2,067 research outputs found

    A convolutional neural network based deep learning methodology for recognition of partial discharge patterns from high voltage cables

    Get PDF
    It is a great challenge to differentiate partial discharge (PD) induced by different types of insulation defects in high-voltage cables. Some types of PD signals have very similar characteristics and are specifically difficult to differentiate, even for the most experienced specialists. To overcome the challenge, a convolutional neural network (CNN)-based deep learning methodology for PD pattern recognition is presented in this paper. First, PD testing for five types of artificial defects in ethylene-propylene-rubber cables is carried out in high voltage laboratory to generate signals containing PD data. Second, 3500 sets of PD transient pulses are extracted, and then 33 kinds of PD features are established. The third stage applies a CNN to the data; typical CNN architecture and the key factors which affect the CNN-based pattern recognition accuracy are described. Factors discussed include the number of the network layers, convolutional kernel size, activation function, and pooling method. This paper presents a flowchart of the CNN-based PD pattern recognition method and an evaluation with 3500 sets of PD samples. Finally, the CNN-based pattern recognition results are shown and the proposed method is compared with two more traditional analysis methods, i.e., support vector machine (SVM) and back propagation neural network (BPNN). The results show that the proposed CNN method has higher pattern recognition accuracy than SVM and BPNN, and that the novel method is especially effective for PD type recognition in cases of signals of high similarity, which is applicable for industrial applications

    Partial discharge classification using deep learning methods—survey of recent progress

    Get PDF
    This paper examines the recent advances made in the field of Deep Learning (DL) methods for the automated identification of Partial Discharges (PD). PD activity is an indication of the state and operational conditions of electrical equipment systems. There are several techniques for on-line PD measurements, but the typical classification and recognition method is made off-line and involves an expert manually extracting appropriate features from raw data and then using these to diagnose PD type and severity. Many methods have been developed over the years, so that the appropriate features expertly extracted are used as input for Machine Learning (ML) algorithms. More recently, with the developments in computation and data storage, DL methods have been used for automated features extraction and classification. Several contributions have demonstrated that Deep Neural Networks (DNN) have better accuracy than the typical ML methods providing more efficient automated identification techniques. However, improvements could be made regarding the general applicability of the method, the data acquisition, and the optimal DNN structur

    Partial Discharge Identification in MV switchgear using Scalogram representations and Convolutional AutoEncoder

    Get PDF
    This work proposes a methodology to automate the recognition of Partial Discharges (PD) sources in Electrical Distribution Networks using a Deep Neural Network (DNN) model called Convolutional Autoencoder (CAE), which is able to automatically extract features from data to classify different sources. The database used to train the model is constructed with real defects commonly found in MV switchgear in service, and it also includes noise and interference signals that are present in these installations. PD sources consist of defective mountings, such as the loss of sealing cap of cable terminations, or an earth cable in contact with cable termination insulation. Four sources were replicated in a Smart Grid Laboratory and on-line measurement techniques were used to obtain the PD signal data. The Continuous Wavelet Transform (CWT) was applied to post-process the PD signal into a time-frequency image representation. The trained model predicts with high accuracy new data, demonstrating the effectiveness of the methodology to automate the recognition of different partial discharges and to differentiate them from noise and other interference sources

    Unsupervised Monitoring System for Predictive Maintenance of High Voltage Apparatus

    Get PDF
    The online monitoring of a high voltage apparatus is a crucial aspect for a predictive maintenanceprogram. Partialdischarges(PDs)phenomenaaffecttheinsulationsystemofanelectrical machine and\u2014in the long term\u2014can lead to a breakdown, with a consequent, signi\ufb01cant economic loss; wind turbines provide an excellent example. Embedded solutions are therefore required to monitor the insulation status. The paper presents an online system that adopts unsupervised methodologies for assessing the condition of the monitored machine in real time. The monitoring process does not rely on any prior knowledge about the apparatus; nonetheless, the method can identify the relevant drifts in the machine status. In addition, the system is speci\ufb01cally designed to run on low-cost embedded devices

    A Review on the Classification of Partial Discharges in Medium-Voltage Cables : Detection, Feature Extraction, Artificial Intelligence-Based Classification, and Optimization Techniques

    Get PDF
    Medium-voltage (MV) cables often experience a shortened lifespan attributed to insulation breakdown resulting from accelerated aging and anomalous operational and environmental stresses. While partial discharge (PD) measurements serve as valuable tools for assessing the insulation state, complexity arises from the presence of diverse discharge sources, making the evaluation of PD data challenging. The reliability of diagnostics for MV cables hinges on the precise interpretation of PD activity. To streamline the repair and maintenance of cables, it becomes crucial to discern and categorize PD types accurately. This paper presents a comprehensive review encompassing the realms of detection, feature extraction, artificial intelligence, and optimization techniques employed in the classification of PD signals/sources. Its exploration encompasses a variety of sensors utilized for PD detection, data processing methodologies for efficient feature extraction, optimization techniques dedicated to selecting optimal features, and artificial intelligence-based approaches for the classification of PD sources. This synthesized review not only serves as a valuable reference for researchers engaged in the application of methods for PD signal classification but also sheds light on potential avenues for future developments of techniques within the context of MV cables.© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore