionistic Kripke frames. We show that their one-variable fragments correspond to particular modal Gödel logics, defined over many-valued S5-Kripke frames. For a large class of these logics, we prove the validity problem to be decidable, even co-NP-complete. Secondly, we investigate the one-variable fragment of first-order Abelian logic, i.e., the first-order logic based on the ordered additive group of the reals. We provide two completeness results with respect to Hilbert-style axiomatizations: one for the one-variable fragment, and one for the one-variable fragment that does not contain any lattice connectives. Both these fragments are proved to be decidable. Finally, we launch a much broader algebraic investigation into one-variable fragments. We turn to the setting of first-order substructural logics (with the rule of exchange). Inspired by work on, among others, monadic Boolean algebras and monadic Heyting algebras, we define monadic commutative pointed residuated lattices as a first (algebraic) investigation into one-variable fragments of this large class of first-order logics. We prove a number of properties for these newly defined algebras, including a characterization in terms of relatively complete subalgebras as well as a characterization of their congruences

    Changing a semantics: opportunism or courage?

    Full text link
    The generalized models for higher-order logics introduced by Leon Henkin, and their multiple offspring over the years, have become a standard tool in many areas of logic. Even so, discussion has persisted about their technical status, and perhaps even their conceptual legitimacy. This paper gives a systematic view of generalized model techniques, discusses what they mean in mathematical and philosophical terms, and presents a few technical themes and results about their role in algebraic representation, calibrating provability, lowering complexity, understanding fixed-point logics, and achieving set-theoretic absoluteness. We also show how thinking about Henkin's approach to semantics of logical systems in this generality can yield new results, dispelling the impression of adhocness. This paper is dedicated to Leon Henkin, a deep logician who has changed the way we all work, while also being an always open, modest, and encouraging colleague and friend.Comment: 27 pages. To appear in: The life and work of Leon Henkin: Essays on his contributions (Studies in Universal Logic) eds: Manzano, M., Sain, I. and Alonso, E., 201
    corecore