146 research outputs found

    Condition monitoring and fault detection of inverter-fed rotating machinery

    Get PDF
    Condition monitoring of rotating machinery is crucial in industry. It can prevent long term outages that can prove costly, prevent injury to machine operators, and lower product quality. Induction motors, often described as the workhorse of industry, are popular in industry because of their robustness, efficiency and the need for low maintenance. They are, however, prone to faults when used improperly or under strenuous conditions. Gearboxes are also an important component in industry, used to transmit motion and force by means of successively engaging teeth. They too are prone to damage and can disrupt industrial processes if failure is unplanned for. Reciprocating compressors are widely used in the petroleum and the petrochemical industry. Their complex structure, and operation under poor conditions makes them prone to faults, making condition monitoring necessary to prevent accidents, and for maintenance decision-making and cost minimization. Various techniques have been extensively investigated and found to be reliable tools for the identification of faults in these machines. This thesis, however, sets out to establish a single non-invasive tool that can be used to identify the faults on all these machines. Literature on condition monitoring of induction motors, gearboxes, and reciprocating compressors is extensively reviewed. The time, frequency, and time-frequency domain techniques that are used in this thesis are also discussed. Statistical indicators were used in the time domain, the Fourier Transform in the frequency domain, and Wavelet Transforms in the time-frequency domain. Vibration and current, which are two of the most popular parameters for fault detection, were considered. The test rig equipment that is used to carry to the experiments, which comprised a modified Machine Fault Simulator -Magnum (MFS-MG), is presented and discussed. The fault detection strategies rely on the presence of a fault signature. The test rig that was used allows for the simulation of individual or multiple concurrent faults to the test machinery. The experiments were carried out under steady-state and transient conditions with the faults in the machines isolated, and then with multiple faults implemented concurrently. The results of the fault detection strategies are analysed, and conclusions are drawn based on the performances of these tools in the detection of the faults in the machinery

    30th International Conference on Condition Monitoring and Diagnostic Engineering Management (COMADEM 2017)

    Get PDF
    Proceedings of COMADEM 201

    The Public Service Media and Public Service Internet Manifesto

    Get PDF
    This book presents the collectively authored Public Service Media and Public Service Internet Manifesto and accompanying materials.The Internet and the media landscape are broken. The dominant commercial Internet platforms endanger democracy. They have created a communications landscape overwhelmed by surveillance, advertising, fake news, hate speech, conspiracy theories, and algorithmic politics. Commercial Internet platforms have harmed citizens, users, everyday life, and society. Democracy and digital democracy require Public Service Media. A democracy-enhancing Internet requires Public Service Media becoming Public Service Internet platforms – an Internet of the public, by the public, and for the public; an Internet that advances instead of threatens democracy and the public sphere. The Public Service Internet is based on Internet platforms operated by a variety of Public Service Media, taking the public service remit into the digital age. The Public Service Internet provides opportunities for public debate, participation, and the advancement of social cohesion. Accompanying the Manifesto are materials that informed its creation: Christian Fuchs’ report of the results of the Public Service Media/Internet Survey, the written version of Graham Murdock’s online talk on public service media today, and a summary of an ecomitee.com discussion of the Manifesto’s foundations

    In-situ health monitoring for wind turbine blade using acoustic wireless sensor networks at low sampling rates

    Get PDF
    PhD ThesisThe development of in-situ structural health monitoring (SHM) techniques represents a challenge for offshore wind turbines (OWTs) in order to reduce the cost of the operation and maintenance (O&M) of safety-critical components and systems. This thesis propos- es an in-situ wireless SHM system based on acoustic emission (AE) techniques. The proposed wireless system of AE sensor networks is not without its own challenges amongst which are requirements of high sampling rates, limitations in the communication bandwidth, memory space, and power resources. This work is part of the HEMOW- FP7 Project, ‘The Health Monitoring of Offshore Wind Farms’. The present study investigates solutions relevant to the abovementioned challenges. Two related topics have been considered: to implement a novel in-situ wireless SHM technique for wind turbine blades (WTBs); and to develop an appropriate signal pro- cessing algorithm to detect, localise, and classify different AE events. The major contri- butions of this study can be summarised as follows: 1) investigating the possibility of employing low sampling rates lower than the Nyquist rate in the data acquisition opera- tion and content-based feature (envelope and time-frequency data analysis) for data analysis; 2) proposing techniques to overcome drawbacks associated with lowering sampling rates, such as information loss and low spatial resolution; 3) showing that the time-frequency domain is an effective domain for analysing the aliased signals, and an envelope-based wavelet transform cross-correlation algorithm, developed in the course of this study, can enhance the estimation accuracy of wireless acoustic source localisa- tion; 4) investigating the implementation of a novel in-situ wireless SHM technique with field deployment on the WTB structure, and developing a constraint model and approaches for localisation of AE sources and environmental monitoring respectively. Finally, the system has been experimentally evaluated with the consideration of the lo- calisation and classification of different AE events as well as changes of environmental conditions. The study concludes that the in-situ wireless SHM platform developed in the course of this research represents a promising technique for reliable SHM for OWTBs in which solutions for major challenges, e.g., employing low sampling rates lower than the Nyquist rate in the acquisition operation and resource constraints of WSNs in terms of communication bandwidth and memory space are presente

    Structural Health Monitoring Damage Detection Systems for Aerospace

    Get PDF
    This open access book presents established methods of structural health monitoring (SHM) and discusses their technological merit in the current aerospace environment. While the aerospace industry aims for weight reduction to improve fuel efficiency, reduce environmental impact, and to decrease maintenance time and operating costs, aircraft structures are often designed and built heavier than required in order to accommodate unpredictable failure. A way to overcome this approach is the use of SHM systems to detect the presence of defects. This book covers all major contemporary aerospace-relevant SHM methods, from the basics of each method to the various defect types that SHM is required to detect to discussion of signal processing developments alongside considerations of aerospace safety requirements. It will be of interest to professionals in industry and academic researchers alike, as well as engineering students. This article/publication is based upon work from COST Action CA18203 (ODIN - http://odin-cost.com/), supported by COST (European Cooperation in Science and Technology). COST (European Cooperation in Science and Technology) is a funding agency for research and innovation networks. Our Actions help connect research initiatives across Europe and enable scientists to grow their ideas by sharing them with their peers. This boosts their research, career and innovation

    Structural health monitoring damage detection systems for aerospace

    Get PDF
    • …
    corecore