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1 Introduction

A paper in a previous volume [1] explained parsing, which is the process of
determining the parses of an input string according to a formal grammar. Also
discussed was tabular parsing, which solves the task of parsing in polynomial
time by a form of dynamic programming. In passing, we also mentioned that
parsing of input strings can be easily generalised to parsing of finite automata.

In applications involving natural language, the set of parses for a given input
sentence is typically very large. This is because formal grammars often fail to
capture subtle properties of structure, meaning and use of language, and conse-
quently allow many parses that humans would not find plausible.

In natural language systems, parsing is commonly one stage of processing
amongst several others. The effectiveness of the stages that follow parsing gen-
erally relies on having obtained a small set of preferred parses, ideally only one,
from amongst the full set of parses. This is called (syntactic) disambiguation.
There are roughly two ways to achieve this. First, some kind of filter may be
applied to the full set of parses, to reject all but a few. This filter may look at
the meanings of words and phrases, for example, and may be based on linguistic
knowledge that is very different in character from the grammar that was used
for parsing.

A second approach is to augment the parsing process so that weights are
attached to parses and subparses. The higher the weight of a parse or subparse,
the more confident we are that it is correct. This is called weighted parsing.
If the weights are chosen to define a probability distribution over parses or
strings, this may also be called probabilistic parsing. Disambiguation is achieved
by computing the parse with the highest weight or, where appropriate, highest
probability.

The simplest form of probabilistic parsing relies on an assignment of proba-
bilities to individual rules from a context-free grammar. These probabilities are
then multiplied upon combination of rules to form parses. Models that are close
to this basic idea, such as [2, 3], have been highly influential from the 1990s on-
ward. The success of probabilistic parsing is due to its flexibility and scalability,
in contrast to approaches to disambiguation that rely on much deep knowledge
of language. For general discussions about statistical natural language processing
see [4–6].
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In Section 2 we discuss both weighted and probabilistic context-free gram-
mars. We investigate intersection of weighted context-free grammars and finite
automata in Section 3. By normalisation, discussed in Section 4, it can be shown
that for the sake of disambiguation we may restrict our attention to probabilistic
context-free grammars. Parsing is treated in Section 5, and how the probabilities
of grammar rules can be obtained empirically is explained in Section 6.

Section 7 discusses the computation of prefix probabilities, and probabilistic
push-down automata are the subject of Section 8. By considering semirings, a
number of computations involving context-free grammars and push-down au-
tomata can be unified, as demonstrated in Section 9. We end with additional
bibliographic remarks in Section 10.

2 Weighted and probabilistic context-free grammars

A weighted context-free grammar (WCFG) G is a 5-tuple (Σ,N, S,R, µ), where
(Σ,N, S,R) is a context-free grammar and µ is a mapping from rules in R to
positive real numbers. We refer to these numbers as weights, and they should be
thought of as a measure of the desirability of using the corresponding rules. In
general, a rule with a high weight is preferred over one with a low weight.

Let d = π1 · · ·πm ∈ R∗ be a string of rules (or alternatively, of labels that
uniquely identify rules), and let α and β be strings of grammar symbols. The
expression α

d⇒ β means that β can be obtained from α by a left-most deriva-
tion in m steps, and the i-th step replaces the left-most nonterminal Ai by γi

according to rule πi = (Ai → γi). All derivations in this paper are assumed to
be left-most. If S

d⇒ w, we define the yield of d as y(d) = w.

We now define µ(α d⇒ β) to be
∏m

i=1 µ(πi) if α
d⇒ β holds and to be 0

otherwise. In words, if the expression α
d⇒ β denotes a valid left-most derivation,

we compute the product of the weights of the used rules, and otherwise we take
0. This notation allows us to define the weight of a string w as:

µ(w) =
∑

d

µ(S d⇒ w). (1)

In words, to obtain the weight of a string we sum the weights of all left-most
derivations of that string. For choices of d such that S

d⇒ w does not denote a
valid left-most derivation, nothing is contributed to the sum. If S

d⇒ w holds,
we also write µ(d) in place of µ(S d⇒ w).

Example 1. In the grammar below, the rules are labelled by names πi and the
weights are the numbers between brackets.

π1 : S → A A (3)
π2 : S → a a (1)
π3 : A → a (2)



This grammar is ambiguous, as there are two left-most derivations of aa, namely
S

π1⇒ AA π3⇒ aA π3⇒ aa with weight µ(π1) · µ(π3) · µ(π3) = 3 · 2 · 2 = 12 and
S

π2⇒ aa with weight µ(π2) = 1. The weight of aa is therefore µ(aa) = µ(S π1π3π3⇒
aa) + µ(S π2⇒ aa) = 12 + 1 = 13.

We say a WCFG is convergent if
∑

d,w µ(S d⇒ w) is a finite number. A WCFG
can be called a probabilistic context-free grammar (PCFG) if µ maps all rules to
numbers no greater than 1 [7–10]. Where we are dealing with PCFGs, we will
often replace the name µ of the weight assignment by p.

We say a WCFG is proper if for every nonterminal A:∑
π=(A→α)

µ(π) = 1. (2)

In other words, for each nonterminal A in a parse tree or in a sentential form, µ
gives us a probability distribution over the rules that we can apply.

A WCFG is said to be consistent if:∑
d,w

µ(S d⇒ w) = 1. (3)

This means that µ is a probability distribution over derivations of terminal
strings. An equivalent statement is that µ is a probability distribution over ter-
minal strings, as: ∑

d,w

µ(S d⇒ w) =
∑
w

µ(w). (4)

Clearly, consistency implies convergence. Properness and consistency are two
closely related concepts but, as we will see below, neither implies the other.

An important auxiliary concept for much of the theory that is to follow is
the partition function Z, which maps each nonterminal A to:

Z(A) =
∑
d,w

µ(A d⇒ w). (5)

Note that a WCFG is consistent if and only if Z(S) = 1.
By decomposing derivations into smaller derivations, and by making use of

the fact that multiplication distributes over addition, we can rewrite:

Z(A) =
∑

π=(A→α)

µ(π) · Z(α), (6)

where we define:

Z(ε) = 1, (7)
Z(aβ) = Z(β), (8)
Z(Bβ) = Z(B) · Z(β), for β 6= ε. (9)



The partition function may be approximated by only considering derivations up
to a certain depth. We define for all A and k ≥ 0:

Zk(A) =
∑

d,w:depth(d)≤k

p(A d⇒ w), (10)

where the depth of a left-most derivation is the largest number of rules visited on
a path from the root to a leaf in the familiar representation as parse tree. More
precisely, depth(ε) = 0 and if π = (A → X1 · · ·Xm) and Xi

di⇒ wi (1 ≤ i ≤ m),
then depth(πd1 · · · dm) = 1 + maxi depth(di).

By again decomposing derivations, we obtain a recursive characterisation:

Zk+1(A) =
∑

π=(A→α)

p(π) · Zk(α), (11)

and Z0(A) = 0 for all A, where we define:

Zk(ε) = 1, (12)
Zk(aβ) = Zk(β), (13)
Zk(Bβ) = Zk(B) · Zk(β), for β 6= ε. (14)

Naturally, for all A:

lim
k→∞

Zk(A) = Z(A). (15)

If we interpret (6) together with (7) through (9) as a system of polynomial
equations over variables Z(A), for the set of nonterminals A ∈ N , then there
may be several solutions. The intended solution, as given by (5), is the smallest
non-negative solution. This follows from the fact that the operation implied
by (11) that computes values Zk+1(A) from values Zk(B) is monotone, and the
least fixed-point of this operation corresponds to (5), following (15).

The values Z(A) may be approximated by computing Zk(A) for k = 1, . . .
until the values stabilise. Another option is to use Newton’s method [11]. In
special cases, the solution can be found analytically.

Example 2. Consider the following proper WCFG:

S → S S (q)
S → a (1− q)

for a certain choice of q between 0 and 1. Using (6) through (9), we obtain:

Z(S) = q · Z(S)2 + (1− q). (16)

We can solve this equation, distinguishing between two cases. If q ≤ 1
2 , then

Z(S) = 1 and if q > 1
2 , then Z(S) = 1−q

q . We make use of the fact that we
need the smallest non-negative solution. It follows that the WCFG is consistent



only if q ≤ 1
2 . The intuition for the case q > 1

2 is that probability mass is lost in
‘infinite derivations’.

A WCFG can also be consistent without being proper. An example is:

S† → S ( q
1−q )

S → S S (q)
S → a (1− q)

for 1
2 < q < 1.

3 Weighted intersection

It was shown by [12] that context-free languages are closed under intersection
with regular languages. The proof relies on the construction of a new CFG out of
an input CFG and an input finite automaton. Here we extend that construction
by letting the input grammar be a weighted CFG. For an even more general
construction, where also the finite automaton is weighted, we refer to [13].

To avoid a number of technical complications, we assume here that the finite
automaton has no epsilon transitions, and has only one final state. Thus, a finite
automaton (FA) M is a 5-tuple (Σ, Q, q0, qf , ∆), where Σ and Q are two finite
sets of input symbols and states, respectively, q0 is the initial state, qf is the
final state, and ∆ is a finite set of transitions, each of the form s

a7→ t, where
s, t ∈ Q and a ∈ Σ.

For a FA M as above and a PCFG G = (Σ, N, S, R, µ) with the same
set Σ, we construct a new PCFG G∩ = (Σ, N∩, S∩, R∩, µ∩), where N∩ =
Q× (Σ ∪N)×Q, S∩ = (q0, S, qf ), and R∩ is the set of rules that is obtained as
follows.

– For each A → X1 · · ·Xm in R and each sequence s0, . . . , sm ∈ Q, with
m ≥ 0, let (s0, A, sm) → (s0, X1, s1) · · · (sm−1, Xm, sm) be in R∩; if m = 0,
the new rule is of the form (s0, A, s0) → ε. Function µ∩ assigns the same
weight to the new rule as µ assigned to the original rule.

– For each s
a7→ t in ∆, let (s, a, t) → a be in R∩. Function µ∩ assigns weight

1 to this rule.

Observe that a rule of G∩ is constructed either out of a rule of G or out
of a transition of M. On the basis of this correspondence between rules and
transitions of G∩, G and M, it can be stated that each derivation d∩ in G∩
deriving a string w corresponds to a unique derivation d in G deriving the same
string and a unique computation c inM recognising the same string. Conversely,
if there is a derivation d in G deriving string w, and some computation c in M
recognising the same string, then the pair of d and c corresponds to a unique
derivation d∩ in G∩ deriving the same string w. Furthermore, the weights of d
and d∩ are equal, by the definition of µ∩.

Parsing of a string w = a1 · · · an can be seen as a special case of the con-
struction, where there is a linear FA, with states q0 = s0, s1, . . . , sn = qf ,



and transitions of the form si−1
ai7→ si (1 ≤ i ≤ n). The intersection grammar

constructed as explained above can be seen as a succinct representation of all
parses of w. As weights are copied unchanged from G to G∩, we can find the
parse of w with the highest weight on the basis of G∩. We will return to this
issue in Section 5.

We say a nonterminal in a CFG is generating if at least one terminal string
can be derived from that nonterminal. We say a nonterminal is reachable if a
string containing that nonterminal can be derived from the start symbol. A
nonterminal is called useless if it is non-generating or non-reachable or both.
A grammar G∩ as obtained above generally contains a large number of useless
nonterminals, to the extent that the construction as given may not be practical.

Introduction of non-generating nonterminals can be avoided by constructing
rules in a bottom-up phase. That is, a rule is introduced only if all the members
in the right-hand side have been found to be generating. This ensures that the
left-hand side nonterminal is also generating. In a following top-down phase, the
non-reachable nonterminals can be eliminated, by a standard technique that is
linear in the size of the grammar [14].

Below, we will assume one more improvement. The motivation is that the
number of rules of the form (s0, A, sm) → (s0, X1, s1) · · · (sm−1, Xm, sm) is
exponential in m. Our improvement effectively postpones enumeration of all
relevant combinations of s1, . . . , sm−1 until (s0, A, sm) is found to be reachable
in the top-down phase. During the bottom-up phase, given in Figure 1, such rules
are constructed incrementally by items of the form (s0, A → α • β, si), where
A → αβ is a rule and i = |α|. Existence of such an item in table I means that
there are s1, . . . , si−1 such that (s0, X1, s1), . . . , (si−1, Xi, si) are all generating
nonterminals, with α = X1 · · ·Xi. We also have a separate table N to store such
generating nonterminals.

The bottom-up phase is similar to a bottom-up variant of the parsing algo-
rithm by [15], and the complexity is very similar. The time complexity in our
case is cubic in the number of states of M and linear in the size of G. The space
complexity is quadratic in the number of states of M.

Let us now turn to the construction of G∩ out of N and I in the top-down
phase, given in Figure 2. From the start symbol (q0, S, qf ), we descend and
construct rules for reachable nonterminals that were also found to be generating
in the bottom-up phase. Nonterminals are individually added to N∩ in such a
way that rules cannot be constructed more than once.

Some remarks about the implementation are in order. First, the agenda A
is here represented as a set to avoid the presence of duplicate elements. The
maximum number of elements the agenda may contain at any given time is
thereby quadratic in the number of states of M. If we alternatively represent
the agenda as a queue or stack, allowing elements to be present more than once,
the space complexity may become cubic.

Second, one may use I in the top-down phase to guide the search for relevant
rules from G and states from M. This process is further simplified by having the
bottom-up phase record a list of the reasons why a certain element is in N or



first phase:
N = ∅ {table of generating nonterminals for N∩}
I = ∅ {table of items, partially representing rules for R∩}
A = ∅ {agenda, items yet to be processed}
for all (s

a7→ t) ∈ ∆ do
add symbol(s, a, t)

for all s ∈ Q do
for all (A → ε) ∈ R do
A = A ∪ {(s, A → •, s)}

while A 6= ∅ do
choose (s, A → α • β, t) ∈ A
A = A− {(s, A → α • β, t)}
add item(s, A → α • β, t)

add symbol(s, X, t):
if (s, X, t) /∈ N
N = N ∪ {(s, X, t)}
for all (r, A → α • Xβ, s) ∈ I do
A = A ∪ {(r, A → αX • β, t)}

for all (A → Xβ) ∈ R do
A = A ∪ {(s, A → X • β, t)}

add item(r, A → α • β, s):
if (r, A → α • β, s) /∈ I
I = I ∪ {(r, A → α • β, s)}
if β = ε

add symbol(r, A, s)
else

let Xγ = β
for all (s, X, t) ∈ N do
A = A ∪ {(r, A → αX • γ, t)}

Fig. 1. The bottom-up phase of the intersection algorithm. Input are PCFG G and FA
M. The tables N and I will be used in the subsequent top-down phase.

I. For example, if (r, A → αX • β, t) was obtained from (r, A → α • Xβ, s) and
(s,X, t), then the mentioned list for (r, A → αX • β, t) contains amongst others
the pair consisting of (r, A → α • Xβ, s) and (s,X, t). Such a pair is recorded
in the list by add symbol if (s,X, t) is added to N after (r, A → α • Xβ, s) is
added to I, and it is recorded by add item otherwise.

The additional bookkeeping however is at the cost of having larger tables at
the end of the bottom-up phase. This increase is from square to cubic in the
number of states of M, as a pair consisting of (r, A → α • Xβ, s) and (s,X, t)
contains three states. See also [16, Exercise 4.2.21].

With or without the above optimisations, the space complexity is O(|Q|r+1),
where r is the length of the longest right-hand side. This can be reduced to
O(|Q|3), either by transforming the original grammar to binary form (that is,



second phase:
make rules(q0, S, qf )

make rules(r, A, s): {if second argument is nonterminal}
if (r, A, s) /∈ N∩

N∩ = N∩ ∪ {(r, A, s)}
for all π = (A → X1 · · ·Xm) ∈ R do

s0 = r
sm = s
for all s1, . . . , sm−1 ∈ Q such that (s0, X1, s1), . . . , (sm−1, Xm, sm) ∈ N do

ρ = (r, A, s) → (s0, X1, s1) · · · (sm−1, Xm, sm)
R∩ = R∩ ∪ {ρ}
µ∩(ρ) = µ(π)
for all i such that 1 ≤ i ≤ m do

make rules(si−1, Xi, si)

make rules(r, a, s): {if second argument is terminal}
if (r, a, s) /∈ N∩

N∩ = N∩ ∪ {(r, a, s)}
ρ = (r, a, s) → a
R∩ = R∩ ∪ {ρ}
µ∩(ρ) = 1

Fig. 2. The top-down phase of the intersection algorithm. On the basis of table N , the
nonterminals and rules of G∩ are constructed, together with the weight function µ∩ on
rules.

with r = 2) before the intersection, or by refining the intersection algorithm to
return a grammar in binary form.

Example 3. Figure 3 shows the end result G∩ of applying the algorithm in Fig-
ures 1 and 2 on an example PCFG G and FA M.

4 Normalisation

An obvious question is whether general convergent WCFGs have any advantages
over proper and consistent PCFGs. In this section we will show that if we are
only interested in the ratios between the weights of derivations, rather than in
absolute values, the answer is negative. This allows us to restrict our attention
to proper and consistent PCFGs for the purpose of disambiguation.

The argument hinges on normalisation of WCFGs [17, 18, 13, 19], which can
be defined as the construction of a proper and consistent PCFG (Σ, N, S,R, p)
out of a convergent WCFG (Σ,N, S,R, µ). The function p is given by:

p(π) =
µ(π) · Z(α)

Z(A)
, (17)



G:

S → a S a ( 1
2
)

S → b S b ( 1
8
)

S → b ( 3
8
)

M:

q0 q1 qf

b
a a

b
G∩:

(q0, S, qf ) → (q0, a, q1) (q1, S, q1) (q1, a, qf ) ( 1
2
)

(q1, S, q1) → (q1, a, qf ) (qf , S, q0) (q0, a, q1) ( 1
2
)

(qf , S, q0) → (qf , b, q0) (q0, S, q0) (q0, b, q0) ( 1
8
)

(qf , S, q0) → (qf , b, q0) (q0, S, qf ) (qf , b, q0) ( 1
8
)

(qf , S, q0) → (qf , b, q0) ( 3
8
)

(q0, S, q0) → (q0, b, q0) (q0, S, q0) (q0, b, q0) ( 1
8
)

(q0, S, q0) → (q0, b, q0) (q0, S, qf ) (qf , b, q0) ( 1
8
)

(q0, S, q0) → (q0, b, q0) ( 3
8
)

(q0, b, q0) → b (1)

(q0, a, q1) → a (1)

(q1, a, qf ) → a (1)

(qf , b, q0) → b (1)

Fig. 3. Example of intersection of PCFG G and FA M, resulting in G∩, which is
presented here without useless nonterminals.

for each rule π = (A → α). In words, the probability of a rule is normalised to the
portion it represents of the total weight mass of derivations from the left-hand
side nonterminal A.

That the ratios between weights of derivations are not affected by normali-
sation follows from a result in [13]:

p(S d⇒ w) =
µ(S d⇒ w)

Z(S)
, (18)

for each derivation d and string w. In other words, the weights of all derivations
change by the same factor. Note that this factor is 1 if the original grammar is al-
ready consistent. This implies that consistent WCFGs and proper and consistent
PCFGs describe the same class of probability distributions over derivations.

Example 4. Let us return to the WCFG from Example 2, with the values of µ
between brackets:

S → S S (q)
S → a (1− q)

The result of normalisation is the proper and consistent PCFG below, with the
values of p between brackets:

S → S S (q′)
S → a (1− q′)

For q ≤ 1
2 , we have q′ = q. For q > 1

2 however, we have:

q′ = q·Z(SS)
Z(S) = q·Z(S)2

Z(S) = q · Z(S ) = q · 1−q
q = 1− q. (19)

The values of Z(S) and q′ as functions of q are represented in Figure 4.



0 q
0

Z(S)

10.5

1

0 q
0

q′

10.5

0.5

1

Fig. 4. The values of Z(S) and q′ as functions of q, for Example 4.

5 Parsing

As explained in Section 3, context-free parsing is strongly related to computing
the intersection of a context-free grammar and a finite automaton. If the input
grammar is probabilistic, the probabilities of the rules are simply copied to the
intersection grammar. The remaining task is to find the most probable derivation
in the intersection grammar.

Note that the problem of finding the most probable derivation in a PCFG
does not rely on that PCFG being the intersection of another PCFG and a FA.
Let us therefore consider an arbitrary PCFG G = (Σ, N, S, R, p), and our task
is to find d and w such that p(S d⇒ w) is maximal. Let pmax denote this maximal
value. We further define pmax (X) to be the maximal value of p(X d⇒ w), for any
d and w, where X can be a terminal or nonterminal. Naturally, pmax = pmax (S)
and pmax (a) = 1 for each terminal a.

Much of the following discussion will focus on computing pmax rather than on
computing a choice of d and w such that pmax = p(S d⇒ w). The justification is
that most algorithms to compute pmax can be easily extended to a computation
of relevant d and w using additional data structures that record how intermediate
results were obtained. These data structures however make the discussion less
transparent, and are therefore largely ignored.

Consider the graph that consists of the nonterminals as vertices, with an
edge from A to B iff there is a rule of the form A → αBβ. If G is non-recursive,
then this graph is acyclic. Consequently, the nonterminals can be arranged in a
topological sort A1, . . . , A|N |. This allows us to compute for j = |N |, . . . , 1 in
this order:

pmax (Aj) = max
π=(Aj→X1···Xm)

p(π) · pmax (X1) · . . . · pmax (Xm). (20)

The topological sort ensures that any value for a nonterminal in the right-hand
side has been computed at an earlier step.

A topological sort can be found in linear time in the size of the graph [20]. See
[21] for an application strongly related to ours. In many cases however, there is
a topological sort that follows naturally from the way that G is constructed. For



example, assume that G is the intersection of a PCFG G′ in Chomsky normal
form and a linear FA with states s0, . . . , sn as in Section 3. We impose an
arbitrary linear ordering ≺N on the set of nonterminals from G′. As topological
sort we can now take the linear ordering ≺ defined by:

(si, A, sj) ≺ (si′ , A
′, sj′) iff j > j′ ∨

(j = j′ ∧ i < i′) ∨
(j = j′ ∧ i = i′ ∧A ≺N A′).

(21)

By this ordering, the computation of the values in (20) can be seen as a prob-
abilistic extension of CYK parsing [22]. This amounts to a generalised form
of Viterbi’s algorithm [23], which was designed for probabilistic models with a
finite-state structure.

If G is recursive, then a different algorithm is needed. We may use the fact
that the probability of a derivation is always smaller than (or equal to) that of
any of its subderivations. The reason is that the probability of a derivation is the
product of the probabilities of a list of rules, and these are positive numbers not
exceeding 1. We also rely on monotonicity of multiplication, i.e. for any positive
numbers c1, c2, c3, if c1 < c2 then c1 · c3 < c2 · c3.

The algorithm in Figure 5 is a special case of an algorithm by Knuth [24],
which generalises Dijkstra’s algorithm to compute the shortest path in a weighted
graph [20]. In each iteration, the value of pmax (A) is established for a nonterminal
A. The set E contains all grammar symbols X for which pmax (X) has already
been established; this is initially Σ, as we set pmax (a) = 1 for each a ∈ Σ. The
set F contains the nonterminals not yet in E that are candidates to be added
next. Each nonterminal A in F is such that a derivation from A exists consisting
of a rule A → X1 · · ·Xm, and derivations from X1, . . . , Xm matching the values
of pmax (X1), . . . , pmax (Xm) found earlier. The nonterminal A for which such a
derivation has the highest probability is then added to E .

Knuth’s algorithm can be combined with construction of the intersection
grammar, along the lines of [25], which also allows for variants expressing par-
ticular parsing strategies. See also [26].

A problem related to finding the most probable parse is to find the k most
probable parses. This was investigated by [27–29].

Much of the discussed theory of probabilistic parsing carries over to more
powerful formalisms, such as probabilistic tree adjoining grammars [30, 31].

We want to emphasise that finding the most probable string is much harder
than finding the most probable derivation. In fact, the decision version of the
former problem is NP-complete if there is a specified bound on the string length
[32], and it remains so even if the PCFG is replaced by a probabilistic finite
automaton [33]; see also [34]. If the bound on the string length is dropped, then
this problem becomes undecidable, as shown in [35, 36].

6 Parameter estimation

Whereas rules of grammars are often written by linguists, or derived from struc-
tures defined by linguists, it is very difficult to correctly estimate the probabil-



E = Σ
repeat
F = {A | A /∈ E ∧ ∃A → X1 · · ·Xm[X1, . . . , Xm ∈ E ]}
if F = ∅

report failure and halt
for all A ∈ F do

q(A) = max
π=(A→X1···Xm):

X1,...,Xm∈E

p(π) · pmax (X1) · . . . · pmax (Xm)

choose A ∈ F such that q(A) is maximal
pmax (A) = q(A)
E = E ∪ {A}

until S ∈ E
output pmax (S)

Fig. 5. Knuth’s generalisation of Dijkstra’s algorithm, applied to finding the most
probable derivation in a PCFG.

ities that should be attached to these rules on the basis of linguistic intuitions.
Instead, one often relies on two techniques called supervised and unsupervised
estimation.

6.1 Supervised estimation

Supervised estimation relies on explicit access to a sample of data in which one
can observe the events whose probabilities are to be estimated. In the case of
PCFGs, this sample is a bag D of derivations of terminal strings, often called
a tree bank. We assume a fixed order d1, . . . , dm of the derivations in tree bank
D. The bag is assumed to be representative for the language at hand, and the
probability of a rule is estimated by the ratio of its frequency in the tree bank
and the total frequency of rules with the same left-hand side. This is a form of
relative frequency estimation.

Formally, define C(π, d) to be the number of occurrences of rule π in deriva-
tion d. Similarly, C(A, d) is the number of times nonterminal A is expanded in
derivation d, or equivalently, the sum of all C(π, d) such that π has left-hand
side A. Summing these numbers for all derivations in the tree bank, we obtain:

C(π,D) =
∑

1≤h≤m

C(π, dh), (22)

C(A,D) =
∑

1≤h≤m

C(A, dh). (23)

Our estimation for the probability of a rule π = (A → α) now is:

pD(π) =
C(π,D)
C(A,D)

. (24)



One justification for this estimation is that it maximises the likelihood of the
tree bank [37]. This likelihood for given p is defined by:

p(D) =
∏

1≤h≤m

p(dh). (25)

The PCFG that results by taking estimation pD as above is guaranteed to
be consistent [38, 39, 37].

Note that supervised estimation assigns probability 0 to rules that do not
occur in the tree bank, which means that probabilistic parsing algorithms ignore
such rules. A tree bank may contain zero occurrences of rules because it is too
small to contain all phenomena in a language, and some rules that do not occur
in one tree bank may in fact be valid and would occur if the tree bank were
larger. To circumvent this problem one may apply a form of smoothing, which
means shifting some probability mass from observed events to those that did not
occur. Rules that do not occur in the tree bank thereby obtain a small but non-
zero probability. For a study of smoothing techniques used for natural language
processing, see [40].

Example 5. Consider the following CFG:

π1 : S → S S
π2 : S → a S b
π3 : S → a b
π4 : S → b a
π5 : S → c

Assume a tree bank consisting of only two derivations, π1π3π5 and π2π3, with
yields abc and aabb, respectively. Without smoothing, the estimation is p(π1) =
1
5 , p(π2) = 1

5 , p(π3) = 2
5 , p(π4) = 0

5 , p(π5) = 1
5 .

6.2 Unsupervised estimation

We define an (unannotated) corpus as a bagW of strings in a language. As in the
case of tree banks, the bag is assumed to be representative for the language at
hand. We assume a fixed order w1, . . . , wm of the strings in corpusW. Estimation
of a probability assignment p to rules of a CFG on the basis of a corpus is called
unsupervised as there is no direct access to frequencies of rules. A string from
the corpus may possess several derivations, each representing different bags of
rule occurrences.

A common unsupervised estimation for PCFGs is a form of Expectation-
Maximisation (EM) algorithm [41]. It computes a probability assignment p by
successive refinements p0, p1, . . ., until the values stabilise. The initial assignment
p0 may be arbitrarily chosen, and subsequent estimates pt+1 are computed on
the basis of pt, in a way to be explained below. In each step, the likelihood pt(W)
of the corpus increases. This likelihood for given p is defined by:

p(W) =
∏

1≤h≤m

p(wh). (26)



The algorithm converges to a local optimum (or a saddlepoint) with respect to
the likelihood of the corpus, but no algorithm is known to compute the global
optimum, that is, the assignment p such that p(W) is maximal.

Computation of pt+1 on the basis of pt corresponds to a simple idea. With
unsupervised estimation, we do not have access to a single derivation for each
string in the corpus, and therefore cannot determine frequencies of rules by
simple counts. Instead, we consider all derivations for each string, and the counts
we would obtain for individual derivations are combined by taking a weighted
average. The weighting of this average is determined by the current assignment
pt, which offers us probabilities pt(d)

pt(w) , where y(d) = w, which is the conditional
probability of derivation d given string w.

More precisely, an estimated count Ct(π) of a rule π in a corpus, given as-
signment pt, can be defined by:

Ct(π) =
∑

1≤h≤m

∑
d:y(d)=wh

pt(d)
pt(wh)

· C(π, d). (27)

Similarly:

Ct(A) =
∑

1≤h≤m

∑
d:y(d)=wh

pt(d)
pt(wh)

· C(A, d). (28)

Using these values we compute the next estimation pt+1(π) for each rule π =
(A → α) as:

pt+1(π) =
Ct(π)
Ct(A)

. (29)

Note the similarity of this to (24).

Example 6. Consider the CFG from Example 5, with a corpus consisting of
strings w1 = abc, w2 = acb and w3 = abab. The first two strings can only be
derived by d1 = π1π3π5 and d2 = π2π5, respectively. However, w3 is ambiguous
as it can be derived by d3 = π1π3π3 and d4 = π2π4.

For a given pt, we have:

Ct(π1) = 1 +
pt(d3)
pt(w3)

Ct(π2) = 1 +
pt(d4)
pt(w3)

Ct(π3) = 1 + 2 · pt(d3)
pt(w3)

Ct(π4) =
pt(d4)
pt(w3)

Ct(π5) = 2

Ct(S) = 5 + 3 · pt(d3)
pt(w3)

+ 2 · pt(d4)
pt(w3)



The assignment that pt converges to depends on the initial choice of p0. We
investigate two such initial choices:

pt(π1) pt(π2) pt(π3) pt(π4) pt(π5)
t = 0 0.200 0.200 0.200 0.200 0.200
t = 1 0.163 0.256 0.186 0.116 0.279
t = 2 0.162 0.257 0.184 0.117 0.279
...

...
...

...
...

...
t = ∞ 0.160 0.260 0.180 0.120 0.280

and:
pt(π1) pt(π2) pt(π3) pt(π4) pt(π5)

t = 0 0.100 0.100 0.600 0.100 0.100
t = 1 0.229 0.156 0.330 0.028 0.257
t = 2 0.236 0.146 0.344 0.019 0.255
...

...
...

...
...

...
t = ∞ 0.250 0.125 0.375 0.000 0.250

In the first case, the likelihood of the corpus is 2.14 ·10−5 and in the second case
2.57 · 10−5.

As strings may allow a large number of derivations, a direct implementation
of (27) and (28) is often not feasible. To obtain a more practical algorithm, we
first rewrite Ct(π) as below. Treatment of Ct(A) is similar.

Ct(π) =
∑

1≤h≤m

1
pt(wh)

∑
d:y(d)=wh

pt(d) · C(π, d). (30)

The value pt(wh) is just Z(St,h), where St,h is the start symbol of the intersection
of the PCFG with probability assignment pt and the linear FA accepting the
singleton language {wh}. How this value can be computed has already been
explained in Section 2. Let us therefore concentrate on the second part of the
above expression, fixing an assignment p, rule π = (A → α) and string w =
a1 · · · an. We rewrite:∑

d:y(d)=w

p(d) · C(π, d) =
∑
i,j

∑
d1,d2,d3,β

p(S d1⇒ a1 · · · aiAβ) · p(π) ·
p(α d2⇒ ai+1 · · · aj) ·
p(β d3⇒ aj+1 · · · an)

(31)

=
∑
i,j

outer(A, i, j) · p(π) · inner(α, i, j), (32)

where we define:

outer(A, i, j) =
∑

d1,d3,β

p(S d1⇒ a1 · · · aiAβ) · p(β d3⇒ aj+1 · · · an), (33)

inner(α, i, j) =
∑
d2

p(α d2⇒ ai+1 · · · aj). (34)



The intuition is that the occurrences of π in the different d such that y(d) = w
are grouped according to the substring ai+1 · · · aj that they cover. For each
choice of i and j we look at the sum of probabilities of matching derivations,
dividing them into the subderivations that are ‘inside’ and ‘outside’ the relevant
occurrence of π.

The values of inner(α, i, j) can be computed similarly to the computation of
the partition function Z, which was explained in Section 2. For the remaining
values, we have:

outer(A, i, j) =
δ(A = S ∧ i = 0 ∧ j = n) +∑
π=(B→γAη),i′,j′

outer(B, i′, j′) · p(π) · inner(γ, i′, i) · inner(η, j, j′), (35)

with δ defined to return 1 if its argument is true and 0 otherwise. Here we divide
the derivations ‘outside’ a nonterminal occurrence into parts outside parent non-
terminal occurrences, and the parts below siblings on the left and on the right.
A special case is if the nonterminal occurrence can be the root of the parse tree,
which corresponds to a value of 1, which is the product of zero rule probabilities.

If we fill in the values for inner , we obtain a system of linear equations with
outer(A, i, j) as variables, which can be solved in polynomial time. The system
is of course without cyclic dependencies if the grammar is without cycles.

The algorithm we have described is called the inside-outside algorithm [42,
43, 22, 44]. It generalises the forward-backward algorithm for probabilistic mod-
els with a finite-state structure [45]. Generalised PCFGs, with right-hand sides
representing regular languages, were considered in [46]. The inside-outside algo-
rithm is guaranteed to result in consistent PCFGs [39, 37, 19].

7 Prefix probabilities

Let p be the probability assignment of a PCFG. The prefix probability of a string
w is defined to be Pref (w) =

∑
v p(wv). Prefix probabilities have important

applications in speech recognition. For example, assume a prefix of the input is
w, and the next symbol suggested by the speech recogniser is a. The probability
that a is the next symbol according to the PCFG is given by:

Pref (wa)
Pref (w)

. (36)

For given w, there may be infinitely many v such that p(wv) > 0. As we
will show, the difficulty of summing infinitely many values can be overcome by
isolating a finite number of auxiliary values whose computation can be carried
out ‘off-line’, that is, independent of any particular w. On the basis of these
values, Pref (w) can be computed in cubic time for any given w.

We first extend left-most derivations to ‘dotted’ derivations written as S
d⇒

w • α. The dot indicates a position in the sentential form separating the known



prefix w and a string α of grammar symbols together generating an unknown
suffix v. No symbol to the right of the dot may be rewritten. The rationale is
that this would lead to probability mass being included more than once in the
theory that is to follow.

Formally, a dotted derivation can be either A
ε⇒ • A, which represents the

empty derivation, or it can be of the form A
dπ⇒ wv • αβ, where π = (B → vα)

with v 6= ε, to represent the (left-most) derivation A
d⇒ wBβ

π⇒ wvαβ.
In the remainder of this section, we will assume that the PCFG is proper

and consistent. This allows us to rewrite:

Pref (w) =
∑
d,α

p(S d⇒ w • α) ·
∑
d′,v

p(α d′

⇒ v) =
∑
d,α

p(S d⇒ w • α). (37)

Note that derivations leading from any α in the above need not be considered
individually, as the sum of their probabilities is 1 for proper and consistent
PCFGs.

Example 7. We investigate the prefix probability of bb, for the following PCFG:

π1 : S → A a (0.2)
π2 : S → b (0.8)
π3 : A → S a (0.4)
π4 : A → S b (0.6)

The set of derivations d such that S
d⇒ bb • α, some α, can be described by the

regular expression (π1(π3 ∪ π4))∗π1π4π2. By summing the probabilities of these
derivations, we get:

Pref (bb) =
∑
m≥0

(
p(π1) · (p(π3) + p(π4))

)m · p(π1) · p(π4) · p(π2)

=
∑
m≥0

p(π1)m · p(π1) · p(π4) · p(π2).

As
∑

m≥0 p(π1)m = 1
1−p(π1)

= 1.25, we obtain:

Pref (bb) = 1.25 · 0.2 · 0.6 · 0.8 = 0.12.

The remainder of this section derives a practical solution for computing the
value in (37), due to [47]. This requires that the underlying CFG is in Chomsky
normal form, or more precisely that every rule has the form A → BC or A → a.
We will ignore rules S → ε here.

We first distinguish two kinds of subderivation. For the first kind, the yield
falls entirely within the known prefix w = a1 · · · an. For the second, the yield
includes the boundary between known prefix w and unknown suffix v. We do
not have to investigate the third kind of subderivation, whose yield falls entirely
within the unknown suffix, because the factors involved are always 1, as explained
before.



For subderivations within the known prefix we have values of the form:∑
d p(A d⇒ ai+1 · · · aj), (38)

with i and j between 0 and n. These values can be computed using techniques
already discussed, in Section 2 for Z, and in Section 6.2 for inner . Here, the
computation can be done in cubic time in the length of the prefix, since there
are no cyclic dependencies.

Let us now look at derivations at the boundary between w and v. If the
relevant part of w is empty, we have:∑

d

p(A d⇒ • A) = 1. (39)

If the relevant part of w is only one symbol an, we have:∑
d,α

p(A d⇒ an • α) =
∑

π=(B→an)

∑
d,α

p(A d⇒ Bα) · p(π). (40)

Here B plays the role of the last nonterminal in a path in a parse tree from A
down to an, taking the left-most child at each step.

It is easy to see that:∑
d,α

p(A d⇒ Bα) = δ(A = B) +
∑

π=(A→CD)

p(π) ·
∑
d,α

p(C d⇒ Bα). (41)

If we replace expressions of the form
∑

d,α p(A d⇒ Bα) by variables chain(A,B),
then (41) represents a system of linear equations, for fixed B and different A.
This system can be solved with a time complexity that is cubic in the number
of nonterminals. Note that this is independent of the known prefix w, and is
therefore an off-line computation.

If the derivation covers a larger portion of the prefix (i + 1 < n) we have:∑
d,α

p(A d⇒ ai+1 · · · an • α) =

∑
π=(D→BC)

∑
d,α

p(A d⇒ Dα) · p(π) ·

∑
k:i<k≤n

∑
d1

p(B d1⇒ ai+1 · · · ak) ·
∑
d2,β

p(C d2⇒ ak+1 · · · an • β). (42)

The intuition is as follows. In a path in the parse tree from the indicated occur-
rence of A to the occurrence of ai+1, there is a first node, labelled B, whose yield
is entirely within the known prefix. The yield of its sibling, labelled C, includes
the remainder of the prefix to the right as well as part of the unknown suffix.

We already know how to compute
∑

d,α p(A d⇒ Dα) and
∑

d1
p(B d1⇒

ai+1 · · · ak). If we now replace expressions of the form
∑

d,α p(A d⇒ ai+1 · · · an •



α) in (42) by variables prefix inside(A, i), then we obtain a system of equations,
which define values prefix inside(A, i) in terms of prefix inside(B, k) with k > i.
These values can be computed in quadratic time if the other values in (42) have
already been obtained. The resulting value of prefix inside(S, 0) is the required
prefix probability of w.

In many applications, the prefix probabilities need to be computed for in-
creasingly long strings. For example in real-time speech recognition, the input
grows as the acoustic signal is processed and sequences of sounds are recognised
as words. The algorithm above has the disadvantage that the values in (42) are
specific to the length n of the prefix w. If w grows on the right by one more
symbol, the computation of the values has to be done anew. The algorithm by
[48], which is based on Earley’s algorithm, suffers less from this problem. Most
of the values it computes can be reused as the prefix grows. A very similar al-
gorithm was described by [49]. It differs from [48] in that it does not explicitly
isolate any off-line computations.

Prefix probabilities for tree adjoining and linear indexed grammars were in-
vestigated by [50, 51].

8 Probabilistic push-down automata

A paper in a previous volume [1] argued that a parsing strategy can be formalised
as a mapping from CFGs to push-down automata that preserves the described
languages. In this section we investigate the extension of this notion to prob-
abilistic parsing strategies [52], which are to preserve probability distributions
over strings.

As in [1], our type of push-down automaton does not possess states. Hence,
a push-down automaton (PDA) M is a 5-tuple (Σ, Γ, Xinit , Xfinal , ∆), where
Σ is a finite set of input symbols, Γ is a finite set of stack symbols, Xinit ∈ Γ is
the initial stack symbol, Xfinal ∈ Γ is the final stack symbol, and ∆ is the set of
transitions. Each transition can have one of the following three forms: X

ε7→ XY
(a push transition), YX ε7→ Z (a pop transition), or X

x7→ Y (a swap transition);
here X, Y, Z ∈ Γ , x ∈ Σ ∪ {ε}. Note that in our notation, stacks grow from left
to right, i.e., the top-most stack symbol will be found at the right end.

Without loss of generality, we assume that any PDA is such that for a given
stack symbol X 6= Xfinal , there are either one or more push transitions X

ε7→ XY ,
or one or more pop transitions YX ε7→ Z, or one or more swap transitions X

x7→ Y ,
but no combinations of different kinds of transition. If a PDA does not satisfy
this normal form, it can easily be brought in this form by introducing for each
stack symbol X 6= Xfinal three new stack symbols Xpush , Xpop and Xswap and
new swap transitions X

ε7→ Xpush , X
ε7→ Xpop and X

ε7→ Xswap . In each existing
transition that operates on top-of-stack X, we then replace X by one from Xpush ,
Xpop or Xswap , depending on the type of that transition. We also assume that
Xfinal does not occur in the left-hand side of any transition, again without loss
of generality.



As usual, the process of recognition of a string w starts with a configuration
consisting of the singleton stack Xinit . If a list of transitions leads to singleton
stack Xfinal when the entire input w has been scanned, then we say that w
is recognised. Such a list of transitions is called a computation. The language
accepted by the PDA is the set of all strings that can be recognised. We assume
below that a PDA is always reduced, which means that each stack symbol can be
used in some computation that recognises a string. For more precise definitions,
we refer to [1].

A weighted push-down automaton (WPDA) M is a 6-tuple (Σ, Γ, Xinit ,
Xfinal , ∆, µ), where (Σ, Γ, Xinit , Xfinal , ∆) is a PDA, and µ is a mapping from
transitions in ∆ to positive real numbers. Thereby, a WPDA assigns weights
to computations and strings, in the same way as WCFGs assign weights to
derivations and strings.

A probabilistic push-down automaton (PPDA) is a WPDA with the restric-
tion that the values assigned to transitions are no greater than 1 [53]. Consistency
is defined as for WCFGs. We say a WPDA is proper if:

– Σ
τ=(X

ε7→XY )
p(τ) = 1 for each X ∈ Γ such that there is at least one transition

of the form X
ε7→ XY ;

– Σ
τ=(X

x7→Y )
p(τ) = 1 for each X ∈ Γ such that there is at least one transition

of the form X
x7→ Y ; and

– Σ
τ=(Y X

ε7→Z)
p(τ) = 1 for each X, Y ∈ Γ such that there is at least one

transition of the form Y X
ε7→ Z.

For each stack that may arise in the recognition of a string, exactly one of the
above three clauses applies, depending on the symbol on top (provided this is
not Xfinal). The conditions ensure that the sum of probabilities of next possible
transitions is always 1.

An obvious question is whether parsing strategies, mapping CFGs to PDAs,
preserve the capacity to describe probability distributions on strings. In many
cases, PDAs are able to describe a wider range of probability distributions than
the CFGs they were derived from by a parsing strategy.

Consider for example the parsing strategy of top-down parsing. The stack
symbols of the constructed PDA are of the form [A → α • β], where A → αβ is
a rule in the CFG. The transitions are given by:

– [A → α • aβ] a7→ [A → αa • β] for each rule A → αaβ;
– [A → α • Bβ] ε7→ [A → α • Bβ] [B → • γ] for each pair of rules A → αBβ

and π = B → γ; and
– [A → α • Bβ] [B → γ •] ε7→ [A → αB • β].

We assume without loss of generality that the start symbol has only one defining
rule, say S → σ. The initial stack symbol is then [S → • σ] and the final stack
symbol is [S → σ •].

The probability distribution described by a proper and consistent PCFG can
be carried over to a PPDA implementing the top-down parsing strategy if we let



transitions of the first and third kind above have probability 1, and let those of
the second kind have the same probability as the rule B → γ from the PCFG.

The reverse does not hold in general. In the PPDA we may assign different
probabilities to two different transitions of the form:

– [A → α • Bβ] ε7→ [A → α • Bβ] [B → • γ]; and
– [A′ → α′ • Bβ′] ε7→ [A′ → α′ • Bβ′] [B → • γ].

Such a distinction between the different contexts for an occurrence of nonter-
minal B cannot normally be encoded into the original CFG. This observation
is related to a technique from [54] that allows probability distributions more
refined than those that can be expressed in terms of a given CFG. See also [55].

Example 8. Consider the CFG:

π1 : S → A
π2 : A → a B
π3 : A → b B
π4 : B → c
π5 : B → d

If p is the probability distribution over strings induced by a proper PCFG that
extends the CFG above, then we must have:

p(ac)
p(ad)

=
p(bc)
p(bd)

. (43)

Another way of looking at this is that we have a 2-dimensional parameter space,
as there are only two free parameters: once we choose p(π2) and p(π4), then
p(π3) must be 1− p(π2) and p(π5) must be 1− p(π4). Naturally p(π1) = 1.

Consider now the corresponding top-down PDA. If we are to turn this into a
proper PPDA, all transitions must have probability 1, except the following six:

– [S → • A] ε7→ [S → • A] [A → • aB],
– [S → • A] ε7→ [S → • A] [A → • bB],
– [A → a • B] ε7→ [A → a • B] [B → • c],
– [A → a • B] ε7→ [A → a • B] [B → • d],
– [A → b • B] ε7→ [A → b • B] [B → • c], and
– [A → b • B] ε7→ [A → b • B] [B → • d].

Now (43) no longer restricts the space of available probability distributions. Seen
in a different way, we have a 3-dimensional parameter space, as there are three
free parameters; the probabilities of the first, third and fifth transitions above
determine those of the others.

Another parsing strategy that preserves the allowable probability distribu-
tions is left-corner parsing [56]. This preservation does not hold for all parsing
strategies however, as pointed out for bottom-up parsing by [18]. Another strat-
egy for which it does not hold is LR parsing. In [52], an example is given of



a PCFG with a probability distribution that cannot be expressed in terms of
the corresponding PDA implementing the LR strategy. However, as shown by
[57], this problem disappears if we abandon the requirement that the PPDA be
proper.

9 Semirings

Let us compare the computation of Z (Section 2) with the computation of pmax

(Section 5). An important similarity is that values coming from members in the
right-hand side of a rule are multiplied, as can be witnessed in both (9) and (20).
An important difference is that in (6) we add the values coming from alterna-
tive derivations, whereas in (20) these values are combined by maximisation.
By allowing other operations in place of those mentioned above, possibly with
another domain of weights, we obtain a general class of computations involving
context-free grammars. The domain and operations are subject to a number of
constraints, which can be expressed as an algebraic structure.

Formally, a semiring is a 5-tuple (D,⊕,⊗,0,1), where D is a set, ⊕ and ⊗
are binary operations on D, and 0,1 ∈ D, with the following properties for all
a, b, c ∈ D:

additive identity a⊕ 0 = 0⊕ a = a,
additive commutativity a⊕ b = b⊕ a,
additive associativity (a⊕ b)⊕ c = a⊕ (b⊕ c),
multiplicative identity a⊗ 1 = 1⊗ a = a,
annihilation a⊗ 0 = 0⊗ a = 0,
multiplicative associativity (a⊗ b)⊗ c = a⊗ (b⊗ c),
distributivity a⊗ (b⊕ c) = (a⊗ b)⊕ (a⊗ c) and (a⊕ b)⊗ c = (a⊗ c)⊕ (b⊗ c).

The semiring (R+,+, ·, 0, 1) underlies the computation of Z, where R+ stands
for the non-negative real numbers, and + and · stand for ordinary addition and
multiplication. By replacing + by max, we obtain the semiring (R+,max, ·, 0, 1),
which underlies the computation of pmax . These and several other semirings
were discussed in relation to context-free grammars by [58]. Semirings are firmly
rooted in the theory of context-free grammars and other formalisms, often in
connection with formal power series [59]. For applications of semirings with a
focus on finite-state transducers, see [60].

In the remainder of this section, we investigate the semiring (R+ ∪
{∞},min,+,∞, 0). The domain includes the symbol ∞, which also acts as the
‘zero’ element. This means that min(a,∞) = min(∞, a) = a and a + ∞ =
∞ + a = ∞ for all a. We will show that this semiring is useful for error cor-
rection of programming languages, which is closely related to the problem of
computing the optimal parse on the basis of WCFGs, as is known from [61].

Assume a CFG G, and assume two functions on terminals, called d and i, and
a function s on pairs of terminals. These functions define the costs of correcting
a string by deleting or inserting a terminal, or by substituting one terminal
by another. Costs are non-negative real numbers. We assume that s(a, b) ≤



d(a) + i(b), or in words, it is at least as costly to delete a and insert b as to
substitute a by b. Naturally, s(a, a) = 0 for all a, which means that leaving a
terminal unaffected can be treated as substituting it by itself.

The minimum edit distance between two strings w and v, denoted by
dist(w, v), is defined as the minimum sum of costs of a list of deletions, in-
sertions and substitutions needed to turn w into v [62]. We are now asked to
solve the following problem. Given a string w, compute the string v in the lan-
guage generated by G that minimises dist(w, v). Similarly to our presentation in
Section 5, the algorithm we will show computes this minimal value dist(w, v),
but not the relevant v itself nor the used edit operations. These can be computed
by a simple extension of the basic mechanism.

Let us assume a PDA A instead of a CFG as representation of a context-
free language, which slightly simplifies the discussion. The PDA may implement
any parsing strategy. We now construct a WPDA A′ as follows. For each stack
symbol X in A, A′ has two distinct stack symbols X and Xdel . A symbol of
the form Xdel will be on top of the stack immediately after a substitution,
or at the beginning of the input. While it is on top of the stack, we allow an
uninterrupted sequence of deletions, but no other actions. We thereby effectively
force a canonical ordering on the edit operation and stack manipulations, placing
deletions as early as possible. If the initial stack symbol of A is X, then that of
A′ is Xdel . Further:

– Pop and push transitions are copied unchanged from A to A′. Also swap
transitions of the form X

ε7→ Y are copied unchanged. The weight of all
these transitions is 0.

– For each transition X
a7→ Y in A, A′ has the following transitions:

• X
b7→ Ydel with weight s(b, a), for each b, and

• X
ε7→ Y with weight i(a).

– For each stack symbol Xdel , A′ has the following transitions:
• Xdel

a7→ Xdel with weight d(a), for each a, and
• Xdel

ε7→ X with weight 0.

As dictated by the specified semiring, weights in a computation are added. In
the presence of ambiguity, we take the minimum weight of all the computations
that recognise a string.

Example 9. Consider the following grammar and the top-down PDA obtained
from it:

S → a A a
A → b A b
A → a

One of several ways to recognise the string abb, while allowing for error correc-
tion, is by application of the list of transitions in Figure 6. The total weight of
the computation is i(a)+s(b, a)+d(b). There are other computations recognising
the same string, which may have lower weight, depending on the values of i, d
and s.



[S → • aAa]del
ε7→ [S → • aAa] (0)

[S → • aAa]
ε7→ [S → a • Aa] (i(a))

[S → a • Aa]
ε7→ [S → a • Aa] [A → • a] (0)

[A → • a]
a7→ [A → a •]del (0)

[A → a •]del
ε7→ [A → a •] (0)

[S → a • Aa] [A → a •] ε7→ [S → aA • a] (0)

[S → aA • a]
b7→ [S → aAa •]del (s(b, a))

[S → aAa •]del
b7→ [S → aAa •]del (d(b))

[S → aAa •]del
ε7→ [S → aAa •] (0)

Fig. 6. One possible list of transitions that can be applied in order to recognise string
abb with error correction, in Example 9. The weights of these transitions are given
between brackets.

In transforming a PDA to become an error-correcting WPDA, new nondeter-
minism is introduced. By tabulation however, all computations can be simulated
in cubic time in the input length, in a way that allows extraction of the com-
putation with the lowest weight [63]. Depending on the chosen parsing strategy,
the result may be similar to Earley’s algorithm [64, 65], to CYK parsing [61], or
to tabular LR parsing [66, 67].

10 Further references

Some interpretations of probabilistic formalisms differ from what we have de-
scribed above in that they define acceptance by cut-point. This means that a
probabilistic grammar or automaton with probability assignment p is paired
with a number c between 0 and 1. The language that is thereby defined consists
of all strings w such that p(w) > c. For PCFGs this was investigated by [68],
and for PPDAs by [7, 69–71].

Assume a PCFG with probability assignment p. If we let λπ = loge p(π) for
each rule π, then the probability of a derivation can be rewritten as:

p(d) =
∏
π

p(π)C(π,d) =
∏
π

eλπ·C(π,d). (44)

This equation stresses that the probability of a derivation is determined only
by the frequencies of individual rules occurring in it. We cannot express, say,
preference for combinations or patterns of rules. For this, we need to generalise
the framework to log-linear models [72, 73]. Such a model allows us to specify a
number of arbitrary features c1, . . . , cm on derivations. The features map deriva-
tions to non-negative numbers. Further, there is an equal number of weights λ1,
. . . , λm. The model thereby defines a probability distribution on derivations as:

p(d) =
1
z

∏
i

eλi·ci(d) =
1
z
e

P
i λi·ci(d), (45)



where z is a normalisation constant, that is, z is the sum of e
P

i λi·ci(d) for all d
that are valid left-most derivations.
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