5,662 research outputs found

    Efficient Tabular LR Parsing

    Get PDF
    We give a new treatment of tabular LR parsing, which is an alternative to Tomita's generalized LR algorithm. The advantage is twofold. Firstly, our treatment is conceptually more attractive because it uses simpler concepts, such as grammar transformations and standard tabulation techniques also know as chart parsing. Secondly, the static and dynamic complexity of parsing, both in space and time, is significantly reduced.Comment: 8 pages, uses aclap.st

    Generalizing input-driven languages: theoretical and practical benefits

    Get PDF
    Regular languages (RL) are the simplest family in Chomsky's hierarchy. Thanks to their simplicity they enjoy various nice algebraic and logic properties that have been successfully exploited in many application fields. Practically all of their related problems are decidable, so that they support automatic verification algorithms. Also, they can be recognized in real-time. Context-free languages (CFL) are another major family well-suited to formalize programming, natural, and many other classes of languages; their increased generative power w.r.t. RL, however, causes the loss of several closure properties and of the decidability of important problems; furthermore they need complex parsing algorithms. Thus, various subclasses thereof have been defined with different goals, spanning from efficient, deterministic parsing to closure properties, logic characterization and automatic verification techniques. Among CFL subclasses, so-called structured ones, i.e., those where the typical tree-structure is visible in the sentences, exhibit many of the algebraic and logic properties of RL, whereas deterministic CFL have been thoroughly exploited in compiler construction and other application fields. After surveying and comparing the main properties of those various language families, we go back to operator precedence languages (OPL), an old family through which R. Floyd pioneered deterministic parsing, and we show that they offer unexpected properties in two fields so far investigated in totally independent ways: they enable parsing parallelization in a more effective way than traditional sequential parsers, and exhibit the same algebraic and logic properties so far obtained only for less expressive language families

    Tabular Parsing

    Full text link
    This is a tutorial on tabular parsing, on the basis of tabulation of nondeterministic push-down automata. Discussed are Earley's algorithm, the Cocke-Kasami-Younger algorithm, tabular LR parsing, the construction of parse trees, and further issues.Comment: 21 pages, 14 figure

    Practical experiments with regular approximation of context-free languages

    Get PDF
    Several methods are discussed that construct a finite automaton given a context-free grammar, including both methods that lead to subsets and those that lead to supersets of the original context-free language. Some of these methods of regular approximation are new, and some others are presented here in a more refined form with respect to existing literature. Practical experiments with the different methods of regular approximation are performed for spoken-language input: hypotheses from a speech recognizer are filtered through a finite automaton.Comment: 28 pages. To appear in Computational Linguistics 26(1), March 200

    Evaluation of LTAG parsing with supertag compaction

    Get PDF
    One of the biggest concerns that has been raised over the feasibility of using large-scale LTAGs in NLP is the amount of redundancy within a grammarĀæs elementary tree set. This has led to various proposals on how best to represent grammars in a way that makes them compact and easily maintained (Vijay-Shanker and Schabes, 1992; Becker, 1993; Becker, 1994; Evans, Gazdar and Weir, 1995; Candito, 1996). Unfortunately, while this work can help to make the storage of grammars more efficient, it does nothing to prevent the problem reappearing when the grammar is processed by a parser and the complete set of trees is reproduced. In this paper we are concerned with an approach that addresses this problem of computational redundancy in the trees, and evaluate its effectiveness

    Probabilistic parsing

    Get PDF
    Postprin

    From Regular Expression Matching to Parsing

    Full text link
    Given a regular expression RR and a string QQ, the regular expression parsing problem is to determine if QQ matches RR and if so, determine how it matches, e.g., by a mapping of the characters of QQ to the characters in RR. Regular expression parsing makes finding matches of a regular expression even more useful by allowing us to directly extract subpatterns of the match, e.g., for extracting IP-addresses from internet traffic analysis or extracting subparts of genomes from genetic data bases. We present a new general techniques for efficiently converting a large class of algorithms that determine if a string QQ matches regular expression RR into algorithms that can construct a corresponding mapping. As a consequence, we obtain the first efficient linear space solutions for regular expression parsing
    • ā€¦
    corecore